Krasovění devonských vápenců Moravského krausu a okolí

Karstification on Devonian Limestones of Moravian Karst (English summary)

(J obr. v textu)

JAROSLAV DVOŘÁK

Český geologický ústav, Leitnerova 22, 658 69 Brno

Ve středním a svařčím devonu a nejnížším karbonu vznikala na vápencích Moravského krausu jen Skrapy a neptunické žíly. V permu se vyvinul cockpitový kras v okolí boskovické brázdy. Ze spodní křížky vznikly mohutné vyvinutý tropický klučelovitý kras z okolí Rudic. Od paleogenu vznikala již údolí a na ně vázaly subhorizontálně jeskyně. Většina jich vznikla ve starém mocičen. V přesícečné se krasovění zpomalilo.

Key words: Palaeozoic, Mesozoic, Tertiary, Quaternary, karstification, Moravian Karst

Úvod

V práci je podán přehled časového průběhu krasovění od paleozoika do kvartéra v závislosti na vývoji reliefu okolí krajin. Poslední výzkumy ukazují, že krasové procesy probíhaly dlouhodobě a mnohé, dnes obděívany fenomény, jsou mnohem starší, než se do nedávnna uvažovalo. Moravský kras je klasickou oblastí, kde lze tyto stále probíhající procesy studovat.

Geologicchá charakteristika vápenců Moravského krausu

Těleso devonských vápenců Moravského krausu směřuje generálně sj. směrem a uklání se kolem 30° k V. Pod v. okrajem se chemicky čisté vápence makočského souvrství (štěrkový devon a fashan) prostírat zastupují se stejně starou pánevnickou vintockou facií, tvořenou tence vrstevnatými vápenci s jílovitými laminami. Vintocká facie je pro puklinovou vodu nepropustná. Na J jsou vápence Moravského krasu u Brna-Líšeň ukončeny velkou poklesovou dišloukací. Poklesl kraj v oýče skoku přes 1 km zabraňuje dnes rychlé migraci puklinové vody směrem k J. Geologie je popsána podrobně jinde (Dvořák in Musil et al. 1993).

Krasovění v paleozoiku

Po první mořské transgresi v eifelu a uložení vápenců vavřínkocitých v s. části Moravského krausu došlo kolem rozhodným pokrového v plošně omezené regresi moře a krasovění vápenců. Vrt HV 104, situovaný ve Křížském údolí u Josefova poblíž odboké silnice do Olomouce (obr. 3 in Musil et al. 1993), doložil existenci až 0,5 m hlubokých škrup.

Konzum devonu (v nejvyšším fashanu a farnenu) moře ustoupilo z větší části dnešního Moravského krausu k jeho v. okraji. Během farnenu a větší části tournai probíhalo krasovění až 1000 m necelných vysoce chemicky čistých vápenců makočského souvrství. Poslední uzemní se nacházelo většinou jen několik metrů nad hladinou moře, vytočila se jen škrapy a mělké nerovnosti, které byly později (v svrchním tournai) zaplněny možnými sedi-
kde jurské spongility ostře nasedají na vápence macošského souvrství, není styk odkryt natolik, aby bylo možné posoudit míru předjurského zkrasování.

Proti tomu máme množství údajů pro typický tropický cockpitový kras, který se vyvíjel během spodní křídy v Moravském kraji nejen v okolí Rudic (Bosák 1979), ale též s. od Moravského kraje v okolí Břeclavi a Vratíkova (Dvořák 1953 in Musil et al. 1993). Zarozený povrch v okolí Moravského kraje byl v té době náklonně generálně k VJV. Hloubka geologických varhan přesahovala 180 m, svědčí o dosti značné nadmořské výšce oceánu. Do povzvolnění klayovými deprese byly hlavně z oblasti krystalinika Českonořské vrchoviny (svědecitvě těžkých minerálů) splavovány přístupné klinolitické a laterické zvětralinové, dokládající humidní tropické až subtropické klimatické podmínky (Dvořák in Musil et al. 1993).

Dnešní znalost rozšíření rudických vrstev, vyplňujících spodnokřídlové geologické varhany, na povrchu Moravského kraje je velmi nedokonalá. V poslední době jsem písky rudických vrstev zjistil v těsné blízkosti propasti Macocha. Limonitické železné rudy (báze rudických vrstev) jsou již dříve nalezeny jako výplň hluboké trhliny v Amatérské jeskyni poblíž města, kde se větví sloupská a holštínsko spojuje. Těžba limonitických zvětralinových železných rud u Němčic a v okolí Vratíkova dokládá značné rozšíření spodnokřídlového kuželovitého krasu v celém území (u Vratíkova jsou zbytky vápencových věží zachovány dnes). Nahromadění zvětralin rudických vrstev mezi Rudicemi a Olomoučem je důsledkem synsedimentárního velmi pomalého jz. nakládání kry, ležící sv. od Olomouče (obr. 1). Tento zlom leží jz. od Olomouče, probíhá ve směru SZ-JV a je pokračováním blanenského profilu. Funkoval jistě během ukládání rudických vrstev a pokles zařízení zachování svrchnoříských sedimentů před destrukcí právě v blízkosti zlomu u Olomouče.

Není vyloučeno, že Macocha zejména vznikla též tím, že se písky rudických vrstev „vyvypadaly“ z hluboké kapsy, předispoměnané vzp. směrnicí diakroni, do rozlehlého dozoru na Punčku a byly později vyplaveny povodňově mimo Jeskyně.

Ve svrchní křídě byl proces krasování přerušen zaplavením území mořem. Po jeho ústupu došlo k vytváření silicikrust na zarovnaném povrchu ještě během nejvyšší křídy (svědecítvějšími jsou měsíky hojně „šlukáky“).

Krasování v terciéru

ského souvrství kaňonovitých údolí. Ve spodním miocénu (otnang) poklesla j. část Moravského kraje natolik, že údolí, která vznikla v předcházejícím období (hlavně údolí směřující od Bukoviny a Březiny k Ochozi a k Ríčmanicím) byla zhlouhena jílovitými štěrky a laminovanými nevápnitými jíly jezero.pého původu. V s. části Moravského kraje se v tomto období údolí stabilizovala.

Po relativně rychlém erozním zařezání hlubokých údolí do hornin Moravského kraje se zdi el Drahanské vrchoviny zpomalil. Hydrografická situace se stabilizovala a začal se vytvářet krasový fenomen, který máme dnes v hlavních rysech již zachován. Zarovnaný povrch Drahanské vrchoviny ležel v té době přibližně 150 až 200 m nad hladinou tehdejšího moře.
Základním předпokladem procesu krasovění v chemicky čistých vápencích je jejich rozpuкání, zejména vertikálně. Pukliny vyplňovala voda, jejíж hladina se ploše ukláпela k vývěru v místě, kde nekrasovějící horniny již tvorily nepropustnou bariéru. Hlavнí potoky přitěkaly do oblastí vápenců Moravského krausu od S nebo od V. Proti tomu hlavní vývěry se nacháпely při jeho z okraji (to platí pro s. a střední část Moravského krausu). Jakmile potok přitěkel na chemicky čisté vápence, začala se jeho voda ztrácet ve vertikálních puklinách a stěká až k hladině spodních puklinových vod. Puklinami pak tuto vodu odštěkala až k prameni. Korozním rozšiřováním puklin (i jiných ploch odlučností jako např. vrstevních ploch nebo ploch kliváže) vznikaly jak vertikální propasti při pono-

Současně s tvorbou okrajových poljí u Sloupů, Holštejna, ale i Víntok u Ostrova, se vytvořila subhorizontální úroveň Amaříské jeskyně. Jeskyni Kateřinskou povazují za paleolovčí ostrovní vod.

Ve střední části Moravského krausu se ještě před bade

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Měsíc} & \textbf{Datum} & \textbf{Příčina} & \textbf{Stupeň} \\
\hline
1 & 1.1 & Nasečení & 2 \\
2 & 2.2 & Nasečení & 3 \\
3 & 3.3 & Nasečení & 4 \\
\hline
\end{tabular}
\caption{Tabulka příčin nasečení}
\end{table}

Předpokládám, že právě popsaný stupeň krasové vápenčí Moravského krausu proběhl hlavně v otančku až karpatu. Koncem karpatu se vytvořil prolom Výškovské hrany (Dvořák 1995). Po jeho vzniku následovalo vytvo

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

Rěčením, že je vysvětlená vápenčí Moravského krausu pod hládím moře. Údolí bylo zaplněno vody, ale zejména šedozelenavými vápencovými lamy s bohatou foraminíferovou fauna.

Během spodního badela klesala celá oblast Moravského krausu pod hladinu moře. Největší dobu zaplněno vody, ale zejména šedozelenavými vápencovými lamy s bohatou foraminíferovou fauna. Po ústupu moře ve svrchním badenu byly mořské sedimenty spodnobočenského stáří ze starých údolí odnášeny. U Jedovnice se zcela vy

V tomto propadání se voda začala ztrácet v nově vytvořených potůcích, představujících vertikální pukliny.

Během spodního badela klesala celá oblast Moravského krausu pod hladinu moře. Údolí bylo zaplněno vody, ale zejména šedozelenavými vápencovými lamy s bohatou foraminíferovou fauna. Po ústupu moře ve svrchním badenu byly mořské sedimenty spodnobočenského stáří ze starých údolí odnášeny. U Jedovnice se zcela vy

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

V holocénu proces krasové zesílil: vysvětlení do

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

V holocénu proces krasové zasílil: vysvětlení do

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

V holocénu proces krasové zasílil: vysvětlení do

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

V holocénu proces krasové zasílil: vysvětlení do

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

V holocénu proces krasové zasílil: vysvětlení do

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

V holocénu proces krasové zasílil: vysvětlení do

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Ukázková grafika}
\end{figure}

V holocénu proces krasové zasílil: vysvětlení do
Karstification on Devonian Limestones of Moravian Karst

The limestones of the Devonian Mačocha Formation present within the Moravian Karst are generally dipping eastwards at an angle of 30°. In Palaeozoic time, only karren forms and neptunian dykes evolved. Cockpit karst of Permian age developed merely in the neighbourhood of the Boskovice graben. During Lower Cretaceous time, tropical climatic karst landscape was formed throughout the Moravian Karst. The largest number of the lateritic and kaolinitic weathering products originating in the period mentioned above, have been preserved in the sunken part of the block situated between the villages of Olotmučany and Rudice. In the course of Palaeogene time, large subhorizontal cave systems, related to north-southerly drainage in the flat valleys, formed near Sloup and Holštejn. During the Lower Miocene, deep valleys and the associated cave systems including marginal poljes near Sloup and Holštejn developed. The Lower Badenian marine transgression, which filled the valleys with calcareous clays, interrupted the evolution of karst forms. After the regression of the sea the marine sediments were removed from the valleys, poljes and caves. Where new valleys and caves (the Rudice sinkhole) had been formed, the karstification did not advance to such an extent as it did in Lower Miocene time. In the Pleistocene, karstification slowed down and the marginal poljes were filled with gravel. As late as the Holocene, the Pleistocene sediments were gradually removed through the caves of the Moravian Karst.

Explanation of Text-figs.

1. Schematic section through the Mesozoic sediments in the vicinity of Olotmučany; not to scale. The figure illustrates the preservation of Upper Jurassic limestones along the Olotmučany fault due to the SSW-tilt of the NNE block. In the SW part of the block, a considerable part of the Rudice Formation has accumulated, Upper Cretaceous sediments have also been preserved.

 1 – sediments of Upper Cretaceous age; 2 – Rudice Formation (Lower Cretaceous); 3 – sediments of Upper Jurassic age; 4 – chemically pure limestones of the Mačocha Formation (Devonian).

2. The river Svita and its tributaries within the Moravian Karst and its neighbourhood. The N-S-trending valley in the North and the „Lučná“ valley between Jevonice and Krštiny are remnants of the initial Palaeogene drainage pattern (cf. also the direction of the Svita river-course).

 1 – Bukovinka–Rímanice valley, filled with Lower Miocene clays and gravels (Ostrorhingian); 2 – dry or poorly inundated valleys; 3 – karst sink-hole; 4 – karst spring; 5 – dislocation.

3. A – Schematic section through the northern part of the Moravian Karst; not to scale. Initial stage of underground drainage within the Devonian limestones after the formation of deep valleys in Lower Miocene time.

 1 – rocks of the Brno granitoid massif; 2 – Devonian limestones; 3 – overlying nodular limestones and shales of Uppermost Devonian and Lower Carboniferous age; 4 – bottom of a surface valley; 5 – active surface water course upon a non-karstifying basement; 6 – vertical and subhorizontal underground drainage; 7 – karst spring; 8 – karst sink-hole.

B – The same as shown in Fig. 3A; final stage of underground drainage. After a blind valley and, later, a marginal polje has formed at the sink-hole site, the surface valley in the limestones remains permanently dry. Indicated are the evolutional stages of the blind valley as a result of fast retrogressive erosion.

 1 – caves; 2 – dry valleys in limestones; 3 – active surface flow; 4 – evolutional stages of the blind valley; for the rest see the explanatory notes in Fig. 3A.