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Gas flux distribution in mineral springs
and tectonic structure in the western Eger Rift

Distribuce vyrond plyni v minerdlnich pramenech

a tektonicka struktura zapadni ¢asti ohareckého riftu (Czech summary)
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The gases of more than 70 mineral springs and mofettes (cold dry CO, gas vents) were investigated for gas flux, gas composition and *He/*He
ratios in the western part of the Eger Rift. Both regional gas flux and gas composition pattern are controlled by the tectonic structure.

Four separate main gas escape centres could be detected, partly with gas fluxes of more than 150 m?hr of free gas: FrantiSkovy
L4zng/Cheb Basin, Marianské Lézn&, Konstantinovy Lazné and Karlovy Vary. The very similar gases of the gas escape centres are > 99
vol. % COq-rich. Isotopically heavy CO, and high mantle derived helium proportions indicate the magmatic origin of these CO; rich ga-
ses. As a result of gas fractionation by CO, solution and HCO;~ formation the N> contents in the gas phase increase in the margin areas
with lower gas flux. According to a first estimation, the entire gas flux (natural flux) in the western part of the Eger Rift lies around a mi-
nimum of 5.31 million m3a free gas, including dissolved CO2 and HCO4™ of 8.13 million m¥/a.

The opposite dip of the main faults of the Eger Rift forms a Y-shaped structure and splits the gas flux about 15 km below the surface, for-
ming a CO,-free zone between them. The borders of this zone correspond to the position of the Eger Rift main fault, the southern border
to the Litom&Fice deep fault. The Eger Rift is shifted on younger NNW-SSE striking faults and narrows to the west.

The migration of the magmatic gases is mainly bound to the WSW-ENE striking Eger Rift main faults, while the younger NNW-SSE stri-
king faults only have a distributive function. Southerly directed gas migration along the Horni Slavkov deep fault formed the small gas
escape centre of Konstantinovy Lazng in the area of intersection with the BezdruZice deep fault.
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1. Introduction

Intensive basaltic volcanism and an increased gas flux of
magmatic CO,-rich gases in a large number of mineral
springs and mofettes (cold dry gas vents) are connected
with the post Alpidian crustal extension in the Eger Rift.
Released gas volumes of almost pure CO; reach several
m3/hr in some springs in the spas of Maridnské Lazné,
Frantikovy Lizné and Karlovy Vary (e.g. PaCes 1974,
Kolatova - Myslil 1979, Tesat 1986). The presence of high
proportions of mantle derived helium with corresponding
isotopically heavy CO, demonstrates the magmatic origin
of the CO,-rich gases (Polyak et al. 1985, Pades 1974,
1987, D’ Amore et al. 1989, O’Nions et al. 1989, Weinlich
et al. 1998).

The distribution of the COx-rich mineral springs in
north-west Bohemia has been linked for a long time to the
tectonic structure of the Eger Rift (e.g. Kolafova 1965,
Egerter et al. 1984). Thus the term “Bohemian thermal
water line” by Jokély (1857) and Laube (1884) is the his-
torical forerunner of the Eger Rift. However, the subject of
the investigations was mainly the occurrence of mineral
waters and not the distribution of the gas flux.

The ascent of gases mostly depends on the existence of
paths of higher permeability, i.e. like fractures of the fault
zones in compact igneous and metamorphic rocks.

Therefore, it is possible to map out these fault zones by
means of the gas distribution on the surface. For this pur-
pose noble gases are normally used (Dikun 1975, Sugisaki
1980), however CO, can also be applied (Ernst 1968,
Duddridge et al. 1991).

New facts and possibilities for tectonic interpretation
are gathered by the measuring of gas fluxes in combinati-
on with chemical composition of the gases. Both the cour-
se of the main faults and the tectonic structure in the wes-
tern part of the Eger Rift become apparent by the regional
distribution pattern of the gas flux and the chemical cha-
racteristics of the gases.

2. Geological settings

The lithospheric extension in the Bohemian massif follo-
wed the Alpine orogeny in the late Eocene-Oligocene and
resulted in the WSW-ENE striking North Bohemian
Tertiary Basins (Malkovsky 1980, 1987). This evolution
was accompanied by extensive Oligocene-Miocene alkali-
ne basaltic volcanism, e.g., Doupovské hory Mis.
{Kopecky 1979). In a further tectonic phase, NNW-SSE
striking deep faults were reactivated from Pliocene fo
Pleistocene (and present). The change of the extension di-
rection led in the Cheb Basin to the sedimentation of an up
to 300 m thick Pliocene-Pleistocene sequence with a basin
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axis striking parallel to the Maridnské Lazné deep fault.
This latest phase was also accompanied by volcanism (oli-
vine nephelinite-olivine melilithite) in the area of the Eger
Rift (Sibrava - Havliek 1980). The youngest eruptions
formed two gquaternary volcanoes (Komorni Hurka,
Zelezna Hirka, cf. Fig. 1). Recent swarm earthquake acti-
vities provide evidence for contemporary tectonic activity
of the faults (Griinthal et al. 1990).

Dominating tectonic elements of the Eger Rift are the
WSW-ENE striking fault zones of the Ore Mountains
fault, which forms a Y-shaped structure, the Central faulit

®Prahe

(of the Bohemian stfedohofi Mts.) and the Litoméfice de-
ep fault (Kopecky 1979, Stovickova 1980, Conrad et al.
1983). Within the investigation area, the Eger Rift is cros-
sed by the younger NNW-SSE striking deep fault zones of
Maridnské Lazné and Horni Slavkov and a few secondary
NNE-SSW striking faults (Fig. 1).

In the eastern part of the Eger Rift, the course of the
Litomé&fice deep fault is indicated by geophysical data up
to the area south of Karlovy Vary by the use of gravity gra-
dients (Stovickova 1980, Conrad et al. 1983). In the area
of Maridnské Lazng, the gravity pattern is disturbed by
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Fig. 1. General map of the western part of the Eger Rift with the position of the sampled gas-bearing springs

C - Cheb (Eger) - Basin; S - Sokolov Basin; D - Doupovské hory;

+ - Variscian granite; v - Proterozoic Maridnské Lazné Amphibolite Complex; dotted lines - Tertiary extension basin; black - Tertiary volcanite; cones
- Quaternary volcanoes (north: Komorni Hurka; south: Zelezna Hiirka), Litoméfice deep fault according to geophysical mapping (Conrad et al. 1983)
circles - sampled springs with numbers in tables 1 to 3; squares - not investigated, dried up or inaccessible mineral springs: a - TrSnice, b - Nebanice,
¢ - Pochlovice, d - Sabina, e - Palig, f - Salajna, g - Zdirnice, k - Lazng KynZvart, i - Brt, j - Kyselka; half-filled squares - uranium mines with gas blo-

wouts and water inflow: k - Dyle#t, [ - Zadni Chodov, m - Vitkov 11, Tachov
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granite intrusions at the margin of the Maridnské Lazné
Amphibolite Complex, rendering an exact localization of
the Litoméfice deep fault impossible (Conrad 1995). Due
to the disturbing effect of the KynZvart granite even the
course of the Marianské Lazné deep fault is not to be di-
stinguished by gravimetrical means. However it is detec-
table on the surface. In the geological surface picture the
course of the Litomé&Fice deep fault zone is not visible be-
cause of the presence of similar rock complexes.

The total dissolved solids (TDS) in the waters of the
mineral springs range from 70 to 23500 mg/l (Dietl 1942,
Myslil - Vacl 1966, Pafes 1974, Carlé 1975, Kolarovd -
Myslil 1979, Egerter et al. 1984). Higher concentrations of
TDS from 2000 to 23500 mg/l are mostly in the Na-SO4-
CI-HCO; waters in the spas Karlovy Vary, Marianské
Lazné and the surroundings of Franti¥kovy Ldzné. The
Na-S0,4-Cl mineral waters are interpreted as Tertiary relict
waters (Myslil and Vacl 1966, Paces 1974, Dvofak 1990).
Paces (1987) suggests an additional volcanic sulphur in-
put, based on the 83*S values. Outside these areas there
exist for the most part only low mineralized Ca-Mg-HCO3
waters with 70-1000 mg/l TDS and 1200-2000 mg/l of
dissolved CO,. Due to their high CO; contents, the waters
dissolve cations, mainly Ca?* and Mg?*, out of the adja-
cent rock, which leads to the formation of Ca-Mg-HCO;
waters. The petrographic composition of the adjacent rock
is indicated by the Ca?*/Mg?* ratio (Pales 1974, Dvorak
1990).

3. Methods of investigation

The area of investigation (Fig. 1) extends from Vogtland in
the north-west via the Cheb Basin in an approximately 25
km wide area to Konstantinovy Lézné€ (Czech Republic),
40 km south of the Eger Rift. From the approximately 140
mineral springs described in this area (Laube 1884, Jahnel
1937, Dietl 1942, Koldfova - Myslil 1979, Egerter et al.
1984, Koldfova - Hrkal 1986), 74 gas bearing springs we-
re selected for sampling. Almost all the mineral springs at
the margin of the investigated area were sampled. Not in-
vestigated, however, was the mineral spring of Karlovy
Vary.

3.1. Gas sampling and gas flux measurements of free gas

Between CO; and N», noble gases and hydrocarbons exist
large solubility differences in water. Due to their essenti-
ally lower solubility, inert and rare gases are enriched in
the gas phase. Accordingly, in order to obtain comparable
results of the gas composition, only free gas at atmosphe-
ric pressure was collected. The gas was trapped by a fun-
nel and led to gas vessels made of highly helium imper-
meable glass. The vessels were filled with water from the
sampled spring prior to gas collection. Because the water
in the gas vessels was saturated with the gas of the res-
pective spring, solubility effects between the gas and aqu-
eous phases during sampling could so be kept to a mini-

mum. The sample volumes were between 0.5 and 11, and
2.5 1 in the case of the COx-rich gas samples. Gas chro-
matography was used to analyse the gas composition and
the isotopic composition of the He determined.

* At each of the sampled mineral springs and mofettes,
the gas flux was measured. Funnels with a diameter of 0.6
to 1 m, made from a 1 mm thick flexible polythene sheet,
covered the springs. The gas flux was measured using gas
flow meters with varying ranges (drum gas counters for 5
to 750 V/hr; dry gas counters for 60 Vhr to 12000 Vhr). The
smallest gas fluxes were measured with a scaled measu-
ring cylinder placed above the funnel. Reproducible rea-
dings of gas flux were achieved in 10 to 15 minutes of me-
asuring in springs and mofettes with large gas flux (more
than 50 V/hr). Measurement times partly of up to 2 hr we-
re necessary in springs with very low gas fluxes in which
the gas often ascends sporadically. The errors of the gas
flux measurements is + 10-20 %.

In the mofette fields, for instance in Soos, Bublak or
Smrad’och, as many as 50-500 gas exhalations exist. In
these cases, all the larger and a selection of the smaller gas
vents were measured. The total gas flux was estimated in
accordance with these measurement values and the num-
ber of the gas exhalations (Table 3).

3.2. Sampling preparation and He isotope analysis

In order to analyse the N and trace gas components, first-
ly CO» was scrubbed out with KOH-solution according to
Weinlich (1989) in the case of COz-rich gases. Conta-
mination with dissolved air in the saturated KOH solution
can be excluded because of the negligibly small solubility
of air components. The possible effect is lower than the
analytical errors.

The error in the reported CO; contents lies within the
precision of readout of + 0.1 ml per 1 to 2.5 1 gas vessel.
The error of the gas GC analyses of the other gas compo-
nents, after parallel analyses in two laboratories (GSF
Munich: Shimadzu GC-9A and the FrantiSkovy Lazné
Reference Laboratory: Laboratorni Pfistroje Praha,
Chrom 5), along with double sampling dependent on con-
centration, is + 3 % for N, and O and = 10 to 40 % for
He, Ar and hydrocarbons). Results of the analyses are lis-
ted in Table 1.

Most of the gas samples contain small contents of Oo,
and thus atmospheric proportions, which must be correc-
ted for calculating purposes. In several CO--rich gases the
O, and/or Ar contents were partly higher than expected
due to contaminations with atmospheric air (N2/Ar ratio =
83.97 and N,/O; ratio = 3.73). This is a result of exsoluti-
on of dissolved air in the ground waters during the CO»
transport through the ground waters (stripping effect). A
recalculation of the analyses of the O, concentrations in
dissolved air (N,/O, ratio dependent on temperature
1.81...1.85) leads to N,/Ar ratios being too low compared
with those of magmatic gases (Matsuo et al. 1978, Kita et
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al. 1993). As shown in the plot of O, vs. Ar content - in the
COs-free proportion - (Fig. 2), a variable O, reduction
occurs. The Ar isotope ratios of the spring gases of the
Vogtland (Jordan et al. 1979) show no essential divergen-
ces from the atmospheric ratios. Therefore Ar contents
were used to correct for atmosphere derived contributions.
The air-free proportions of the investigated gases, listed in
Table 2, form the basis of further considerations.

The gas composition (air-free part) does not change
significantly with time, as established with multiple sam-
plings during 1992-1994. The gas composition of the
COy-rich gases is very constant. Variations in the N, co-
ntent between 3 and 5 vol. % were observed only in some
springs with gases containing less COa.

The gas samples were analysed for their “He and *°Ne
content, and the *He/*He ratio was measured. Both sam-
ple purification and measurement procedure on a mass
spectrometer VG MM 3000 are given by Weise - Moser
(1987). The precision of the helium isotope measurements
is generally & 2 %. The precision of “He- and 2°Ne con-
centration ratios is x 10 %, depending on the quantity of
the samples. The measured *He/*He ratios, R, must also
be corrected for atmospheric contributions. Here, it is as-
sumed that ?“Ne is completely atmospheric in origin and
the value R was corrected following Craig et al. (1978)
with the “He/?°Ne ratio of dissolved air. The helium isoto-
pe ratio values are given as air corrected R/R, values. In
relation to Rymors = 8 . Ry and R/R, cruse = 0.02 (Ozima -
Podosek 1983}, a mantle derived proportion can be given.

4. Results
4.1. Gas flux distribution

The gas fluxes ranged between 30 ml/hr and > 30 m>/hr of
free gas (Table 3) in the mineral springs and mofettes of
the investigated area. Four separate major gas escape cent-
res are apparent in the western Eger Rift (Fig. 3):

1. FrantiSkovy L4zn&/Cheb Basin: a minimum of 85
m?/hr of free gas escapes from the main mofettes and
springs of the Cheb Basin in the Soos (# 26-28), Bubldk
{(# 23), HartouSov (# 24) and Frantifkovy Lazné (# 20). In
the Soos moor, gas flux measurements were carried out in
the main gas escape areas on 25 gas exhalation points in
total and estimates were made on a further 15 smaller gas
exhalations. The well scattered smaller gas exhalations in
the Soos only slightly increase the total value to 35 m?/hr.
In Bublak, the CO» escape is also concentrated in a small
area of ~ 3000 m?, so that, at 15 measuring points, the do-
minant part of the gas volume stream could be determined
at 28 m3/hr in total. Repeated measuring confirmed the va-
lues shown in Table 3. In the case of Franti8kovy Lazné,
determinations of the dissolved gases are available (Myslil
- Vacl 1966, Kolafova - Myshlil 1979). Access to the
springs to measure the free gas was however not availab-
le. The gas flux of the free gases can therefore only be
estimated at > 16 m?hr, compared to those of Soos and
Bubldk.
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Fig. 2. Concentrations of O and Ar in the CO,-free proportions of the gas samples due to contamination by dissolved air
squares - measured Ar and O contents in the gas samples; triangular field between the circles - contamination with atmospheric air and O, reduction;
riangular field between the triangle and diamond symbels - contamination by dissolved air at the range of measured water temperature (6.5 to 33 °C)

and bacterial and/or chemical O; reduction in the waters
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Fig. 3. Distribution pattern of gas flux and composition (air-free) of the gases in mineral springs and mofettes in the surrounding area of the western

Eger Rift

Gas escape centres: Franti¥kovy Lazng (FL)/Cheb Basin, Marifnské Lazn€ (ML), Konstantinovy Lazng (KL) and Karlovy Vary (KV}

2. The region east of Maridnské Lazné&: The free gas
escaping in mineral springs of Marianské Lazné€ could be
estimated as a gas flux of over 100 m3hr for the 15 sp-
rings; 90 m?/hr of which was measured in 4 springs (# 44-
47). The mofettes of Smradoch, Prameny, Sirftak at
Podhorni vrch and the mineral springs of Nova Ves and
Cihana in the area NE of Marianské Lazn& additionally
produce approximately 20 m3/hr of free gas.

3. The region surrounding Konstantinovy Lazng: The
gas flux decreases rapidly to the SE of Marianské Lazné.
However, it increases again in a small area surrounding
Konstantinovy Lazné to approximately 2 m3hr in the

Prusikitv spring in Konstantinovy Lazné, and to 0.43
m?/hr in a gas spurt in the Celivsky creek at Bietislav (#
72). There is no mofette formation.

4. Karlovy Vary region: The thermal water and CO5 as-
cent is bound to the NNW-SSE striking “Thermal zone™
parallel to the Tepld river. In the V¥idlo and the Trini
springs approximately 266 m3/hr of gas is liberated alone.
The entire CO» gas flux of the main springs is 356 m*/hr
(Vylita et al. 1991). Mofettes have existed in the prolon-
gation of the Thermal zone between the V¥idlo and the
Dorotka and Stépanka springs (Gromes 1940). The CO»-
bearing waters in the basal sediments of the Sokolov
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Basin, which were discovered in 1898 (Kolafova - Myslil
1979), are pumped to the surface by brown coal mining.
Initiated by the pressure release of these waters, the CO
liberation in bore holes in the brown coal mines is 360
m3/hr (T. Vylita 1997). Natural mineral springs have not
existed (Laube 1884).

The greater the distance from the gas escape centres,
the lower the liberated quantities of free gas. The gas flux
remove is about 1 I/hr, and in some cases is as low as 30-
40 ml/hr in the springs of the margin areas around the
centres.

In the southern part of the Cheb Basin and to the south
of the Sokolov Basin, a zone without CO, escaping and al-
so without mineral springs can be established between two
WSW-ENE striking lines (Fig. 3). There are no known
occurrences of mineral springs south of the TrSnice-
Nebanice-Pochlovice line. South of the Cheb Basin, this
CO,-free zone is restricted by the reoccurrence of mineral
springs with gas flux mostly of 400-8000 Vhr. The sout-
hern limit of the COz-free zone shifts and therefore wi-
dens this zone to the east of the Maridnské Lazn€ deep
fault and the Horni Slavkov deep fault in a southerly and
south-easterly direction respectively.

The gas flux measured in these four gas escape centres
and estimated for the inaccessible springs in the spas
(Table 4) amounts to more than 606 m3/hr of free gas.
Including the dissolved CO» and the CO» fixed as HCO3-
- and including the data of non-investigated mineral sp-
rings and springs without gaseous CO2z (Myslil - Vacl
1966, Kolarova - Myslil 1979, Egerter et al. 1984, Nevoral

Table 4. Estimations of gas flux (gaseous phase) of inaccessible mineral
springs in north-west Bohemia and Vogtland

Gasflux
gaseous phase
Locality, spring (estimations)
I7hr
Sohi, Hofquelle 60
Urquelle 80
Sachsenquelle 60
Plesni, Smrlina II 30
FrantiSkovy L.dzné, SluneCni pramen 50
Franti$ktiv pramen 2000
Glauber 111 2000
Glauber IV 500
Novy pramen 100
Adlerav pramen 8000
Luénf pramen 150
Cartellieri 100
gas spurts in Slatinny creek 500
Tr8nice 0.5
Hiuboka 20
Maridnské Lazngé, Lesni pramen 2000
Balbintv pramen 3000
KfiZovy pramen IV 140
AmbroZ pramen 11 150
Ferdinand I 2000
Hosték, 11 30
Jankovice, Orioha 60

et al. 1989, Vylita 1997) - the entire CO- flux (natural flux)
is recorded at approximately 928 m?/hr (Table 5). These
are the minimal estimates. By pressure release caused by
bore holes or mining, as for example in the Sokolov Basin
(360 m*/hr free gas and 180 m7/hr dissolved CO,, Vylita
1997) these values can increase.

Table 5. Estimation of the total CO, flux (natural flux) in the western part
of the Eger Rift (gaseous phase, dissolved CO. and fixed HCOs- dis-
charged in water)

Minimal values, including estimations of free gases and data of dissol-
ved and fixed CO; in all mineral springs in the spas of FrantiSkovy
Lazné, Maridnské Lazné and Karlovy Vary (not listed in Table 3), and
including the mineral springs without free gases; data from Myslil - Vicl
(1966), Koldrova - Myslil (1979), Egerter et al. (1984), Nevoral et al.
(1989), B. Vylita (1991) and T. Vylita (1997)

Region CO; Gas flux
free CO;  COzin water  total
(V/hr) (I/hr) (I/hr)
South Vogtland 360 5980 6 340
Cheb Basin 90 720 69 026 159 740
only Frantiskovy Lazné 15 900 62 850 78 750
Maridnské Lazné-Tepld region 156 240 69900 226 140
only Maridnské Ldazné 109 130 47 460 156 590
west Maridnské Ldzné fault 71790 6 900 8 090
Cihand 2690 1660 4350
Konstantinovy Lazné region 2670 2 050 4720
Karlovy Vary region 356400 174760 531 160
only Kyselka 6 820 6 820
total (V/hr) 606390 321710 928 100
total (m¥/a) 5311980 2818210 8130190

A complete measuring of the liberated gas flux in the
investigation area (mainly COz) is not possible due to the
large amount of gas spurts and lack of access to the balne-
ologically used mineral springs in the spas. Furthermore,
gas liberation is not connected exclusively to mineral
springs. The measurement and estimation of the gas flux
is only possible in the presence of water. Without water
and vegetation cover, small gas spurts cannot be located.
Therefore no measurements can be made on dry gas vents
in forest soil, e.g. the mofettes of Milhostov (Wieser
1990).

Deep-seated gases are, however, to be expected gene-
rally in the soil air above faults (Ernst 1968, Dikun et al.
1975, Sugisaki et al. 1980). Further gas spurts are expec-
ted in the surrounding area of the gas-rich mineral springs
and mofettes. These become visible at higher water levels,
e.g. in the Soos and Bad Brambach (Witte 1926). At mi-
neral springs situated in close proximity to creeks, the gas
spurts can be observed along the creeks or faults, often for
a distance of 50 m (e.g. in Slatinny creek, VonSovsky cre-
ek, Plesnd river in the Cheb Basin; Kosi creek at Dolni
Kramolin, Pramensky creek near Maridnské Lazné,
Hadovka and Celivsky creek near Konstantinovy Lazng).
The CO, discharge in the ground waters (subsurface and
in creeks and rivers) is impossible to be measured and can-
not even be estimated.
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4.2. Distribution pattern of gas composition

The highest CO, content of > 99 vol. % in free gases can
only be detected in the four gas escape centres and at the
southern boundary of the CO»-free zone south of the Cheb
Basin. As the gas flux decreases, the CO, content also de-
creases with a corresponding increase in the N» content. In
the margin areas of the gas escape centres, the N content
is between 10 and 40 vol. % (Fig. 3).

This trend is most distinct in the north of the Cheb
Basin in southern Vogtland, where an almost continuous
change from almost pure CO» gases in the Cheb Basin, to
gases with 3-42 vol. % N in the area around Bad Elster

£

o deep faults

Tertiary basins

A Quaternary volcanoes
(B MORB He content (%)
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and to almost pure nitrogen gases in the Schénbrunn fluo-
rite mine (Weinlich 1989) can be observed. To the south of
the Eger Rift, in the surrounding area of Marianské Lazné,
this trend is also recognizable. A very high CO; content
(> 99 vol. %) is connected here - beside the narrow zone
lying directly south of the Cheb Basin - to the gases of the
mineral springs of Maridnské Ldzné€ and to the area east of
the Maridnské Lazné deep fault.

To the west of the fault zone, the N> content in the in-
vestigated spring gases (Skelné Huté, Pansky vrch, # 36,
35) increases very rapidly to up to 12 vol. %. At a greater
distance from Marianské Lizné, the N» content in the
gases of the western Bohemian uranium mines mostly

i 9 5 10km
L i L -—
AN Weinlich 11.96

Fig. 4. Distribution pattern of mantle derived He proportions in gases in mineral springs and mofettes in the region of the western Eger Rift
Gas escape centres: FrantiSkovy Lazn€ (FLY/Cheb Basin, Marianské Lazng (ML), Konstantinovy Lazné (K1) and Karlovy Vary (KV)
He data is given as proportion MORB-He: R/R, MORB = 8 and crust R/R,= 0.02

* data from O'Nions et al. (1989)
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reaches values of > 90 vol. %, with a methane content of
3-12 vol. % (Markovi¢ 1979). In the uranium mine Vitkov
11, the No-rich gases found in various underground wells
are connected to warm Ca-Na-CI-(SO4) brines with a tem-
perature of up to 28 °C. The liberated gas quantities range
between 27 I/hr and - initially only - 360 I/hr. This gas and
water composition is similar to the fluids in the KTB bore
hole in the Oberpfalz, Germany (67 vol. % N and 32
vol.% CH, and a Ca-Na-Cl type water; Heinschild 1990,
Lodemann 1992). Near Tachov, isolated from the mineral
springs in the Maridnské Lazné area, approximately 5 km
SE of the uranium mine Vitkov II, in the mineral spring
Alej mineralka (# 37), spring gases occur with 99.8 vol. %
CO, (60 I/hr). As there is no evidence of mixtures of CO;
and N5 in uranium mine gases, the existence of non-com-
municating fracture systems must be assumed.

To the east of Maridnské Laznég, the same distribution
pattern emerges visibly. With increasing distance from the
gas escape centres, the N» content increases here to the
east to 24 vol, % (Utery, K¥ivce; # 66, 67). Once again, ga-
ses with 99.6-99.9 vol. % CO,, connected with higher gas
flux, occur in a smaller area around Konstantinovy Lazné.
The Konstantinovy Lazné€ gas escape centre is separated
from the Maridnské Lazné& centre by mineral springs with
higher N, contents of 1.5-3 vol. % in the spring gases
(K¥epkovice, Zahradka and Zhofec; # 61, 63, 65). SE of
Konstantinovy Lazn& the CO, contents decrease again
while N increases to 3-4 vol. % (Kozi vrch, Bfetislav; #
69, 71) even within the 3 km distance. The most southern
mineral spring (Horské Domky at Trpisty; # 74) contains
33 vol. % Na.

Along the NE flank of the Maridnské Lazn€ gas esca-
pe centre, gases without increased N, contents occur, in
contrast to the southern and eastern limits. The gas flux
ends abruptly without changes in composition.

We did not investigate the mineral springs of Karlovy
Vary and the thermal water inflow in the Solokov Basin.
Krajéa (in Koldfova and Myslil 1979) reported CO; con-
tents higher than 99 vol. % (air-free) for these gases. An
increase of the N, contents to the East is indicated by 6
vol. % N, (air-free) in the gas of the Ottdv spring in
Kyselka.

4.3. 3He/*He in free gases

The distribution pattern of the R/R, values (Table 3) is
congruent with the gas composition (Fig. 4).

In the mofettes and gas-rich springs in the Cheb Basin,
the R/R, values ranging from 2.16 to 5.0 demonstrate high
proportions of mantle derived components. Towards the
north, the mantle derived helium proportions decrease to
R/R, 1.93-2.34 in Bad Brambach and R/R, 1.67-2.08 in
Bad Elster. The lowest R/R, values were measured in
Schonbrunn and Neumiihle (# 2 and # 1) with 0.71 and
0.18 respectively.

To the south of the Eger Rift, the occurrence of high
R/R, values is restricted to the Maridnské I.4zné gas esca-

pe centre. The highest values were measured in Maridnské
Lazné (# 42-46), Griinska Kyselka (# 41) and in Otro€in
(# 56) with R/R, 4.36-4.73. Similarly high values were re-
ported in Prameny (4.87), the mofettes of Smrad’och
(4.69) and KynZvart (3.8) by O’Nions et al. (1989).
QOutside the Marianské Lazné gas escape centre, high R/R,
equal to 3.45 were measured in the gas of Kyselecky
Hamr (# 29) near Zelezna Hirka. Increased R/R, values of
2.8-2.9 also occur in the comparatively small
Konstantinovy Ldzné gas escape centre, in contrast to the
surrounding area.

The R/R, values decrease in the spring gases in pro-
portion to the distance from the gas escape centres (Fig. 4)
in a similar pattern as the described gas flux and gas com-
position pattern. Nevertheless the range between R/R, 1.8
and 2.3 in the margin areas is still above the values for cru-
stal helium (R/R, 0.02). The lowest R/R, values from the
southern part of the investigated area were detected in
Posed (# 57) with 0.66 and Horské Domky (# 74) with
1.31.

5. Discussion
5.1. Geochemistry of the gases

High R/R, values and isotopically heavy CO, with &13C
values between -1.8 and -3.2 %o (Pales 1974, 1987, Wein-
lich et al., 1998) demonstrate the magmatic origin of the
gases in the western part of the Eger Rift. The highest
mantle derived He proportions are bound to the main gas
escape centres with a large gas flux of almost pure CO,.

With increasing distance from the gas ascent centres,
the CO» contents in the free gas phase decrease in conne-
ction with the gas flux (Fig. 5). In the CO»-rich gases of
the mofettes in the Cheb Basin and Maridnské Lazné, with
a high gas flux, approximately 6 to 30 I/hr N is liberated
(assuming in Maridnské Lazné the same gas composition
in the Mariiny mofette and Ferdinadav spring). However,
in the mineral springs of the marginal areas with the hig-
her N, contents in the gas phase, only approximately 0.1
to 2 I/hr N2 (air-free) escapes. The absolute N flux (air-
free) is higher in the gas escape centres than in the margin
areas, therefore the increase of the N» contents in the gas
phase cannot be explained as an admixture of metamor-
phic N». The relative enrichment of N» (+ inerts) is rather
a result of a fractionation of the gas composition with an
increase in migration paths (Weinlich et al. 1997).

The distribution of a gas i in the gas phase and aque-
ous phase is governed by Henry’s law and can be descri-
bed by a solubility equilibration model (Zartmann et al.
1961, Bosch and Mazor 1988, Ballentine et al. 1991). The
number of moles of 7 in the gas phase [i], is related to the
volumes of water and gas V, and V by:

[ljg = {i}(ma[/{(vwlvg Kr) + 1]

where [iliow 18 the total number of moles i in the system.
The ratio of a gas i relative to CO; in the gas phase is re-
lated to the ratio in water, the gas water ratio and the solu-
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Fig. 5. Decreasing of the CO- contents of the gases with the gas flux in mineral springs and mofettes in the western part of the Eger Rift with increa-

sing distance from the gas escape centres

CO» shown as 100-COa, balance to 100 vol.% N (air-free) and traces of He and hydrocarbons; TDS according to Koldfovd and Myslil, 1979 and own
data; correlation coefficient < 900 mg/l TDS - 0.81; > 900 mg/l TDS - 0.69 (without gases of N content = 0)

The scattering is caused by the existence of springs with low gas flux and almost pure CO, in the gas escape centres. With the splitting of the CO» sa-
turated waters near to the surface, larger and smaller gas escapes can occur next to each other, with unchanged * identical gases. By a deep splitting
of the gas-water flow transported on the faults, the migration paths and durations to the surface are correspondingly longer. The CO, removal by so-
lution and the fractionation are therefore more distinct. In the margin areas with low gas flux, the mineralization of the waters can play an additional
role, because the salinity gradually reduces the gas solubilities. The analytical errors in the case of CO; contents > 99.99 vol. % play additional role

bilities defined by the Henry’s law coefficient K; by:
({/ICO2)g = (i/CO2)w [Ve/Vw + (Kco2) 1V [V/Vw + (Ki)'].

In the cases of the limit as Vo/Vy — oo, then (i/COa)q
— (i/COz)w and as Vg/V. — 0, then (i/CO2)y —
(iICO2)w. (Ki/Kco2). Thus the ratio of gas (mainly CO;)
and water controls the gas composition.

As shown by the plots of gas flux vs. CO; content in
the gas phase in Fig. 5, correlations exist between gas flux
and gas composition. With the decreasing gas flux the
CO, contents decrease and the N5 (+ inert) contents incre-
ase in the gas phase. This is consistent with the distributi-
on pattern of the gases.

No fractionation of the gas composition is detectable
in the mofettes of the gas escape centres with almost pure
CO,. Due to the generally high gas flux in the gas escape
centres, the mineral waters are completely saturated with
CO; (2300-3000 mg/1). Corresponding to the high CO2
partial pressure and gas water ratios mostly of > 0.5 t0 6
1/t in the mineral springs, the exsolved gas phase is also
CO;-rich. Therefore, in the areas with complete CO; satu-
ration, gases in mineral springs with low gas flux are also
CO,-rich.

The case is different in the margin areas of gas escape
centres. With lower gas flux the gas water ratios of 0.01-
0.1 1 free gas/l water are significantly lower and the waters
contain less dissolved CO; (1200-1700 mg/l). In many ca-
ses the increase in N, contents, caused by the CO, loss by
increased HCOs5- fixing, leads to an exceeding of the satu-
ration pressure and therefore to gas liberation. The result
is the fractionation of the exsolved gas phase. The effect
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Fig. 6. Increasing of the N; (air-free) contents in the gases with decrea-
sing of the free gas-water ratio by increased fractionation of the gases.
A scattering is inevitable, because the varying air proportions in the
spring gases by different partial pressures influence the saturation pres-
sure of the gas-water systems
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of fractionation is thus larger, the lower the volume of the
free gas phase is in relation to the aqueous phase
(Zartmann et al. 1961, Bosch and Mazor 1988, Ballentine
et al. 1991). Corresponding to the solubilities of the indi-
vidual gas components in the agueous phase by the exso-
tution of smaller gas volumes, the gas components with
the lowest solubilities in the aqueous phase are enriched in
the gas phase. This process is well known in the behaviour
of hydrocarbon systems as the differential liberation of
free gases (Dodson et al. 1953, Amyx et al. 1960,
Jacobson 1967). The plot of N» vs. gas-water ratios shows
(Fig. 6) the dependence of the N2 (air-free) content in the
free gas phase on the gas-water ratios.

The relative increase of N, content in the gases of the
margin areas is a result of the fractionation and a conse-
quence of the COz removal by CO; solution and HCO3
formation with longer migration paths. This gives no evi-
dence of increased crustal proportions in the gases or of
N3 addition. The low contents of hydrocarbons in the ga-
ses are also no evidence for crustal proportions, because
small contents of hydrocarbons are also contained in vol-
canic gases of Iceland (Arnorsson and Barnes 1983, Ar-
mannsson et al, 1989).

With these tools, the gas flux distribution and the gas
fractionation at longer migrations path from the gas escape
centres, an analysis of the tectonic structure is possible.

5.2. Gas migration and tectonic structure

In distribution patterns of gases in crystalline basement
complexes, the model of an anisotropic fracture reservoir
must be assumed, which is different from the isotropic po-
re reservoirs of sediment basins. This complicates the pre-
sentation of the distribution pattern of gas components.
The gas (and water) migration in crystalline basement is
bound on the higher fracture permeabilities of the fault.

This allows the interpretation of the tectonic structure
using gas flux measurements, combined with the changes
of the gas composition. The regional distribution pattern
of gas flux thus indicates many features of the tectonic
structure of the western Eger Rift.

In the Cheb Basin, the mineral springs normally esca-
pe along the NNW-SSE striking secondary faults with a
slight fault throw, which run parallel to the Marianské
Léazné fault zone. This distribution pattern was described
by Koldrova and Myslil (1979) and Egerter et al. (1984).

The occurrences of the CO»-rich mofettes and the most
gas-rich mineral springs in the Cheb Basin in Hornf
Castkov, Bubldk near Vackovec, HartouSov, Soos and
FrantiSkovy Lazné are arranged differently to the mineral
spring lines in a WSW-ENE striking narrow zone
(Kolatova 1965, Pales 1974). The northern limit of this
zone corresponds to the extension to the Ore Mountain
fault (Fig. 3). In this zone, within the Cheb Basin, there are
also bound accumulations of gas in the Tertiary sediments,
resulting in large gas eruptions in brown coal exploration
wells in 1957 near FrantiSkovy Lazné (well H-11)
(Kolafova 1965). From this zone outwards, the gases such
as in FrantiSkovy Ldzné or in Bublak and HartouSov are
obviously only distributed by NNW-SSE striking faults in
the area near to the surface. The gas flux distribution in the
Cheb Basin thus obviously documents the continuation of
the Ore Mountain fault in a western direction beneath the
Cheb Basin and its good permeability for fluids west of
the Marianské Lazné fault zone.

In the zone with the greatest gas flux in the Cheb
Basin, there are the highest Na; SO, contents of the waters
bound to the Cheb Basin (Kolatova 1965), i.e. the highest
deep water proportions (Pales 1987). As shown in Fig. 7,
there is a connection between gas flux and water chemist-
ry. A greater Na,SO4 content in the mineral waters is con-
nected in general to a greater gas flux in the western part
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of the Eger Rift. This means that the magmatic gas - (CO,)
- flux in the form of a gas lift supports the ascent of more
highly mineralised deep waters. This assumption is sup-
ported by the fact that in the Cheb Basin and Maridnské
Lazné& the waters of the mineral springs with a higher gas
flux tend to be warmer than those with a lower gas flux.

No mineral springs exist east of the Maridnské Lazné
deep fault, apart from some springs situated in close pro-
xirnity to the deep fault. According to Hurnfk and Havlena
(1984), the Ore mountain fault on the northern edge of the
North Bohemian brown coal basin has the character of a
flexure with only secondary fracturing, so it obviously
prevents the migration of mineral water and gases io this
structure line.

In the southern part of the Cheb Basin, south of the
WSW-ENE striking line Trnice-Nebanice-Pochlovice (a-
¢, Fig. 1), a significant zone without CO» and therefore
without mineral springs was found. Any references to mi-
neral springs which have dried up or have become over-
flooded by the Cheb dam lake do not exist there either
(Laube 1884, Jahnel 1937, Dietl 1942). The absence of
CO, cannot be attributed to covering clay layers, because
no inflows of CO,-bearing water could be detected in
wells existing in this area (Kolafova 1965).

The southern boundary of this CO,-free zone is for-
med by the reoccurrence of the following mineral springs:
Kyselecky Hamr (# 29), Pali¢, Salajna, Zdirnice (e-g) and
Podlesi (# 33). They are aligned along a WSW-ENE stri-
king line at the southern edge of the Cheb Basin. These
mineral springs also have increased gas flux - partly up to
400 V/hr - of almost pure CO;. In the same way, increased
proportions of NaxSQO4 of approximately 810-880 mg/l
(2500-4000 mg/t TDS) occur in the mineral springs of
Kyselecky Hamr and Podlesi, indicating higher deep wa-
ter proportions.

In the gas escape centre around Maridnské Laznég, the
largest gas fluxes released in mineral springs and mofettes
(Marianské Ldzné, Farskd kyselka, Smradoch, Sirfdk,
Cihana) with the highest CO» content are restricted to the
area east of the NNW-SSE striking Maridnské Lazné deep
fault.

To the west of the Marianské Lazné& fault zone, no lar-
ger gas fluxes can be detected. The N2 content also partly
increases to over 10 vol. %. It is therefore obvious, that the
Marianské Lazn€ deep fault does actually distribute the
mineral waters and gases; but presents, however, a barrier
towards the west for the gas fluxes from greater depths,
and so tectonically controls the gas migration.

The WSW-ENE striking CO,-free zone established in
the Cheb Basin is clearly shifted to the SE and widens east
of the Maridnské Lazn¢ deep fault (Fig. 3). In the north,
the spread of CO; in the Sokolov Basin is more extensive
towards the SE than in the Cheb Basin. The Sabina mine-
ral spring (d in Fig. 1) which lies on the Central fault, and
further east the springs at Karlovy Vary and Kyselka ()
are clearly shifted to the SE compared to the most sout-
hern mineral springs in the Cheb Basin.

In the same manner, on the southern limits of the CO-»-
free zone to the east of the Marianské Lazné deep fault, the
CQO» escapes and therefore the mineral springs do not
occur until the Kynivart (1), Prameny (# 38, 39), Nova
Ves (# 40) line, being shifted towards the SE. At the Horni
Slavkov deep fault (Fig. 3), as is indicated by the location
of the springs at Brt (), Ouolin (# 55) and Posed (# 56),
this southern boundary of the gas-free zone is limited and
again shifted to the SE.

The gases of the mineral springs at the northern edge
of the gas escape centre in the east of Maridnské Lazné are
as CO,-rich as those in the south of the Cheb Basin. They
have large gas fluxes of up to 8 m?/hr. With increased
mantle helium proportions, these gases are no different to
the unmodified magmatic gases in the Cheb Basin and in
Marianské Lazné. In contrast to the continuous changes in
the south and east, there are no recognisable gas fractio-
nations. The gas flux terminates abruptly at the northern
edge of the gas escape centre of Maridnské Lazné, which
indicates a tectonic restriction of the CO» migration.

The absence of CO, in the gas-free zone is also de-
monstrated by the fact that no CO; escapes, not even by
the pressure release of the waters, in the tin mines in Horni
Slavkov, only 10 km SSW of Karlovy Vary. In contrast,
mines in Prameny (see Fig. 3) had to be shut down due to
CO» blow-outs (Laube 1884).

The existence of the CO»-free zone can be explained
by the deep tectonic structure of the Eger Rift (Kopecky
1979, Stovickova 1980, Conrad et al. 1983). The opposite
dip of the Litomé&fice deep fault to the north and the
Central fault (of the Ceské stfedohofi Mis.) and the Ore
Mountain Master Fault to the south leads to the tectonic
shielding of this area by the outwardly directed permeabi-
lity paths of the faults with the formation of the Y-shaped
structure of the Eger Rift (Fig. 8). This leads to an absen-
ce of the CO, flux. Accordingly, the gas-rich mineral
springs at the boundaries of the CO»-free zone reflect the
course of the main deep faults of the Eger Rift.

In the north of the COs-free zone, CO,-rich gases in
the Sokolov Basin and the Karlovy Vary region only occur
in the area between the Central fault and the Ore Mountain
fault. The course of the Central fault and the Ore Mountain
fault without Tertiary cover is mapped. In the Cheb Basin,
as described, the course of the Ore Mountain fault beneath
sediments of the Cheb Basin can be followed further to the
SW with the northern edge of the zone characterized by
the highest gas fluxes. The southern boundary of the CO»
occurrences in the Cheb Basin can be explained by the
continuation of the Central fault.

The line of gas-rich mineral springs at the southern
boundary of the CO.-free zone obviously indicates the
course of the Litoméfice deep fault. The course of the
Litomé&Ffice deep fault to the north of Maridnské Lazn€ is
only indicated by a shift of the N-S directed river bed of the
Tepla river near BeCov in the geological surface picture.

The detected course of the LitoméFice deep fault, using
the gas distribution south of the CO»-free zone, shows in
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Splitting of the magmatic gas flux by the Y-shaped structure by the main faults of the Eger Rift and forming of the central CO,-free zone

the western part of the Eger Rift (Fig. 3) - with the clear
shifts of this deep fault by the NNW-SSE striking faults of
Maridnské Lazné and Horni Slavkov - the narrowing of
the Eger Rift towards the west. The shifting to the north of
the western blocks is shown in the geological surface pat-
tern as taking place only at a small amount of shifts of the
Central fault towards the Horni Slavkov deep fault south
of the Sokolov Basin. The positions of the quaternary ba-
salt occurrences of Komorni Hirka (Kammerbiihl) in the
area of the main gas escape zone of the Cheb Basin and of
Zelezna Harka (Eisenbiihl) on the gas escape and mineral
spring line south of the Cheb Basin (Fig. 3) prove the
deep reach of these elements and thus support their inter-
pretation as main deep faults of the Eger Rift.

With this tectonic distribution pattern, the gas migrati-
on from the depths is mainly connected to WSW-ENE stri-
king tectonic elements and to the younger elements stri-
king parallel to the Maridnské Lazné fault zone, which
only have a distributive character in the upper Ievels. The
small area with increased gas flux and release of pure CO»
around Konstantinovy L4zné is thus probably the result of
gas migration in a southerly direction along the Hornf
Slavkov deep fault and of good ascent paths in the area of
intersection with the BezdruZice deep fault.

6. Conclusion

The gases in the mineral springs and mofettes (dry CO,
gas vents) in north-western Bohemia and in the South

Vogtland were investigated for gas flux, gas composition
and *He/*He isotopic ratios. With the almost exhaustive
investigation of the gas exhalations in mineral springs and
mofettes, four main gas escape centres are detected in the
western part of the Eger Rift which are tectonically sepa-
rated from one another: FrantiS§kovy Ldzné/Cheb Basin,
the area east of Marianské Lazné, Konstantinovy Lazné
and Karlovy Vary. From these centres outwards, the gas
flux decreases from partially more than 30 m?hr to conti-
nuously less than 1 I/hr.

The entire gas flux (natural flux) in the western part of
the Eger Rift can be estimated in a first attempt as a mini-
mum of 5.31 million m3a free gas; including dissolved
CO, and HCO3 of 8.13 million m¥/a.

The almost pure CO, gases of the gas escape centres
are isotopically heavy and contain, with R/R, values of 4-
5, high proportions of mantle derived helium. The gas flux
decreasing from the gas escape centres towards the margin
areas, corresponds with a decrease in CO, contents. This
change in the gas composition is caused by a gas fractio-
nation by enrichment of N> (and inerts) by the preferred
COz solution and HCO3 formation. The N, content in the
gas phase increases in the margin areas with only lower
gas fluxes and lower gas-water ratios.

Tectonically shielded by the opposite dip of the main
Eger Rift faults a gas flux free zone without mineral
springs was detected between the gas escape centres of the
Cheb Basin and Maridnské Lazné€. The WSW-ENE stri-
king Y-shaped structure of the main Eger Rift faults splits
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the gas flux at a depth of about 15 km and forms this cent-
ral gas-free zone. Differences in gas composition or in the
isotopic composition of He in the gases of the gas escape
centres to the north and south of this structure cannot be
detected. At the borders of the gas-free zone, unmodified
CO,-rich gases escape with high proportions of mantle de-
rived He. In contrast to the margin areas this demonsirates
a tectonic termination of the gas flux. Therefore, the sout-
hern border of this gas-free zone can be interpreted as the
course of the Litomé&fice deep fault. At the younger NNW-
SSE striking Horni Slavkov deep fault and the Maridnské
Lazné deep fault, the Litoméfice deep fault always shifts
to the north-west.

The westward narrowing of the Eger Rift can be iden-
tified by the NW shift of the respective western blocks by
these NNW-SSE striking younger deep faults. The locati-
on of the mineral springs in the Oberpfalz and
Oberfranken (Quentin 1970) in Bavaria indicates for
Neualbenreuth, Kondrau and Wiesau the prolongation of
the Litoméfice deep fault and for Hohenberg and Bad
Alexandersbad that of the Ore Mountain fault.

According to this distribution pattern, the gas migrati-
on is principally bound to the WSW-ENE striking Eger
Rift main faults; the younger NNW-SSE faults striking pa-
rallel to the Marianské Lazné deep fault have only a di-
stributive character in the upper tectonic level, because no
gas transport occurs on them in the gas-free zone. The
smallest gas escape centre of Konstantinovy Lazné is thus
probably the result of gas (and water) migration in a sou-
therly direction along the Horni Slavkov deep fault and of
good ascent paths in the area of intersection with the
BezdruZice deep fault.
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Distribuce vyrond plynfi v mineralnich pramenech a tektonicka struktura zapadni ¢asti ochareckého riftu

Préce pfedkiadd vysledky m&¥eni a analyz vyrond plynd, jejich sloZeni a poméru *He/*He studovanych ve vice neZ 70 minerdlnich pramenech a mo-
fetach (studenych exhalacich suchych plynd) v z. &asti ohareckého riftu. Regiondlni distribuce vyront plynd a jejich sloZeni jsou zdvislé na tektonic-
ké struktufe.

Jsou detekovana &tyfi hlavnf centra vyront plynt z Casti s vydatnosti v&t§f neZz 150 m¥hod. volného plynu: FrantiSkovy Ladzné/chebskd pédnev,
Maridnské Lazné, Konstantinovy Lazné a Karlovy Vary. Plyny uvedenych center se vyznaluji velmi podobnym sloZenim, pfi¢emZ > 99 obj.% plynu
tvoff CO.. Podil izotopicky t87kého CO, a vysoky podil helia odvozeného z pladfového zdroje indikuji magmaticky pavod téchto plynd. V disledku
frakcionace plynd rozpou§t€nim v CO; a tvorbou HCO5- vzriistaji relativni obsahy N» ve smésném plynu smérem k niZ8im p¥ikontm plynt a k okra-
jam dzemi. Podle stavajictho odhadu dosahuje p¥tkon pfirodnich plynd v z. &4sti ohareckého riftu min. 5,31 milionu m3/rok volného plynu, véetné roz-
pusténého CO2 a HCO5 8,13 milioni m*/rok.

Protiklonnd pozice hlavnich zlomi ohareckého riftu tvofi struktury tvaru pismena Y a rozitdpuje plyny pfivadéné z hlubinného zdroje v hloubce
priblizné 15 km pod povrchem do dvou pasem s mezilehlou zénou bez vyznamn&j§iho pfivodu CO;. Hranice této z6ny odpovidajf hlavnimu oharec-
kému zlomu a na jihu litométickému hlubinnému zlomu. Oharecky rift je posunovan na mladsich zlomech sméru SSZ-JJV a zuZuje se smérem k Z.

Migrace plynit magmatického puvodu je vazdna zejména na hlavni zlom ohareckého riftu o sméru ZJZ-VSV, kdeZto miad§i zlomy sméra SSZ-JIV
maji pouze distributivni funkci. Migrace plynt smérem k J podél hlubinného zlomu Horntho Slavkova vytvofila vyronové centrum Konstantinovy
Ldzné, v mist€ odpovidajicim prase¢iku s bezdruZickym hiubinnym zlomem.



