NEW PALAEOPIEZOMETER AND ITS APPLICATION FOR ESTIMATION OF INJECTED ANORTHOSITE MAGMA PRESSURE

A. K. ZILBERSHTEIN

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg, Russia

A new palaeopiezometer has been designed and applied for estimation of magma pressure \((P_m) \) during intrusion of anorthosites of the Geran massif (Ulkhan–Dzhugdzhur anorthosite–rapakivi granite complex, Aldan shield, Russia) \((1.73–1.70 \text{ Ga})\). This piezometer is based on the analysis of twin-density in crystals deformable plastically by mechanical twinning (e.g. plagioclases). Theoretical equation expressing the differential stress \((s) \) as a function of the twin density \((D) \) was obtained in the following form:

\[
s = XG \log[1 + Y(D/S) - Z(a_2/S)]
\]

Where:

\[
G = \text{shear modulus, } S = \text{shear magnitude (coefficient) for mechanical twins, } a = \text{average lattice parameter}
\]

\[
X = 4.75 \times 10^{-3}, Y = 0.345 \text{ mm}^{-1}, Z = 1.716 \text{ mm}^{-2} (X, Y, Z \text{ are constants, obtained from experimental data } s(D) \text{ for calcite twinning (cf. Rowe & Rutter 1990)}).
\]

Equation (1) was applied to palaeostress estimation for plagioclase-bearing rocks of the Geran anorthosite massif. The parameter \(D \) was measured for pericline and albite twins in plagioclase. The values of differential stress \(s \) were obtained using Eq. (1) for various samples: for anorthosites from the centre of the massif \((s_1 = 0) \) and near the contact zone \((s_2 = 211 \text{ MPa}) \), for granulite near the contact zone \((s_3 = 291 \text{ MPa}) \), 1 km \((s_4 = 257 \text{ MPa}) \) and more than 2 km away from the contact zone \((s_5 = 176 \text{ MPa}) \). Errors of the differential stress values did not exceed 88 MPa. The absolute maximum of \(s \) was observed near the contact zone. The maximum may have been induced by injected anorthosite magma pressure \(P_m \), which was greater than lithostatic pressure \(P_l \) for granulite: \(P_m - P_l = s \). Using the well-known value for the \(P_l \), the estimation of the unknown magma pressure \(P_m \) was obtained:

\[
P_m = P_l + (s_3 - s_5) = P_l + s_2 = 0.8 \pm 0.1 \text{ GPa}
\]