the uncoupled foreland depends on the strength of the sedimentary cover which includes three major parameters: friction of detachment surfaces, lithology, and section thickness. It is friction that is most important in dictating the distance of stress (i.e., strain) transmission. The Central Appalachian Mountains are characterized by a low friction detachment and a thicker sedimentary cover. Here stress (i.e., strain) is transmitted into the foreland by layer parallel shortening across a belt up over 400 km wide. The Southern Appalachian Mountains are characterized by higher friction detachments and a thinner sedimentary cover. Such a section suppresses stress (i.e., strain) transmission to the foreland and consequently the foreland fold-thrust belt is much narrower here. Foreland deformation in the Ouachita belt is further restricted as a consequence of formation of a very thick foreland elastic wedge during active collision.

Neotectonics of the Eastern Carpathian bend area and its foreland, Romania

W. FIELITZ

Geologisches Institut, Universität Karlsruhe, Germany

The Eastern Carpathians consist of a nappe pile made up of basement nappes in the western part and Early Cretaceous pelitic marine deposits, late Cretaceous to Paleogene flysch deposits, and Miocene to Quaternary molasse deposits in the central and eastern parts. Imbrication and internal deformation of the nappes took place in several periods of deformation from Late Cretaceous to Quaternary time with general rejuvenation of the structures from the west to the east affecting also distinct intra- to synorogenic deposits in piggy-back basins. Calc-alkaline to alkalibasaltic recent volcanism as well as late-stage intramount extensional basins in the back of the main orogen are additional features of this area. Several lines of evidence point to ongoing active crustal deformation in the Eastern Carpathian bend area: Folding and tilting of Late Pliocene to Early Pleistocene sedimentary deposits.

Several levels of highly uplifted fluvial terrasses with indication of tilting of some terrasses along the Carpathian orogenic front.

A hydrographic network, whose geometry suggests strong influence of recent tectonic movements. This is particularly evident along the Carpathian orogenic front and its foreland where some deep crustal structures, like the Intramosian and the Trotus Faults play also an important role. A clear temporal relationship can be observed between an older network of streams in the valleys crossing the Carpathian thrust and fold belt (Buzau, Teleagen, Prahova etc.) and a more recent hydrographic network in the intramount basins (Olt river basin).

A good correlation of the geometry of the actual hydrographic network, the area of recent crustal uplift, and recent shallow earthquakes point to the beginning of an ongoing inversion of the Focsani foreland basin.

The geometry between the intramount basins inside the Carpathians bend area and their relation to the Neogene to recent andesitic and basaltic volcanic centers can be related to still active extensional and transtensional crustal movements.

Post-Middle Pliocene uplift of the Ligurian and Provençal coasts (NW Italy and SE France): New kinematic constraints

J. FOEKEN, G. BERTOTTI & T. DUNAI

Dept. of Earth Sciences, Vrije Universiteit Amsterdam, The Netherlands
foe@geo.vu.nl, bert@geo.vu.nl, dunt@geo.vu.nl

Along the coasts of NW Italy and SW France, Pliocene marine sediments, currently exposed at elevations up to 600 m indicate significant uplift in the Ligurian-Provençal area. After the cessation of the opening of the Ligurian-Provençal basin, the area was in tectonic quiescence. It is only since the late Pliocene that significant amount of uplift has taken place in the region.

Located on the intersection between the Alpine chain and a rifted basin, understanding the kine-