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The Variscan evolution of the Moldanubian sector in the Bohemian Massif consists of at least two distinct tectonome-
tamorphic phases: the Moravo–Moldanubian Phase (345–330 Ma) and the Bavarian Phase (330–315 Ma). The Mora-
vo–Moldanubian Phase involved the overthrusting of the Moldanubian over the Moravian Zone, a process which may 
have followed the subduction of an intervening oceanic domain (a part of the Rheiic Ocean) beneath a Moldanubian 
(Armorican) active continental margin. The Moravo–Moldanubian Phase also involved the exhumation of the HP–HT 
rocks of the Gföhl Unit into the Moldanubian middle crust, represented by the Monotonous and Variegated series. The 
tectonic emplacement of the HP–HT rocks was accompanied by intrusions of distinct magnesio-potassic granitoid melts 
(the 335–338 Ma old Durbachite plutons), which contain components from a strongly enriched lithospheric mantle 
source. Two parallel belts of HP–HT rocks associated with Durbachite intrusions can be distinguished, a western one 
at the Teplá–Barrandian and an eastern one close to the Moravian boundary. The combined occurrence of Durbachite 
plutons and HP rocks would be difficult to understand in terms of the previous tectonic models, in which the Gföhl Unit 
was viewed as a large flat nappe on top of the Moldanubian Zone. 
In recent studies it has been suggested that Saxothuringian crust was subducted eastwards under the Moldanubian Zone 
during the Early Carboniferous. We discuss here an alternative tectonic scenario, in which the south-eastern Bohemian 
Massif is tentatively interpreted as an accretionary wedge successively underplated by material of a Gföhl and a Moravian 
terrane. It is suggested that parts of the HP–HT rocks of the Gföhl Terrane were exhumed along the Moravian–Mol-
danubian plate contact, while earlier subducted portions were steeply uplifted close to the Teplá–Barrandian block, 
which may have functioned as a rigid backstop of the accretionary wedge. Final stages of the Moravo–Moldanubian 
Phase were characterised by a strong LP–HT regional metamorphism at c. 335–340 Ma, which may be an expression 
of increased mantle heat flow after slab break-off, and is seen mainly in the Ostrong Unit along the central axis of the 
Moravo–Moldanubian Fold Belt. 
As indicated from palaeomagnetic data, the (already established) Moravo–Moldanubian Fold Belt has then (around 330 
Ma) rotated by about 90° clockwise, while the palaeogeographic position of Baltica remained widely unchanged. This 
implies that the Moravian Zone lost its former contact to Baltica and that a major Late Variscan fragmentation of the 
Old Red continental margin must have occurred in the Moravo–Silesian area at that time. Also within the Bohemian 
Massif, this rotation event may have caused a significant Late Variscan (fault bounded) disturbance of previous terrane 
relationships. 
The Bavarian Phase (330–315 Ma) represents a fully independent stage of the Variscan orogeny in the Bohemian Massif. 
It is defined by a significant reheating (LP–HT regional metamorphism combined with voluminous granitic plutonism) 
and a tectonic remobilisation of crust in the south-western sector of the Bohemian Massif. These processes were most 
likely triggered by a Late Variscan delamination of mantle lithosphere. The Bavarian Phase overprinted western parts of 
the (widely cooled) Moravo–Moldanubian Fold Belt and transformed these rocks into various anatexites (metablastites, 
metatexites and diatexites). The HP–HT rocks of the Gföhl Unit, the Durbachite plutons, the LP–HT rocks of the Ostrong 
Unit and other typical constituents of the Moravo–Moldanubian Fold Belt can be followed from the Czech Republic 
southwards into eastern Bavaria and western Upper Austria (Mühl and Sauwald Zone), but are difficult to identify there 
due to the strong anatectic overprint. The LP–HT regions further west (Oberpfalz and western Bavarian Forest, Šumava 
Mts.?) may include former continuations of Teplá–Barrandian or Saxothuringian crust.
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1.	Introduction

The past years have brought increasing evidence that the 
Variscan tectonometamorphic evolution of the Moldanu-
bian sector in the Bohemian Massif was discontinuous 
and polyphase. Relict evidence for an Early Variscan 
(Late Devonian) tectonometamorphic event can be found 
in rock complexes close to the contact with the Teplá–
Barrandian block, being possibly related to the docking 
of the protolithic Precambrian/Early Palaeozoic Moldanu-
bian crust with a Teplá–Barrandian (Bohemian) Terrane 
(Zulauf 1997; Bues et al. 2002). It is presently uncertain 
whether this Late Devonian „Bohemian Phase“ has af-
fected other parts of the Moldanubian Zone as well. 

The main Variscan tectonometamorphic overprint 
in the Moldanubian Zone occurred between c. 345 and 
330 Ma, and is well substantiated by geochronological 
data (van Breemen et al. 1982; Dallmeyer et al. 1992; 
Friedl 1997; Kröner et al. 2000; Schulmann et al. 2005). 
We suggest here the use of the term “Moravo–Molda-
nubian Phase” for this major orogenic period, because 
it involved, as its most prominent tectonic feature, the 

thrusting of the Moldanubian onto the Moravian Zone 
(Suess 1926; Schulmann 1990; Fritz and Neubauer 1993; 
Schulmann et al. 1991, 2005). Another important feature 
of the Moravo–Moldanubian Phase was the subduction of 
crustal rocks to mantle depths (Carswell 1991; Becker and 
Altherr 1992; Kotková et al. 1997; O’Brien 2000; Vrána 
and Frýda 2003) and their subsequent rapid exhumation to 
middle and upper crustal levels (Gföhl Unit). Apart from 
the widespread Barrovian-style regional metamorphism, a 
significant late-stage LP–HT overprint is recorded in large 
parts of the Moldanubian Zone (Petrakakis 1997; O’Brien 
2000). In cordierite-bearing paragneisses of the Ostrong 
Unit, east of the South Bohemian Batholith, this LP–HT 
metamorphism was dated at ~335 Ma by U–Pb monazite 
geochronology (Friedl 1997). 

Cordierite-bearing LP–HT migmatites and gneisses 
are also abundant in the south-western sector of the 
Bohemian Massif in the Bavarian Forest (Fischer 1967; 
Blümel and Schreyer 1976, 1977; Blümel 1990). It has 
been believed for a long time that the LP–HT regional 
metamorphism in this area was broadly coeval with the 
LP–HT metamorphism in the Ostrong Unit, and had the 
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Fig. 1 Sketch map of the Moldanubian sector of the Bohemian Massif featuring the distribution of Variscan granites and rocks of the Gföhl and 
Drosendorf units according to Dallmeyer et al. (1995) with slight modifications. Also shown is the subdivision of the Drosendorf Unit into a Bavar-
ian Terrane, Drosendorf Terrane (Variegated Series) and Ostrong Terrane (Monotonous Series) according to Fiala et al. (1995). Note the position 
of the original Ostrong and Drosendorf units (s.s.) as introduced by Austrian workers (Fuchs 1976).
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same tectonothermal causes. However, this concept came 
into doubt recently. Based on the increasing body of 
geochronological data, Tropper et al. (2006) speculated 
that there may have been actually two independent Va-
riscan LP–HT events in the Moldanubian Unit: one at c. 
335 Ma, and a second one at c. 320 Ma. A breakthrough 
in the understanding of the Late Variscan evolution of 
the Moldanubian crust is the recent geochronological 
study of Gerdes et al. (2006), which demonstrated two 
important points:

1) Monazite ages in the LP–HT anatectic rocks in the 
south-western sector of the Bohemian Massif (Bavarian 
Forest, Mühl and Sauwald Zone) fall mostly between 
326 and 315 Ma, and thus are clearly younger than in 
the LP–HT Ostrong Unit east of the South Bohemian 
Batholith (Fig. 1).

2) The 326–315 Ma old anatectic events in the Bavar-
ian Forest have overprinted there an earlier generation of 
LP–HT rocks that formed at c. 335 Ma.

Since it is a temporally distinct event, we consider 
it necessary to introduce a new geological term for the 
post-330 Ma LP–HT reheating of crust that occurred in 
the south-western part of the Bohemian Massif. The name 
“Bavarian Phase” has been chosen in appreciation of the 
early work of Fuchs (1962, 1976) and Thiele (1962), who 
have first recognized that in the western Austrian sector 
of the Bohemian Massif (Bavaricum after Fuchs 1976) 
an older fold belt (considered as “Caledonian” at that 
time) was penetratively overprinted by later anatectic 
and tectonic events.

Assessing the available geochronological informa-
tion we will examine in this paper, which areas of the 
Southern Bohemian Massif were overprinted by this 
Late Variscan Bavarian Phase. Furthermore, we have 
searched for lithological links between the Moldanubian 
Zone in the Czech Republic and the Moldanubian Zone 
in Bavaria. The outcome of this investigation sheds new 
light on the Variscan evolution of the Moldanubian sector 
of the Bohemian Massif.

2.	Geological background and definitions 
of intra-Moldanubian units

The Moldanubian sector in the Bohemian Massif (Molda-
nubian s. s.) covers essentially the region between the 
Teplá–Barrandian Unit in the north-west and the Mora-
vian Zone in the east. The overview maps given in the 
books of Dallmeyer et al. (1995) and Franke (2000) 
distinguish, in a rather simplistic way, three geological 
subunits in this Moldanubian sector: The Gföhl and Dro-
sendorf metamorphic units, which represent pre-Variscan 
(Precambrian/Early Palaeozoic) crust, and the Variscan 
granitoids (Fig. 1).

The rocks of the Gföhl Unit are defined as having 
experienced Variscan HP–HT metamorphism and a sub-
sequent rapid exhumation and re-equilibration at mid-
crustal levels. The most prominent rock types therein are 
leucocratic granulites with the mineral paragenesis garnet 
+ kyanite + ternary feldspar (mesoperthite) + quartz 
(Scharbert 1963; Carswell and O’Brien 1993; Janoušek 
et al. 2004), and light, biotite-bearing, migmatitic or-
thogneisses (often summarized as Gföhl Gneiss). The 
latter have been interpreted as a retrogressed granulite 
by some authors (Dudek et al. 1974; Cooke and O’Brien 
2001). A metamorphic history involving penetrative melt 
infiltration has been suggested recently for an occurrence 
of Gföhl Gneiss in Moravia (Hasalová et al. 2007). Tradi-
tionally, the rocks of the Gföhl Unit have been interpreted 
as belonging to a single, large-scale, flat nappe that over-
lies the rocks of the Drosendorf Unit (Tollmann 1982; 
Behr et al. 1984; Franke 2000), even though alternative 
views do exist (Vrána and Šramek 1999; Franěk et al. 
2006; Racek et al. 2006). 

The Drosendorf Unit (sensu Dallmeyer et al. 1995 
and Franke 2000) includes all those metamorphic rocks 
of the Moldanubian Zone that do not belong to the Gföhl 
Unit, i.e. mid-crustal metamorphic rocks devoid of a 
Variscan HP history. Included are the Variegated (Var-
ied) and Monotonous series of the classical literature 
(Kodym 1966; Jenček and Vajner 1968; Zoubek 1988). 
Fiala et al. (1995) have integrated rock complexes pre-
viously mapped as Monotonous Series in Czech and 
Austrian maps (Kodym 1966; Fuchs and Matura 1976) 
to an Ostrong Terrane. Whether or not all these areas 
are geologically related to the original Ostrong Unit as 
defined by Fuchs (1976) in Austria (Fig. 1) is a matter of 
debate. Areas mapped as Variegated Series (with marbles, 
amphibolites, graphite schists, quartzites, orthogneisses 
etc.) were assigned by Fiala et al. (1995) to a Drosendorf 
Terrane (Fig. 1). Note that the Drosendorf Terrane of 
Fiala et al. (1995) is not equivalent to the Drosendorf 
Unit of Franke (2000). 

The name Drosendorf Unit (named after a village in 
northern Lower Austria) was originally introduced for a 
variegated complex in the Austrian part of the Molda-
nubian Zone with orthogneisses, paragneisses, marbles, 
quartzites and amphibolites (Fuchs 1976; Fig. 1). We 
argue here that the name should be used exclusively in 
this original sense and not in the extended versions of 
Dallmeyer et al. (1995) and Franke (2000). Likewise, the 
term Drosendorf Terrane of Fiala et al. (1995) is mislead-
ing and should be better avoided. There is currently no 
proof that the Austrian Drosendorf Unit is an equivalent 
to the rocks of the Variegated Series in the Czech Re-
public. In fact, the opposite seems to be the case: Several 
workers have considered the Austrian Drosendorf Unit as 
an overthrust continuation of the Moravian Zone (Frasl 
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1970; Matura 1976, 2003; Finger and Steyrer 1995) and 
thus as a foreign element in the Moldanubian Zone. This 
interpretation is not unequivocally accepted (see Franke 
and Zelazniewicz 2000; Edel et al. 2003; Racek et al. 
2006), but has recently received additional strong support 
from zircon provenance studies (Friedl et al. 2000, 2004; 
Gerdes and Finger 2005). Note also that Mísař (1994) 
considered the direct continuation of the Austrian Dro-
sendorf Unit north of the Czech border (Vratěnín Unit) as 
a part of the Moravian Zone. According to the map given 
in Mísař (1994), the Drosendorf/Vratěnín Unit ends not 
far north of the Czech/Austrian border and has no further 
continuation in the Czech Moldanubian Zone.

For the south-western sector of the Bohemian Mas-
sif, south of the Pfahl Fault, Fiala et al. (1995) coined 
the name Bavarian Terrane (Fig. 1). This definition of 
a Bavarian Terrane builds upon the work of Fuchs and 
Thiele (1968) and Fuchs (1976), who recognized that 
anatectic rocks in the Austrian Mühl and Sauwald Zone 
(the “Bavaricum” sensu Fuchs 1976) show a Hercynian 
(NW–SE) fabric, oblique to the broadly N–S oriented 
strike of the metamorphic Moldanubian lithologies fur-
ther north in the Czech Republic and east of the South 
Bohemian Batholith in Austria. Fuchs and Thiele (1968) 
and Fuchs (1976) suggested that in the “Bavaricum” an 
older metamorphic complex, considered as “Caledo-
nian” by Fuchs (1976), was overprinted by a younger 
Variscan event, which involved strong anatexis and a 
top-to-the-south(west) tectonics. The LP–HT type of re-
gional metamorphism in this south-western sector of the 
Bohemian Massif has been recognized early on (Blümel 
and Schreyer 1977; Finger et al. 1986). Since an analo-
gous geothermal gradient has also been demonstrated in 
the Ostrong Unit east of the South Bohemian Batholith 
(Linner 1996), the LP–HT metamorphism in both regions 
was for a long time attributed to the same Late Variscan 
thermal event. However, as stated in the introductory 
section, recent geochronological work has led to a re-
vival of the early ideas of Fuchs and Thiele (1968) and 
Fuchs (1976), according to which the crystallization and 
structural development of the rocks west of the South 
Bohemian Batholith was considerably younger. The 
definition of a Bavarian Terrane within the Moldanubian 
Unit, as tentatively suggested by Fiala et al. (1995), was 
therefore certainly an important step in the right direc-
tion, although it is a matter of debate whether the term 
“terrane” is indeed appropriate (see Discussion).

3.	Which areas were affected by the  
Bavarian Tectonometamorphic Phase

Figure 2 shows those parts of the south-western Bohe-
mian Massif, where Late Variscan (post-330 Ma) high-

grade metamorphism/anatexis has been documented by 
concordant ID-TIMS U–Pb monazite ages. First of all, 
this encompasses the area south of the Pfahl Fault, i.e. 
the Bavarian Terrane of Fiala et al. (1995). Apart from the 
Austrian Mühl and Sauwald Zone (Gerdes et al. 2006), 
such Late Variscan monazite ages are known from several 
localities in the southern Bavarian Forest (Grauert et al. 
1974; Propach et al. 2000; Gerdes et al. 2006).

However, also in the area north of the Pfahl Fault (i.e. 
outside of the Bavarian Terrane of Fiala et al. 1995), a 
post-330 Ma LP–HT metamorphic overprint has been 
unequivocally documented. For instance, Kalt et al. 
(2000) have presented a number of concordant monazite 
ages of 322–326 Ma from anatectic gneisses from the 
area between Regen and Cham. These data confirm a 
previous monazite age of c. 320 Ma presented by Grauert 
et al. (1974) for a paragneiss from Eck, not far south of 
the German–Czech border. In addition, many concordant 
metamorphic monazite ages of c. 320–325 Ma have been 
reported from the Oberpfalz Forest (Teufel 1988; von 
Quadt and Gebauer 1993). Thus there is little doubt that 
almost the whole Bavarian sector of the Bohemian Massif 
experienced high-grade metamorphism after 330 Ma.

An interesting question is how far this Late Variscan 
metamorphic/anatectic overprint can be followed from 
Bavaria northwards into the Czech Republic. We present 
here new electron-microprobe monazite ages for a mig-
matite from Lipka, S of Vimperk (Tab. 1), which yield 
a weighted average age of 323 ± 8 Ma. This provides a 
first indication that the high-grade metamorphic Boubín 
Complex in the Šumava Mts. bears an imprint of the 
Bavarian Tectonometamorphic Phase. In addition, the 
granitoid appearance of the rocks in the Boubín Complex 
reveals textural similarities to the post-330 Ma diatexites 
in the Bavarian Forest.

Tab. 1 Results of electron-microprobe dating of monazites from 
a pearl gneiss of the Boubín Complex (Lipka, S of Vimperk). 
For information on the method and the analytical routine used 
at Salzburg University see Finger and Krenn (2007).

Th U Pb Th* Age ± 2σ
m1 8.846 0.850 0.169 11.608 327 ± 15
m2 7.332 0.274 0.117 8.223 319 ± 22
m2 7.368 0.273 0.122 8.256 332 ± 22
m3 6.946 0.234 0.110 7.708 321 ± 23
m4 8.861 1.010 0.175 12.145 323 ± 15
m4 8.898 0.999 0.172 12.145 317 ± 15
Weighted average 323 ± 8

In the Rittsteig area (Fig. 2), the effects of strong Late 
Variscan LP–HT metamorphism fade out towards north 
(Blümel and Schreyer 1976). However, the same type of 
LP–HT metamorphism can be found again north of the 
Rittsteig/Královský Hvozd Unit, a fact which led Scheu-
vens (2002) to suggest that this unit is an infolded roof 
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pendant of the hangingwall crust, which was just margin-
ally affected by the LP–HT regional metamorphism.

Apart from the new monazite age from the Boubín 
Complex, there are two other geochronological data, 
which suggest that the Šumava Mts. area was substan-
tially reheated during the Bavarian Phase: Žáček and 
Sulovský (2005) recently reported a monazite age of 327 
± 7 Ma for an orthogneiss from near Horská Kvilda, and 
Fiala et al. (1995) mentioned unpublished U–Pb zircon 
ages for a leptynite from Chlum, near Kašperské Hory, 
recording a strong metamorphic overprint at c. 320 Ma. 
Considering in addition the dominant NW–SE strike of 
the rock fabrics in the Šumava Mts. region (Urban and 
Synek 1995), we tentatively suggest that this whole area 
may have suffered a strong tectonometamorphic overprint 
during the Bavarian Phase. Furthermore, cordierite is 
an abundant metamorphic mineral in the Šumava Mts. 

region (Dudek et al. 1973), a fact which accords with 
the LP–HT metamorphic character of the Bavarian tec-
tonothermal overprint. However, as we know from the 
Ostrong Unit east of the South Bohemian Batholith, an 
earlier generation of Crd-bearing rocks formed in the 
Moldanubian Zone at c. 335 Ma, and it cannot be ruled 
out that the cordierite gneisses of the Šumava Mts. are 
partly of this older age as well. In particular in the area 
between the Šumava Mts. and the Central Bohemian 
Batholith, the extent and importance of the Bavarian 
tectonothermal overprint remains to be assessed.

No substantial post-330 Ma reheating seems to have 
occurred in the gneiss region along the Upper Austrian–
Czech border, north of the Pfahl Fault. Mica cooling ages 
of c. 330 Ma were reported from this area (Scharbert et al. 
1997). Also, there was definitely no substantial post-330 
Ma reheating in the Moldanubian units east of the South 
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Fig. 2 Map as in Fig. 1, showing the presumed extent of Late Variscan (post-330 Ma) LP–HT regional metamorphism in the south-western Bohe-
mian Massif. Monazite ages compiled from Grauert et al. (1974), Teufel (1988), von Quadt and Gebauer (1993), Propach et al. (2000), Kalt et al. 
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Bohemian Batholith, as can be seen from mica cooling 
ages of 330–340 Ma (Dallmeyer et al. 1992; Scharbert et 
al. 1997). In addition, it is clear from the field relation-
ships that the Weinsberg and Rastenberg intrusions at the 
eastern margin of the South Bohemian Batholith post-
dated the LP–HT regional metamorphism in the Ostrong 
Unit. These intrusions, dated between 328 and 335 Ma 
(Friedl et al. 1996; Klötzli and Parrish 1996; Gerdes et 
al. 2003), produced just narrow contact aureoles in their 
country rocks (Büttner and Kruhl 1997).

Although no metamorphic ages are available yet, we 
consider it likely that the Monotonous Series between 
České Budějovice and the northern branch of the South 
Bohemian Batholith (Fig. 2) had its LP–HT peak at c. 335 
Ma as well, being in this respect a direct analogue to the 
Austrian Ostrong Unit. A lower age limit for the LP–HT 
metamorphism in the České Budějovice area is provided 
by the intrusion age of the Eisgarn granite, which is 328 ± 
4 Ma (Friedl et al. 1996). Note that there are also striking 
lithological similarities between the Monotonous Unit of 
the České Budějovice area and the Austrian Ostrong Unit, 
such as the occurrence of small eclogite lenses (O’Brien 
and Vrána 1997; Faryad et al. 2006). Whether the strip 
of the Monotonous Series NE of Tábor (Fig. 2) is also a 
metamorphic and stratigraphic equivalent to the Austrian 
Ostrong Unit, is questionable. However, a post-330 Ma 
age of the LP–HT metamorphism in this area is unlikely, 
given the mica cooling ages of ~ 330 Ma reported from 
the Bechyně orthogneiss (Van Breemen et al. 1982).

An exceptional example for a penetrative post-330 
Ma retrograde recrystallization of Moldanubian crust 
east of the Šumava Mts. region may be the Kaplice Unit 
(Fig. 2), where abundant late growth of muscovite has 
been reported (Vrána 1979). According to Vrána and 
Bártek (2005) this muscovitization was caused by fluids 
derived from the Eisgarn granite.

4.	Some remarks concerning the pre-330 
Ma rock inventory of the Bavarian Zone

Due to the strong tectonometamorphic overprint in the 
course of the Late Variscan Bavarian Phase, which 
transformed most of the previous Variscan crust into 
a high-grade anatectic terrain, the geological history 
of the south-western Bohemian Massif is difficult to 
reconstruct. The lithological distinctions in the existing 
geological maps refer mainly to different grades of ana-
texis (metablastites, metatexites, diatexites etc.), while 
the nature of the protoliths is hardly considered. There 
is wide agreement that paragneisses (metapelites and/or 
metagraywackes) were the main protoliths (Fischer 1967; 
Fuchs and Thiele 1968; Finger et al. 1986). However, at 
least in places, other protolithic lithologies were present, 

such as amphibolite or orthogneiss (Teipel et al. 2004; 
Propach 2005), and even Variscan plutonic rocks. Here 
we attempt to identify some typical pre-330 Ma Molda-
nubian lithologies in the Bavarian Zone.

4.1.	Durbachite plutons

A significant and widespread plutonic rock type within 
the Czech part of the Moldanubian Unit are the c. 
335–338 Ma old magnesio–potassic (and ultra-potassic) 
“Durbachite” intrusions (Kodym 1966; Klomínský and 
Dudek 1978; Holub 1997; Janoušek and Holub 2007). 
We present here the theory that the so-called “Palites” 
of the Bavarian Forest (i.e. deformed and anatectic me-
lagranitoid rocks near the Pfahl Fault – Fig. 2) belong to 
this distinct igneous suite as well. 

A modern characterization of the (ultra-)potassic mag-
matism in the southern and central parts of the Bohemian 
Massif was given in Janoušek and Holub (2007). These 
authors have compiled the existing geochronological 
information and arrived at the conclusion that the em-
placement of the (ultra-)potassic plutons (termed here 
for the sake of simplicity ‘Durbachite plutons’) took 
place immediately after the tectonic ascent of the HP 
rocks of the Gföhl Unit within a relatively narrow time 
window between 335 and 338 Ma. Since the Durbachite 
plutons are spatially connected to the Gföhl Unit (Fig. 2), 
Janoušek and Holub (2007) have suggested that there is a 
causal link in the petrogenesis of the two rock groups. We 
shall come back to this point later in the discussion. 

Apart from their similar ages (335–338 Ma), the 
Durbachite plutons are defined by a special geochemical 
signature, unique among the Variscan granitoids of the 
Bohemian Massif. This includes a strong (to extreme) en-
richment of the LIL elements K, Th, U, Rb, Cs, Ba (often 
> 2000 ppm!), Sr (often > 1000 ppm!), in combination 
with relatively high contents of MgO (mostly > 3 wt. %, 
Fe2O3tot/MgO mostly < 2), Cr (often > 100 ppm) and 
Ni (often > 30 ppm). The least felsic types of the Dur-
bachite plutons (Durbachites sensu stricto according to 
Janoušek and Holub 2007) have an extremely K2O-rich 
(ultrapotassic–syenitic) composition and intermediate 
SiO2 contents, while others are comparably less (but still 
strongly) K2O enriched and shoshonitic–granodioritic 
(e. g., Rastenberg Pluton). Macroscopically, the rocks 
of the Durbachite suite are mostly characterized by 
milky white, blocky K-feldspar megacrysts, embedded 
in a relatively dark, Bt- and Hbl-rich matrix. However, 
there are also less voluminous bodies of ultrapotassic 
biotite–pyroxene melasyenites to melagranites rich in 
K-feldspar but devoid of K-feldspar phenocrysts (Tábor 
and Jihlava intrusions). A distinctive macroscopic feature 
of all these (ultra-) potassic intrusions are the ubiquitous 
mafic microgranular enclaves or mafic dykes. Mixing 
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and mingling of magma components derived from an 
enriched lithospheric mantle and the lower crust is gener-
ally regarded as a key process in the petrogenesis of the 
Durbachite plutons (Holub 1997; Gerdes et al. 2000a; 
Janoušek and Holub 2007).

Due to the strong anatectic (and structural) overprint 
during the Bavarian Phase, the originally plutonic na-
ture of the Palites remained long unrecognized. In most 
previous works they were considered as syn-anatectic 
metasomatites (Steiner 1972). However, based on zircon 
dating and Sr and Nd isotopic data, Siebel et al. (2005) 
could demonstrate that most of the Palites are c. 335 Ma 
old igneous rocks that originated from a lower-crustal 
source, and contained a large proportion of a basic mantle 
melt. These data of Siebel et al. (2005) clearly point out 
a relationship to the Durbachitic magmatism described 
elsewhere in the southern Bohemian Massif. Already on 
the macroscopic scale, the coarser-grained variants of the 
Palites display a number of features strongly reminiscent 
of Durbachitic granitoids, like for instance a melanogran-
itoid appearance with big magmatic K-feldspars, and 
the widespread presence of coeval mafic enclaves and 
dykes. Additionally the Palites exhibit clear geochemi-
cal affinities to the Durbachite suite (in particular to the 
shoshonitic–granodioritic Rastenberg subtype). This 
concerns their high K2O at moderate SiO2, high MgO and 
low Fe2O3

tot/MgO ratios as well as high Ba, Sr, Ti, P and 
Cr concentrations (Tab. 2). Also, the Sr and Nd isotopic 
signature (Siebel et al. 2005) is very similar to that of 
the Rastenberg granodiorite in Lower Austria (Gerdes et 
al. 2000a). The only mismatch is the generally lower Th 
content of the Palites. 

It is an old observation, which was mainly emphasised 
by Czech workers in the past (Kodym 1966; Klomínský 
and Dudek 1978), that there are two separate, roughly 
N–S oriented geographic lines of Durbachites in the 
Moldanubian Zone: (1) an eastern line spanning from 
Moravia into Lower Austria, and (2) a western line run-
ning southwards from the Central Bohemian Batholith to 
the Šumava Mts. region. The Palites lie almost exactly 
in the southern extension of the western Durbachite line 
(Fig. 2), taking into account a slight dextral displace-
ment along the Pfahl Fault. It is interesting that along 
both these lines the ultrapotassic–syenitic intrusions are 
to be found mainly in the north. The southern plutons 
(Rastenberg intrusion and Palites) seem to have broadly 
the same age as the northern ones, but tend to be more 
granodioritic. Fuchs (2005) has recently discovered a 
new southernmost occurrence of Durbachitic granitoids 
(Rastenberg subtype) in Lower Austria, c. 50 km east of 
Linz (Fig. 2). A chemical analysis from this plutonic body 
is listed in Tab. 2 for comparison. 

Finally it should be mentioned that dioritic rocks in 
the Fürstenstein area in Bavaria (c. 20 km S of the Palite 

body – Fig. 2) were dated recently yielding a comparable 
age of c. 335 Ma (Chen and Siebel 2004). We consider 
that they may also represent remnants of a former Dur-
bachite-type pluton in the continuation of the western 
Durbachite line.

Tab. 2 Geochemical data for granitoids in Bavaria and Lower 
Austria considered as Durbachites (s.l.) in this study. a, b) 
Coarse-grained, foliated Palite from quarry Saunstein near 
Schönberg; c) Coarse-grained foliated Palite from quarry 
Sommersberg; d) Wolfshof syenite gneiss, Krems valley, 3 km 
N Krems; e) Porphyritic melagranite, forest road 1 km ESE 
Nöchling, c. 50 km E Linz. Analyses by standard XRF methods 
at Salzburg University.

Sample a b c d e
Fi-Fr3 Fi-5/03 Fi-Fr4 Fi-WOG Fi-44a/06

SiO2 55.73 59.34 65.78 58.70 59.92
TiO2 1.11 1.16 0.61 1.05 0.82
Al2O3 17.00 16.72 14.45 16.28 16.29
Fe2O3tot 5.59 3.92 3.19 4.77 5.17
MnO 0.09 0.06 0.05 0.06 0.08
MgO 3.59 3.07 2.24 2.85 3.00
CaO 5.01 4.45 3.16 1.93 3.96
Na2O 3.35 3.19 2.83 1.90 3.18
K2O 5.74 4.78 5.87 8.60 4.77
P2O5 0.79 0.64 0.37 0.89 0.43
LOI 1.43 2.12 1.27 1.98 1.85
Total 99.43 99.47 99.82 99.01 99.47
Cl 452 376 271 71 67
Sc 25 12 10 7 15
V 114 133 67 83 60
Cr 102 144 54 50 86
Co 13 13 11 14 14
Ni 36 24 31 22 39
Zn 86 75 48 95 75
Rb 216 149 154 345 193
Sr 757 802 565 751 549
Y 39 13 16 22 20
Zr 412 289 165 692 359
Nb 19 14 11 38 18
Ga 23 21 16 23 24
Ba 1927 2000 1963 2383 1237
La 73 56 29 87 70
Ce 162 102 69 136 118
Nd 77 56 44 56 44
Pb 32 28 32 100 76
Th 5 19 5 27 41
U 1 1 2 9 6

4.2.	Rocks of the Monotonous and the 
Variegated series

The classic stratigraphic division of Moldanubian rocks 
into an older (Proterozoic) Monotonous Series and a 
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younger (Late Proterozoic/Early Palaeozoic) Variegated 
Series, used in early works on the territory of the Czech 
Republic (Kodym 1966; Jenček and Vajner 1968), has 
been tentatively extended by Dill (1985) into Bavaria. 
Based on the occurrence of small bodies of marbles, 
amphibolites and graphite schists, Dill (1985) considered 
the Kropfmühl Unit NE of Passau (Fig. 2) as belonging 
to the Variegated Series, as well as the region south and 
south-west of Passau (south of the Danube Fault). Indeed, 
it is quite likely that the areas around Passau, where 
graphite has been mined in many places (Weinelt 1973), 
represent the continuation of the graphite-rich variegated 
complex of Český Krumlov (W of České Budějovice in 
Fig. 2). Further north in the Czech Republic, graphite 
lenses are also known from near Týn nad Vltavou and 
east of Tábor (Tichý 1965; Suk 1974). So, as in case of 
the Durbachite line, we note a NNE–SSW trend of this 
significant graphite belt from Bohemia into Bavaria. 
Diatexites north of Passau have been recently interpreted 
by Propach (2005) as remolten amphibolitic lithologies, 
which underlines the affinity of this area to the Variegated 
Group of Český Krumlov.

Further west in the Bavarian Forest, between Vilshofen 
and Regensburg, intercalations of amphibolites, marbles 
and graphite schists play a lesser role. The anatexites 
there seem to be mainly derived from a former mo-
notonous paragneiss series, possibly comparable to the 
Monotonous Series of the Šumava Mts. area to the north. 
However, light diatexites as mapped for instance on 
sheet Bogen (Humer and Krenn 2005) may be anatectic 
orthogneiss. Unfortunately, such genetic distinctions be-
tween ortho- and para-diatexites are only exceptionally 
available on the Bavarian maps.

It is feasible that the Oberpfalz Forest and the western-
most parts of the Bavarian Forest represent migmatized 
Teplá–Barrandian or Saxothuringian crust, as in these 
western areas less lithological and geochronological 
affinity to the Moravo–Moldanubian Fold Belt is to be 
found. However, more data would be needed to test this 
hypothesis properly. Note that the Moldanubian Unit 
is defined there mainly based on its high-grade LP–HT 
metamorphism, which is a Late Variscan feature indepen-
dent of the pre-330 Ma lithological and tectonic boundar-
ies. For example, Schreyer (1966) has already shown that 
the Moldanubian LP–HT metamorphism overprinted the 
Moldanubian/Saxothuringian boundary.

4.3.	High-pressure rocks of the Gföhl Unit

Since the Variegated Series of Český Krumlov seems 
to continue southwestwards into eastern Bavaria, one 
may expect relics of the Český Krumlov granulites to 
be present there as well. Finds of relict kyanite in the 
Kropfmühl Unit (Ritter 1951) and recently in the Austrian 

Sauwald Zone (Doblmayr pers. com.) are in favour of this 
concept, and would deserve a modern petrological study. 
Based on SHRIMP zircon dating (Teipel et al. 2002) and 
P–T data reported in Klein (2002) it appears likely that 
certain leptynites of the Kropfmühl Unit (locality Aubach 
– Fig. 2) bear a record of Viséan HP–HT granulite-facies 
metamorphism. Also, short notes can be found in the lit-
erature reporting finds of “Gföhl Gneiss” in the eastern 
part of the Bavarian Forest (Pfaffl 2006, and in adjacent 
Austria (Fuchs and Thiele 1968; Teipel et al. 2002).

Light diatexites in the Bavarian Zone are basically 
candidates for recrystallized granulite or Gföhl Gneiss. 
One possibility for recognition of the former HP–HT 
granulites, even after strong anatectic recrystallization, 
would be zircon studies, as granulite zircons possess 
typical morphologies and internal zoning features (Hoppe 
1966; Svojtka and Košler 1995; Roberts and Finger 1997) 
that could have (at least partly) survived. Also, it would 
be worthwhile searching the amphibolite bodies and 
mafic anatexite complexes of the Passau region (Propach 
2005) systematically for relics of ultrabasic (peridotitic) 
rocks, which are typical for the Gföhl Unit (Vrána et al. 
1995 ; Medaris et al. 2005). Unfortunately, the hypoth-
esis that the Czech Moldanubian rock complexes might 
continue southwards into Bavaria has been little pursued 
until now.

4.4.	Moldanubian orthogneisses

On the Czech territory, bodies of variably deformed 
pre-Variscan granitoid rocks are present in both the 
Monotonous and the Variegated series. According to the 
available geochronological information, most of these 
appear to represent Early Palaeozoic granites or rhyolites 
(e.g. Hluboká orthogneiss: Vrána and Kröner 1995; Stráž 
orthogneiss: Košler et al. 1996). Also for the leptynite 
near Kašperské Hory interpreted as a metarhyolite of 
the Variegated Series, an Early Palaeozoic formation 
age was proposed on the basis of zircon dating (Fiala et 
al. 1995).

A quest for former Moldanubian orthogneiss layers in 
the Bavarian Zone is most promising in areas where ana-
texis was less intense. Teipel et al. (2004) have recently 
documented felsic granitic orthogneisses near Passau and 
constrained their formation at c. 550 Ma (SHRIMP zircon 
ages). Geochemical data given in Teipel (2003) show that 
these have a very characteristic Zr- and LREE-rich com-
positions resembling A-type granites (Whalen et al. 1987). 
We are presently unaware of similar orthogneisses in the 
Czech part of the Moldanubian Zone. An amphibolite 
sampled near Passau gave the same zircon age of 550 Ma. 
Teipel et al. (2004) interpreted this association of am-
phibolites and orthogneisses near Passau as representing 
a Vendian (Late Proterozoic) back-arc magmatism.
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Another group of felsic I-type orthogneisses in the 
area of the Hinterer Bayerischer Wald (north of the Pfahl 
Fault) was dated by Teipel (2003) as Early Ordovician. 
These SiO2-rich granitoids correspond typologically and 
geochronologically to the Stráž orthogneisses of the 
Czech Moldanubian Unit. Finally, Teipel (2003) reported 
geochemical data for leucocratic S-type granite gneisses 
that seem to be relatively abundant in the Oberpfalz and 
the northwestern Bavarian Forest. Unfortunately, these 
gneisses remain undated. With regard to their leuco-
cratic nature and their high phosphorous contents, they 
resemble the (partly tourmaline-bearing) S-type ortho
gneiss and metagranite bodies in the Czech Monotonous 
Series (Vrána and Kröner 1995; Breiter et al. 2005) but 
also some Saxothuringian granite gneisses (Siebel et al. 
1997).

As mentioned earlier, it is likely that appreciable 
amounts of the diatexites in the Bavarian Zone actu-
ally had orthogneiss protoliths. Such diatexites are often 
exceptionally light and relatively poor in biotite (Humer 
and Krenn 2005). However, also darker, metatonalitic 
diatexites do exist, which are macroscopically hard to 
distinguish from diatexites derived from paragneiss. 
In the Austrian Sauwald Zone, several bodies of Early 
Palaeozoic biotite-tonalites (one of them was dated at 
456 Ma by Friedl et al. 2004) have been transformed to 
diatexites during the Bavarian Phase (Finger et al. 2005). 
Summing up, the amount of anatectic orthogneisses in 
the Bavarian Zone (i.e. diatexites derived from magmatic 
protoliths) seems presently grossly underestimated. This 
is rather unfortunate, as these rocks may play a key role 
in unravelling the history of this part of the Bohemian 
Massif.

4.5.	Pre-330 Ma cordierite-gneisses of the 
Ostrong Unit

The moderately anatectic Kropfmühl Unit (Fig. 2) pro-
vides evidence that at least parts of the south-western 
Bohemian Massif have experienced a first pulse of 
Variscan LP–HT metamorphism prior to the Bavarian 
Phase. Table 3 and Fig. 3 show the results of U–Pb dat-
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Crd-gneisses of the Kropfmühl Unit
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Concordia Age =

321 ± 1 Ma

Tab. 3 The isotope dilution TIMS ages of monazites (single grains) from paragneiss samples of the Kropfmühl Unit. Samples Fi-
24/01 (quarry Grögöd) and Fi-NAT (Quarry Natschlag) are fine-grained, slightly banded, compact cordierite-bearing paragneisses. 
Sample Fi-25/01 is anatectic gneiss with coarse biotite and leucosome veins (quarry Grögöd). Analyses were performed at NIGL, 
Keyworth (U.K.), using the standard procedure as described e.g. in Timmermann et al. (2004).

Sample Weight
(µg) U Pba

(pg)
Pbb

(pg)
Thd

U
207Pbe

235U   
± 2σ

206Pbe

238U   
± 2σ Error

corr.
207Pbe

206Pb   
± 2σ

206Pb
238U  

(Ma)
207Pb
235U  

(Ma)
207Pb
206Pb  

(Ma)

Fi-NAT 
Mz-1 3.6 4363 2361 7.1 7133 7.4 0.3761 ±11 0.051385 ±13 0.87 0.05308 ± 8 323.0 ±0.8 324.1 ±0.9 332.1 ±3.3
Mz-2 1.0 896 471 13.3 246 31.6 0.3922 ±40 0.053816 ±35 0.70 0.05286 ±39 337.9 ±2.2 336.0 ±3.4 323.0 ±17
Mz-3 1.2 3982 2244 7.2 2267 28.7 0.3931 ±12 0.053689 ±13 0.81 0.05310 ± 9 337.1 ±0.8 336.6 ±1.0 333.1 ±3.9
Fi-24/01
Mz-1  3.0 5463 20.7 7108 5.2 0.38457 ± 9 0.052583 ±11 0.93 0.05307 ± 5 330,4 ±0.7 330.5 ±0.8 331.7 ±1.9
Mz-2  2.0 2001 1951 67.5 215 29.5 0.38691 ±22 0.052761 ±15 0.58 0.05319 ±25 331,4 ±0.9 332.1 ±1.9 336.8 ±10
Fi-25/01
Mz-1  2.7 8311 6765 7.4 9708 18.4 0.37189 ±8 0.051032 ±10 0.93 0.05285 ± 4 320.9 ±0.6 321.1 ±0.7 322.5 ±1.8
Mz-2  2.8 8573 9083 32.4 2404 23.8 0.37239 ±9 0.051104 ±11 0.91 0.05285 ± 5 321.3 ±0.7 321.4 ±0.8 322.3 ±2.2
Mz-3  1.7 7056 3238 9.9 3917 16.0 0.37191 ±9 0.051062 ±11 0.89 0.05282 ± 6 321.0 ±0.7 321.1 ±0.8 321.3 ±2.6

a Radiogenic Pb; b Common Pb, corrected for fractionation and spike; c Measured ratio, corrected for spike and Pb fractionation;
d Model ratio calculated from 208Pb/206Pb ratio; e Corrected for fractionation, spike, blank and common lead (Stacey and Kramers 1975)

Fig. 3 U–Pb concordia diagram showing isotopic data for single-grain 
monazite fractions from fine-grained Crd-paragneiss (samples Fi-24/01, 
Fi-NAT) and coarser migmatitic paragneiss from the Kropfmühl Unit 
(sample Fi-25/01). While the monazites from the migmatite Fi-25/01 
are concordant at 321 ± 1 Ma, those from the fine-grained cordierite 
gneisses are clearly older and aligned along a trend line to 337 Ma 
(concordia age of the two uppermost ellipses for the sample Fi-NAT 
is 337 ± 1 Ma).
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ing of single monazites from relatively fine-grained, 
slightly banded, cordierite paragneisses widespread in 
the Kropfmühl Unit. Two monazites from sample Fi-NAT 
(quarry at Natschlag, Upper Austria) define a concordia 
age of 337 ± 1 Ma, considered as the crystallization age 
of the gneisses. Monazites from the second sample (Fi-
24/01, quarry at Grögöd) gave slightly younger U–Pb 
ages of 330–332 Ma, but the mean points of the data 
ellipses are both slightly below the concordia curve. The 
U–Pb ages of these monazites should thus be viewed as 
minimum ages. In many places, as for instance in the 
Grögöd quarry (Köhler et al. 1989), it can be observed 
that a younger phase of anatexis led to a variably intense 
recrystallization of these older fine-grained cordierite 
paragneisses. Such recrystallized rock portions show a 
metablastic coarsening of biotite and feldspar and are 
veined by leucosome. Monazites from these leucosome-
bearing coarse migmatites of the Grögöd quarry yielded 
a concordia age of 321 ± 1 Ma (sample Fi-25/01; Tab. 3), 
and clearly document the influence of the Bavarian tec-
tonometamorphic overprint.

In terms of metamorphic conditions and age, the 
relict fine-grained Crd paragneisses of the Kropfmühl 
Unit correspond to the LP–HT Crd paragneisses of the 
Ostrong Unit (Friedl 1997). The Ostrong Unit thus seems 
to continue from the area E of České Budějovice south-
westwards into the Bavarian Zone. Also, the (stronger 
anatectic) paragneiss-derived diatexites and metatexites 
of the Sauwald Zone (including the area N Linz – Finger 
et al. 2005) may be, for their most part, Ostrong Unit, 
re-metamorphosed and migmatized during the Bavarian 
Phase.

5.	Discussion and conclusions

5.1.	The Bavarian Tectonometamorphic 
Phase: delamination of mantle  
lithosphere as a possible scenario

The present state of geochronological research basically 
confirms the early ideas of Fuchs and Thiele (1968) and 
Fuchs (1976) that to the west of the South Bohemian 
Batholith (Bavarian Zone) an older, NNE–SSW striking 
fabrics was penetratively overprinted by a younger phase 
of regional metamorphism and anatexis with NW–SE 
striking tectonic structures. An assessment of the avail-
able geochronological data indicates a Late Variscan age 
of 330–315 Ma for this younger Bavarian Phase. 

Furthermore, it has been argued in the foregoing text 
that some characteristic NNE–SSW trending lithological 
zones of the c. 345–330 Ma old Moravo–Moldanubian 
Fold Belt can be followed from the Czech Republic along 
strike south(west)wards into the Bavarian Zone. This 

implies that the Bavarian Zone is no foreign crustal ele-
ment in the Moldanubian sector of the Bohemian Massif 
and therefore no terrane in the plate tectonic sense. In 
fact, the Bavarian Phase has mainly the character of a 
thermal overprint. Petrological work indicates granulite- 
-facies P–T conditions of 700–800 °C and c. 4–5 kbar 
for large parts of the Bavarian Zone (Kalt et al. 2000; 
Tropper et al. 2006). These high temperatures produced 
a new generation of anatectic rocks, which are not always 
easy to be related to their respective protoliths, due to 
massive textural changes. The high temperatures also 
led inevitably to a strong softening of the crust. In the 
Austrian Mühl and Sauwald Zone, effects of syn-anatec-
tic southwest-vergent folding and top-to-the-southwest 
thrusting have been observed (Fuchs and Thiele 1968). 
Strong ductile shearing and mylonite formation occurred 
along the dextral Pfahl and Danube faults. Unfortunately, 
a comprehensive tectonic study of the entire Bavarian 
Zone is still missing. 

We follow the view of Scheuvens (2002) that less ana-
tectic domains within the Bavarian Zone, as for example 
the Rittsteig/Královský Hvozd or the Kropfmühl units, 
are infolded portions of the hangingwall crust and there-
fore not really allochthonous units. The same may be true 
for the famous HP rocks at Winklarn (Oberpfalz), and 
there are possibly other as yet unrecognised gneissic units 
in the Bavarian Forest with a similar status. These less 
anatectic units play a major role in the reconstruction of 
the pre-330 Ma history of the area. Since the eastern part 
of the Bavarian Zone most likely represents a reworked 
southern continuation of the Moravo–Moldanubian Fold 
Belt, it would be worth investigating, whether western 
parts do not represent former southern continuations of 
the Teplá–Barrandian and Saxothuringian crust. Note, for 
instance, that the HP rocks at Winklarn yield garnet ages 
of c. 420 Ma (von Quadt and Gebauer 1993) and do not 
show the typical ~340 Ma garnet, monazite and zircon 
ages of the HP rocks of the Gföhl Unit.

In previous work it has often been stated that the 
LP–HT regional metamorphism in Bavaria occurred on 
a decompression path, during a post-orogenic uplift of 
the Variscan crust (Blümel 1990). However, as the new 
geochronological data from the Kropfmühl Unit clearly 
demonstrate (see above), the Bavarian Phase has over-
printed a crustal segment, which was already in the cor-
dierite stability field and thus at relatively low pressures 
at 335 Ma. By analogy with the situation in those parts 
of the Moldanubian Zone that were unaffected by the 
Bavarian tectonothermal overprint (e.g. the Ostrong Unit 
in Austria – Büttner and Kruhl 1997), we conjecture that 
the eastern parts of the Bavarian Zone underwent cool-
ing between 335 and 330 Ma, before they were reheated 
again to 700–800 °C between c. 330 and 315 Ma. This 
post-330 Ma reheating may have been accompanied by 
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further slight uplift. However, a decompression greater 
than 3 kbar (~10 km) appears unrealistic due to the pres-
ence of cordierite in the relict paragneisses metamor-
phosed at c. 335 Ma. The Early Variscan (pre-330 Ma) 
evolution of the western parts of the Bavarian Zone is 
largely unknown.

The available data indicate that the post-330 Ma 
LP–HT regional metamorphism in the Bavarian Zone 
required primarily a strong Late Variscan heat addition 
from the mantle. As discussed in Henk et al. (2000), 
such a heat pulse could be best explained by delamina-
tion of parts of the mantle lithosphere, which initially 
would cause widespread lower crustal melting. The large 
volumes of Weinsberg and Eisgarn granitic magmas in 
the northern and eastern parts of the South Bohemian 
Batholith (dated at c. 327–330 Ma – Gerdes et al. 2003) 
may have formed during this early stage of delamination. 
From there the delamination seems to have proceeded 
towards southwest, as indicated by a younging of ages 
in both granitic and anatectic rocks (Gerdes et al. 2006). 
Heat transport from the hot crust/mantle boundary into 
higher crustal levels was probably effectively managed 
through the abundant granite plutons that intruded the 
Bavarian Zone. It can be seen from Fig. 2 that the post 
330 Ma LP–HT overprint occurred just in those parts 
of the Bohemian Massif, which were drenched by Late 
Variscan granites.

5.2.	The Moravo–Moldanubian Fold Belt: 
a syn-collisional accretionary wedge?

At c. 330 Ma, before the Bavarian Phase set in, the 
Moldanubian sector of the Bohemian Massif constituted 
a (today NNE–SSW trending) fold and thrust belt be-
tween the Cadomian Moravian Zone (Bruno–Vistulicum 
of Dudek 1980) and the Teplá–Barrandian block. Apart 
from some transpressional movements in the realm of 
the Central Bohemian Batholith (Žák et al. 2005), the 
Teplá–Barrandian crust was widely consolidated since the 
Late Devonian (Zulauf 1997). There is general agreement 
that, at c. 340 Ma, high-grade Moldanubian rocks were 
steeply uplifted along the border to the Teplá–Barran-
dian block. According to Scheuvens and Zulauf (2000), 
the Teplá–Barrandian/Moldanubian boundary is repre-
sented by an extension-related high-angle normal fault 
(the Central Bohemian Shear Zone). Žák et al. (2005) 
suggested a somewhat different model in which the SE-
side-up exhumation of hot Moldanubian rocks occurred 
in a relatively wide thermally softened transpressional 
zone along the NE–SW trending magmatic system of the 
Central Bohemian Batholith. 

On the other hand, it is generally accepted since the 
work of Suess (e.g. 1912, 1926) that the eastern segment 
of the Moldanubian Zone was thrust over the Moravian 

Zone, and that marginal parts of the latter were tectoni-
cally mobilized and included in the Variscan deformation 
and metamorphism (Frasl 1970). Schulmann (1990), Ur-
ban (1992) with Fritz and Neubauer (1993) documented a 
top-to-the-NNE transport of Moldanubian and Moravian 
nappes onto the Moravo–Silesian foreland, and dextral 
transpressional movements along the plate contact. Ac-
cording to hornblende and muscovite cooling ages given 
in Dallmeyer et al. (1992) and Fritz et al. (1996), this 
thrust tectonics should have occurred before 330 Ma, 
which means that it may well have been contemporane-
ous with the exhumation of Moldanubian crust at the 
Teplá–Barrandian/Moldanubian boundary. It is therefore 
proposed here that the Moravo–Moldanubian Fold Belt 
represents a collisional accretionary wedge successively 
underplated by material of the Gföhl and the Moravian 
Unit in the footwall, while the Teplá–Barrandian block 
may have functioned as a rigid backstop, along which 
earlier subducted HP–HT rocks were steeply exhumed 
(Fig. 4a). This model would explain, why two parallel, 
seemingly discrete belts of exhumed HP rocks exist in 
the Moldanubian sector of the Bohemian Massif, one 
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close to the Moravian and one next to the Teplá–Bar-
randian boundary. Further investigations on that issue 
are necessary.

Our model follows the view of Vrána and Šrámek 
(1999) and of Schulmann´s school (Franěk et al. 2006), 
who have also proposed that the HP–HT granulite bod-
ies in the western Moldanubian Unit (e.g. Blanský les 
Massif) extruded along steep channels into mid-crustal 
rocks and were then infolded into these. A major argu-
ment against the classic interpretation of the whole Gföhl 
Unit as a coherent nappe (Fig. 4b) is provided by the 
Durbachite intrusions. As can be seen from Fig. 2, these 
Durbachite intrusions are clearly associated with the HP 
rocks of the Gföhl Unit, whereby a western and an east-
ern HP and Durbachite belt can be distinguished. The new 
finds of Durbachite plutons (s. l.) in Bavaria (this paper) 
and close to the Danube between Linz and Krems (Fuchs 
2005 – Fig. 2) have confirmed the existence of these two 
Durbachite lines even more clearly. The (ultra-)potassic 
magmas obviously used the tectonic uplift channels of 
the high-pressure rocks for their own ascent (Fig. 4a). 
Had the rocks of the Gföhl Unit been part of a large and 
coherent flat nappe on top of the Moldanubian Unit, as 
has been often suggested (Fig. 4b), the combined occur-
rence of deformed high-pressure rocks and undeformed 
plutons of the Durbachite suite would be very difficult 
to explain.

Closer to the contact with the Moravian Zone, the tec-
tonic situation is rather that of a ramp (Fritz et al. 1996). 
However, the exhumation of the rocks of the Gföhl Unit 
probably also involved a channel flow mechanism (Racek 
et al. 2006). In Lower Austria, local backthrusts have lead 
to the formation of a synformal, bowl-like structure of the 
HP nappes (Fritz 1996). The underlying Drosendorf Unit 
(s. s.) has often been interpreted as a tectonic window 
and a continuation of the Moravian plate (Matura 1976; 
Finger and Steyrer 1995). As opposed to the previous, 
somewhat oversimplified tectonic models, in which the 
Dobra Gneiss of the Drosendorf Unit was seen as the 
direct underground continuation of the Moravian Bittesch 
Gneiss body, we suggest here that the Drosendorf Unit 
(s. s.) is an independent slice of the Moravian crust. The 
U–Pb zircon data of Gebauer and Friedl (1994) and Friedl 
et al. (2000) have shown that the Bittesch and Dobra 
gneisses have very different magmatic formation ages 
(c. 580 Ma vs. c. 1.4 Ga). However, inherited zircons 
and unusually unradiogenic Nd isotope ratios (Liew and 
Hofmann 1988) imply that both orthogneisses contain 
material from the same crustal source and hence belong 
most likely to the same terrane (Friedl et al. 2004).

Interestingly, there are distinct granitoid gneisses 
within the Lower Austrian Gföhl nappe complex (the 
Wolfshof Gneiss), which probably also represent former 
Durbachite-type plutons, as may be judged from their age 

(338 ± 4 Ma, Friedl et al. 1996) and their syenitic chem-
istry (Tab. 2). We believe that the magmatic protoliths 
of the Wolfshof Gneiss intruded in connection with the 
tectonic ascent of the surrounding Gföhl Gneiss/granulite 
nappe system, and were then included into the nappe 
tectonics on the “Moravian ramp”. 

Regarding the LP–HT metamorphism at c. 335 Ma, it 
would appear that this has mainly occurred along the cen-
tral axis of the Moravo–Moldanubian Fold Belt. Whether 
it can be explained in terms of radioactive heating and 
subsequent rapid exhumation of middle crust (Gerdes et 
al. 2000b) or whether extra heat input from the mantle is 
required (Henk et al. 2000), is presently an unresolved 
question. In terms of the model in Fig. 4, asthenospheric 
heating after slab break-off may provide a particularly 
attractive interpretation.

5.3.	Variscan subduction zones

During recent years several attempts have been made to 
explain the magmatic and tectonometamorphic evolution 
of the Bohemian Massif in terms of modern plate tectonic 
models. There is wide agreement that, in the Devonian, a 
Saxothuringian oceanic domain was subducted from the 
(present day) north-west beneath the Teplá–Barrandian 
(Franke 1989; Zulauf 1997). According to Zulauf (1997) 
this subduction stage terminated at c. 370 Ma, when a 
Saxothuringian continental mass collided with the Tep-
lá–Barrandian Unit, resulting in strong crustal thickening 
and widespread regional metamorphism. As opposed to 
this, Konopásek and Schulmann (2005) suggested that 
the Saxothuringian subduction system was active until c. 
340 Ma, being responsible for the formation and NW-di-
rected exhumation of Viséan HP rocks (e.g. the granulites 
of the Erzgebirge). The Central Bohemian Batholith is 
interpreted as a subduction-related magmatic arc in this 
model, which grew above the Saxothuringian subduction 
zone between c. 370 and 340 Ma (see also Janoušek et 
al. 2006 and references therein). Approximately the same 
tectonic scenario is suggested in the paper of Žák et al. 
(2005). Models of this kind are facing the problem that 
the sedimentary sequence preserved in the Barrandian 
records no major erosion stage at that time. 

Janoušek and Holub (2007) went further and suggested 
that, during the Early Carboniferous, Saxothuringian 
continental crust was subducted far to the south-east 
under the Teplá–Barrandian and also under the Molda-
nubian, and then from there tectonically exhumed almost 
vertically as Gföhl Unit. In addition, these authors pro-
posed that the Moldanubian lithospheric mantle became 
strongly enriched through fluids released from (and direct 
contamination by) subducted Saxothuringian continental 
material. Asthenospheric heating of this enriched mantle 
in a slab break-off environment is thought to have sub-
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sequently initiated the widespread (ultra-) potassic Dur-
bachite magmatism at c. 338–335 Ma. 

Finger and Steyrer (1995), on the other hand, have 
tried to describe the tectonic processes at the Moldanu-
bian-Moravian boundary with a plate tectonic model, 
which involved the subduction of a Silurian–Devonian 
oceanic domain westwards (in present day coordinates) 
beneath the Moldanubian. They proposed that this “Raabs 
Ocean” separated the Moldanubian from the Moravian 
Zone until c. 345 Ma. The existence of a Late Devonian/
Early Carboniferous oceanic basin between the Moravian 
and the Moldanubian is also supported by the sedimen-
tary record in the Moravian Zone (Hladil et al. 1997). 
Unlike Janoušek and Holub (2007), Finger and Steyrer 
(1995) have suggested that the high-pressure rocks of the 
Gföhl nappe were brought out of this westerly dipping 
Moldanubian subduction zone.

Schulmann et al. (2005) put another model for discus-
sion. They assumed that the HP–HT rocks of the Gföhl 
Unit are infolded portions of a Moldanubian lower crustal 
orogenic root, mobilized and uplifted due to their special 
rheological properties. Recent geochronological work has 
shown that the protoliths of the Gföhl Unit were mostly 
Early Palaeozoic granites (Friedl et al. 2004; Janoušek et 
al. 2004). The model of Schulmann et al. (2005) would 
therefore imply that the Moldanubian lower crust (i.e. 
the crust that underlies the Monotonous and the Varie-
gated units) contains large amounts of Early Palaeozoic 
magmatic rocks. This is not unrealistic, because Early 
Palaeozoic intrusions (orthogneisses) are also present in 
the Monotonous and the Variegated units. On the other 
hand, the Durbachite–granulite connection can be better 
explained in a (B-type) subduction model (Janoušek and 
Holub 2007). The widespread occurrence of small peri-
dotite lenses in the Gföhl Unit (Vrána et al. 1995) points 
in the same direction.

Many of the tectonometamorphic processes and 
crust/mantle interactions outlined in Janoušek and 
Holub (2007) could be accommodated into the Finger 
and Steyrer subduction model as well, as shown in Fig. 
4a. This includes the tectonic ascent of deeply sub-
ducted crust after slab-breakoff, driven by buoyancy 
forces, and the formation of (ultra-)potassic magmas 
from metasomatized and contaminated mantle domains. 
Even the magmatic-arc-type plutonism in the Central 
Bohemian Batholith could be tentatively fitted into this 
model (Fig. 4a). Advantages and shortcomings of the two 
contrasting plate tectonic concepts need to be carefully 
assessed in future studies.

It remains to be discussed, what has happened to 
the Moldanubian crust (Monotonous Series, Variegated 
Series, Gföhl Unit) during the Devonian and the very 
Early Carboniferous (pre-345 Ma). This is an as yet 
fully unresolved question. If the Moravian–Moldanubian 

collision was preceded by the subduction of an interven-
ing oceanic domain under the Moldanubian (Finger and 
Steyrer 1995), then it could be that a relatively long-lived 
active-plate-margin setting existed prior to the Viséan 
collisional stage. For instance, the MORB-type eclogites 
of the Ostrong Unit (O’Brien and Vrána 1997; Faryad et 
al. 2006) and other Moldanubian eclogites (e.g. Faryad 
et al. 2007) could have formed during this early subduc-
tion stage. Unfortunately, the Early Variscan history of 
the Moldanubian Zone is widely obscured by the Viséan 
Moravo–Moldanubian collisional phase and its anoma-
lous thermal regime (HP–HT and LP–HT metamorphism), 
which may reflect asthenospheric heat addition after slab 
break-off (Fig. 4a). More information could perhaps be 
gathered through a systematic geochronological study of 
those Moldanubian rocks, which are considered to con-
tain an inherited (Early Variscan or older) metamorphic 
paragenesis (see compilation of Vrána et al. 1995). 

5.4.	Palaeogeographic considerations

It is widely accepted today that the Moravian Zone was 
part of the southern margin of the “Old Red Continent” 
in the Devonian and connected with Baltica (Franke and 
Zelaznievicz 2000, 2002; Winchester et al. 2002; Nav-
rocky and Poprawa 2006; Kalvoda et al. 2007). With the 
exception of the Drosendorf Unit (s.s.) in Austria, which 
may be an overthrust continuation of Moravian-type crust 
(Fig. 4a), the Moldanubian sector of the Bohemian Massif 
is commonly considered as part of the Armorican Terrane 
Assembly (Tait et al. 1997). In the Devonian, Armorica 
was separated from the Old Red Continent by the Rheiic 
Ocean (McKerrow et al. 2000). Finger and Steyrer (1995) 
proposed that the Variscan tectonometamorphic events 
recorded at the Moldanubian–Moravian boundary rep-
resented the frontal collision of the Bohemian segment 
of Armorica with the Moravian segment of the Old Red 
Continent. Silurian MORB-type amphibolites found at the 
base of the Gföhl Unit in Lower Austria (Finger and von 
Quadt 1995) have been interpreted as relics of oceanic 
crust of the Rheiic Ocean (Finger et al. 1998), while Edel 
et al. (2003) considered these rocks as continental rift 
basalts. Also, Schulmann et al. (2005) expressed doubts 
whether the Moravo–Moldanubian suture is “oceanic”. 

Interestingly, the Moravo–Moldanubian Fold Belt is 
today NNE–SSW oriented, i.e. roughly perpendicular to 
the southern margin of the Old Red Continent. This NNE 
orientation was probably one reason why Franke and 
Zelazniewicz (2002) have interpreted the Moravo–Molda-
nubian boundary as a Late Variscan transpressional fault 
zone and not as an oceanic suture in the plate tectonic 
sense. However, palaeomagnetic data indicate that at c. 
330 Ma the whole Moravo–Moldanubian assembly and 
the Teplá–Barrandian block have rotated together for 
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Fig. 5 Sketch illustrating the possible plate tectonic framework at c. 345 Ma (a) and c. 320 Ma (b). Following Franke and Zelazniewicz (2002) it is 
assumed that the Moravian Zone was part of the Old Red Continent and that Armorica approached from the south-east. However, unlike these authors 
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After the rotation stage around 330 Ma, the south-western parts of the Bohemian Massif were overprinted by the Bavarian Tectonometamorphic 
Phase (hatching in Fig. 5b). It is suggested that mantle lithosphere had peeled off in this area.

almost 90° in a clockwise direction, while the position 
of the Baltic craton remained roughly the same (Krs et 
al. 2001; Edel et al. 2003). This means that before the 
rotation occurred, the Moravo–Moldanubian Fold Belt 
was oriented roughly parallel to the margin of the Old 
Red Continent. Therefore, a tectonic interpretation of the 
Moravo–Moldanubian Fold Belt in terms of an oblique 
collision of Armorica and the Old Red Continent is fea-
sible (Fig. 5). Whether or not the Gondwana megacon-
tinent was already in contact with Armorica in the Early 
Carboniferous and pushed Armorica towards Baltica, has 
been controversially assessed (Tait et al. 2000; Edel et al. 
2003, Linnemann et al. 2004).

The significant rotation of the Moravian Zone relative 
to the Baltic Craton at c. 330 Ma leads to the important 
conclusion that in the Moravo–Silesian area a major 
destabilization and tectonic rearrangement of the former 
southern margin of the Old Red continent must have 
had occurred. Such a concept has been proposed some 
years ago by Unrug et al. (1999), who emphasised that 
the basement below Moravia and Silesia should not be 
viewed as a coherent pre-Variscan block, as previously 
suggested by Dudek (1980). It was perhaps the forceful 
indentation of a further Armorican terrane in the east 
(the Lower Silesian Terrane of Unrug et al. 1999), that 
caused this fragmentation of the Old Red continental 
margin. The potential mid-Carboniferous disintegration 
of the Old Red continental margin in Silesia is hardly 

considered in the existing tectonic models for the Central 
European Variscides. 

It also should be discussed whether the Saxothuringian 
sector of the Bohemian Massif has taken part in the Late 
Variscan clockwise rotation of the Moravo–Moldanubian 
Fold Belt. Edel et al. (2003) suggested that this was the 
case, and that almost the whole Variscides rotated relative 
to Baltica at that time. According to Edel et al. (2003) the 
movements were spatially compensated by the consump-
tion of the Rheiic Ocean in the Rhenohercynian Zone. 
On the other hand, there are new palaeomagnetic data 
from the western Sudetes (Saxothuringian after Franke 
and Zelazniewicz 2000), which provide no indication 
for a Late Variscan rotation (Jelenska et al. 2003). The 
western Sudetes may therefore better be considered as an 
independent tectonic block. We speculate that this west-
Sudetic sector of Armorica (which shows no record of 
a strong Viséan collisional metamorphism – Mazur and 
Kryza 1996) may have passed the Moravo–Moldanu-
bian collision zone in the west and have slid northwards 
into a Sudetic Gulf of the Rheiic Ocean (Franke and 
Zelazniewicz 2002), while the Moravian Unit played the 
role of an indentor (Fig. 5). It is questionable whether 
the Saxothuringian rocks of the western Sudetes and the 
Saxothuringian rocks south of the Elbe Fault were in a 
close proximity at the beginning of the Carboniferous. 
Maybe they represent quite different pieces of Armorica. 
Also, the relation between the eastern Sudetes (Lugian 
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domain – Štípská et al. 2001) and the south-eastern Bo-
hemian Massif remains to be resolved. Generally it would 
appear to us that, in order to understand the Variscan 
evolution history of the Bohemian Massif, fully new ter-
rane concepts (including a new and proper nomenclature) 
need to be developed and tested. The classic terms like 
Moldanubian or Saxothuringian may be of little help in 
this matter.
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