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The Vourinos Ophiolite Complex in north-western Greece represents a fragment of oceanic lithosphere emplaced after 
the Late Jurassic closure of the Neotethyan Pindos Ocean. This Ophiolite Complex consists mainly of a well-preserved 
mantle sequence dominated by peridotite and chromitite. Based on petrographic features, four distinct peridotite varieties 
can be distinguished in the Vourinos mantle suite: i) normal harzburgite (Opx ≥ 15 vol. %), ii) transitional harzburgite 
(Opx < 15 vol. %), iii) coarse-grained dunite and iv) fine-grained dunite. Chromian spinel morphology, based on DR# 
(degree of roundness) measurements, varies systematically from harzburgitic to dunitic rocks. Anhedral chromian spinel 
occurs in normal harzburgite (DR# < 0.40), whereas in the other studied peridotite types this mineral is more euhedral 
(DR# > 0.40). The Cr# [Cr/(Cr + Al)] in chromian spinel increases from normal harzburgite to coarse-grained dunite, 
varying between 0.47 and 0.84. Such a variation in chromian spinel composition indicates a multi-stage melting evolu-
tion for the Vourinos mantle suite. Chromian spinel from the fine-grained dunite bears similarities in terms of Cr# and 
Mg# [Mg/(Mg + Fe2+)] with chromian spinel from the neighboring chromitites, which implies a common origin for both 
lithologies. Chromian spinel morphological and compositional data indicate that after chromitite and fine-grained dunite 
formation a remnant boninite melt could have invaded the adjacent peridotites, modifying their accessory chromian spinels 
or even crystallizing new chromian spinel grains. Further evidence for that episode of melt percolation is provided by a 
few harzburgitic rock samples, which may be locally enriched in LREE exhibiting U-shaped chondrite-normalized REE 
patterns. Such patterns are characteristic of interaction between the depleted mantle peridotite and hydrous boninitic 
melt. The studied peridotites are interpreted as refractory residues whose initial composition was locally modified by 
mantle metasomatism in the fore-arc region of a supra-subduction zone. 
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1.	Introduction

Chromian spinel is generally regarded as one of the most 
sensitive indicators used to constrain the petrogenesis 
of mantle peridotites (e.g., Dick and Bullen 1984; Arai 
1992; Hellebrand et al. 2001; Kamenetsky et al. 2001; 
Mikuš and Spišiak 2007; Uysal et al. 2007; Ismail et al. 
2009; González-Jiménez et al. 2011). Variations in mor-
phology of accessory chromian spinel from peridotites 
have been described long ago (e.g., Mercier and Nicolas 
1975; Arai 1980; Leblanc et al. 1980). In most cases the 
morphology of chromian spinel from ultramafic rocks is 
strongly dependent on lithology or may indicate different 
conditions of formation (e.g., temperature and/or order 
of crystallization). In addition, variations of chromian 
spinel composition in peridotites are also known to reflect 
differences in the processes involved in the evolution of 
upper mantle rocks, such as partial melting and mantle 
metasomatism (e.g., Kamenetsky et al. 2001; Kubo 2002; 
Arif and Jan 2006), or even in the geotectonic setting 
(Dick and Bullen 1984; Ishii et al. 1992). Combined stud-

ies of morphological and chemical variations of chromian 
spinel in peridotites have shown that both properties are 
closely related to each other and are highly dependent 
on the genetic processes that have affected their host 
rocks (Matsumoto and Arai 2001). Moreover, deforma-
tion of mantle can affect either spinel morphology or 
composition. In particular spinel lineation is commonly 
interpreted as due to a relict asthenospheric flow (Nicolas 
and Poirier 1976), whereas stress-induced compositional 
zoning has been documented in spinels from deformed 
peridotites (Ozawa 1989). 

Spinel peridotites are traditionally interpreted as solid 
residues after variable degrees of adiabatic melting of 
pristine mantle. However, there is now convincing evi-
dence that migrating melts in the upper mantle may cause 
peridotite metasomatism (e.g., Kelemen et al. 1997; Zhou 
et al. 2005) or even refertilization (e.g., Dijkstra et al. 
2001; Le Roux et al. 2007; Seyler et al. 2007). Interaction 
between melt and mantle peridotite is currently regarded 
as the most important petrologic process that takes place 
in the shallow mantle (e.g., Parkinson and Pearce 1998; 
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Uysal et al. 2007; Dai et al. 2011), commonly leading 
to the formation of dunite and chromitite (e.g., Zhou et 
al. 2005). 

The purpose of the present paper is to describe the mor-
phological and chemical variations of accessory chromian 
spinel in conjunction with peridotite lithology from the 
Vourinos Ophiolite Complex, north-western Greece. The 
strongly depleted nature of the Vourinos peridotites has 
been interpreted to reflect a multi-stage mantle melting 
history. However, the present data indicate that – except 
for partial melting – another petrologic process was locally 
involved in the formation of the surrounding mantle rocks. 

2.	Geological setting

Ophiolites of northwestern continental Greece are con-
sidered as remnants after the progressive closure of the 
Neotethyan Ocean. Among these the Vourinos Ophiolite 
Complex has been extensively studied with regard to its 
structure, deformation and tectonic position (e.g., Moores 
1969; Roberts et al. 1988; Ross and Zimmerman 1996; 
Rassios and Smith 2000; Rassios and Moores 2006; 
Ghikas 2007; Rassios and Dilek 2009).

The Vourinos Ophiolite Complex constitutes an al-
most complete ophiolitic suite of early to middle Jurassic 

age (Rassios and Smith 2000). It covers a total area of 
450  km2; whereby 85 % of the whole complex is com-
posed of mantle peridotites (Fig. 1). The mantle suite con-
sists mainly of massive harzburgite including deformed 
pods and layers of dunite. These dunite bodies range from 
several m up to a few km in size and commonly host chro-
mitites. The mantle peridotites are frequently cross-cut by 
pyroxenite dykes. The contact between mantle rocks and 
ultramafic/mafic cumulates is sharp and intrusive (Harkins 
et al. 1980). Lowermost cumulates include dunite, which 
grades to wehrlite, pyroxenite and gabbronorite or trocto-
lite. A sheeted dike complex is oriented perpendicularly to 
the magmatic layering of the cumulate rocks. Basaltic to 
andesitic massive lavas are found on the top of the sheeted 
dike complex, cut in turn by subordinate boninitic dykes 
in the Asprokambos area. Two different magmatic series 
can be distinguished in the Vourinos Ophiolite Complex: 
the regionally prevalent Krapa Series, having an island-
arc tholeiite (IAT) affinity, and the Asprokambos Series 
which is younger and of boninitic chemistry (Beccaluva 
et al. 1984). Finally, the Ophiolite Complex is overlain 
by radiolarian cherts of Kimmeridgian age and, uncon-
formably, by a thick section of Cenomanian limestones 
(Brunn 1956). 

A sheared sedimentary wedge that exists between 
the basal harzburgites and the carbonate rocks of the 
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Fig. 1 Simplified geological map of the Vourinos Ophiolite Complex, showing the location of the studied areas (V: Voidolakkos district, K: Kor-
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Pelagonian Platform is thought to represent the Vourinos 
mélange (Ghikas et al. 2009). The metamorphic sole 
crops out at the eastern side of the Massif and is defined 
by restricted occurrences of amphibolite-facies metaba-
sites with rare metasediments (e.g., Myhill 2011), some 
of which are garnet bearing (Rassios and Moores 2006). 
Spray and Roddick (1980) provided amphibole 40Ar/39Ar 
dates of the sole rocks (amphibolites) of Vourinos as 171 
± 4 Ma, whereas U–Pb ion microprobe dating of co-
magmatic zircons from one gabbro and one plagiogranite 
yielded weighted mean 206Pb/238U ages at 168.5 ± 2.4 and 
172.9 ± 3.1 Ma, respectively, interpreted as the time of 
formation of the Vourinos oceanic crust (Liati et al. 2004). 

3.	Sampling and laboratory methods

Twenty seven representative 
peridotite samples were col-
lected, which included all the 
main mantle rock types (ex-
cept for pyroxenites) occur-
ring in the Vourinos Ophiolite 
Massif. Care was taken to 
sample least serpentinized 
and most representative rocks 
from each mantle lithology. 
The peridotite samples come 
from its northern (Voidol-
akkos, Korsoumia and Rizo 
districts) and southern parts 
(Aetorraches and Xerolivado 
districts) (Fig. 1). A total of 
4 up to 6 different peridotite 
samples were collected from 
each subarea of investigation, 
whereas at least two samples 
were taken from each main 
peridotite type (harzburgite 
and dunite) to unravel any 
possible petrographic het-
erogeneity. Each group of 
samples was collected within 
a few hundred m from the 
chromitite exposures. In all 
cases the sampling began in 
dunite adjacent to chromitite 
and continued outwards.

The area and circumfer-
ence of some chromian spinel 
grains were initially measured 
on photomicrographs taken 
under an optical microscope 
(Leica 550IW), using a pla-

nimeter and a curvimeter, respectively. In order to obtain 
more accurate results on area and perimeter, new mea-
surements were made on bitmap images using the image 
analysis program Leica Qwin. All the analyzed chromian 
spinel images were converted to black and white. Area 
and circumference were automatically estimated from 
the number of pixels forming the area or the perimeter 
converted to mm2 or mm, respectively, using the scale 
definition. Representative results are listed in Tab. 1.

The quantitative chemical analyses of chromian 
spinel were performed using a Super JEOL JSM-6300 
Scanning Electron Microscope (SEM) at the University 
of Patras. It was operated in Wavelength-Dispersive 
Spectrometry (WDS) mode at an acceleration voltage 
of 15 kV and a beam current of 20 nA, with a beam 
diameter of c. 4 μm. The total counting time was 60 s 

Tab. 1 Representative morphological and compositional variations of chromian spinels from the studied 
peridotites

Peridotite Sample DR# Cr# TiO2 Fe+3#
Norm. Harzburgite A1

* 0.265 0.65 – 0.015
Norm. Harzburgite K17 0.361 0.57 – 0.014
Norm. Harzburgite K17 0.392 0.59 0.11 0.015
Norm. Harzburgite R1 0.272 0.59 0.06 0.015
Norm. Harzburgite R1 0.250 0.59 0.06 –
Norm. Harzburgite V4

* 0.159 0.52 0.15 –
Norm. Harzburgite V4

* 0.207 0.52 0.12 –
Norm. Harzburgite V5 0.399 0.73 0.11 0.001
Trans. Harzburgite A3 0.564 0.71 0.06 0.013
Trans. Harzburgite A3 0.589 0.69 0.04 0.002
Trans. Harzburgite A3 0.451 0.68 0.20 0.009
Trans. Harzburgite K15 0.773 0.74 0.21 –
Trans. Harzburgite K15 0.715 0.73 0.27 0.014
Trans. Harzburgite K15 0.739 0.74 0.52 0.004
Trans. Harzburgite K15 0.692 0.74 – 0.005
Trans. Harzburgite V2 0.588 0.71 0.47 0.016
Trans. Harzburgite V2 0.427 0.71 0.07 0.012
Coarse-grained Dunite A7 0.544 0.72 0.05 0.007
Coarse-grained Dunite A7 0.618 0.74 0.15 0.020
Coarse-grained Dunite A7 0.595 0.71 0.16 0.009
Coarse-grained Dunite K14 0.651 0.77 0.05 0.015
Coarse-grained Dunite K14 0.691 0.80 0.44 0.021
Coarse-grained Dunite Κ14 0.549 0.81 0.26 0.032
Coarse-grained Dunite K14 0.664 0.82 0.36 –
Coarse-grained Dunite V3 0.649 0.75 0.31 0.052
Coarse-grained Dunite V3 0.587 0.72 0.38 0.049
Coarse-grained Dunite V3 0.551 0.72 0.04 0.090
Fine-grained Dunite V8 0.687 0.82 0.07 0.002
Fine-grained Dunite V8 0.690 0.79 0.14 0.024
Fine-grained Dunite V8 0.666 0.82 0.53 0.030
Fine-grained Dunite V8 0.729 0.83 0.31 –
Fine-grained Dunite V8 0.726 0.83 0.39 0.015
Fine-grained Dunite X3 0.720 0.77 0.12 0.032
Fine-grained Dunite X3 0.710 0.79 0.43 0.008
Fine-grained Dunite X3 0.720 0.78 0.27 0.003
–: not detected, *: granular normal harzburgite
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and dead-time 40 %. The ZAF correction was em-
ployed. Synthetic oxides and natural minerals were 
used as standards. Detection limits of ~0.1 % and ac-
curacies better than 5 % were achieved. The proportion 

of Fe3+ in chromian spinel was calculated assuming 
ideal spinel stoichiometry (AB2O4). Selected analyses 
of chromian spinel from the studied peridotites are 
listed in Tab. 2. 

Tab. 2 Representative chromian spinel analyses from the studied peridotites

Peridotite Normal Harzburgite
Texture Granular Porphyroclastic
Sample E1 E1 V4 V4 V4 VM74 A1 A1 A5 A5 A5 K17 R2

Analysis (wt. %) 2 4 1 2 3 4 1 2 1 3 4 2 3
SiO2 0.94 – – 0.15 – 0.17 0.37 – 0.35 – 0.06 – 0.91
TiO2 0.09 0.11 0.15 – – 0.48 0.38 0.23 0.26 – 0.18 – 0.06
Al2O3 25.26 25.25 26.96 28.06 30.83 25.39 19.47 18.71 20.38 21.06 18.27 23.64 19.99
Cr2O3 43.14 44.84 44.09 42.33 40.63 43.79 47.46 49.71 49.12 48.27 51.97 46.40 48.60
FeOt 15.49 16.67 13.93 16.66 15.36 16.06 19.34 19.47 18.61 18.98 20.00 18.91 19.34
MnO 0.17 – 0.28 – – – 1.06 0.75 – – 0.03 – 0.82
MgO 14.25 14.68 14.18 12.99 13.24 14.30 11.10 10.83 10.95 10.89 10.01 11.47 10.55
CaO – – – – 0.42 0.06 – 0.21 – – – – –
Total 99.34 101.55 99.59 100.19 100.48 100.25 99.18 99.91 99.67 99.20 100.52 100.42 100.27
apfu
Si 0.228 – – 0.036 – 0.041 0.094 – 0.088 – 0.015 – 0.228
Ti 0.016 0.020 0.027 – – 0.087 0.073 0.044 0.049 – 0.034 – 0.011
Al 7.202 7.111 7.627 7.893 8.533 7.185 5.840 5.611 6.035 6.270 5.465 6.867 5.909
Cr 8.248 8.468 8.364 7.984 7.541 8.310 9.546 9.997 9.754 9.636 10.424 9.038 9.634
Fe3+ 0.306 0.401 – 0.087 – 0.377 0.447 0.348 0.074 0.094 0.062 0.095 0.218
Fe2+ 2.830 2.930 2.820 3.242 3.140 2.850 3.670 3.800 3.840 3.920 4.190 3.810 3.840
Mn 0.035 – 0.057 – – – 0.229 0.162 – – 0.006 – 0.174
Mg 5.143 5.234 5.078 4.625 4.639 5.123 4.215 4.111 4.105 4.104 3.790 4.218 3.948
Ca – – – – 0.106 0.015 – 0.057 – – – – –
Σ 24.008 24.164 23.955 23.867 23.959 23.988 24.114 24.130 23.945 24.024 23.986 24.028 23.962
Cr# 0.53 0.54 0.52 0.50 0.47 0.54 0.62 0.64 0.62 0.61 0.66 0.57 0.62
Mg# 0.64 0.64 0.64 0.58 0.60 0.64 0.53 0.52 0.52 0.51 0.47 0.53 0.51

Peridotite Transitional Harzburgite
Sample A3 A3 A3 A3 K15 K15 V2 V2 V2

Analysis (wt. %) 1 2 3 4 3 4 1 2 3
SiO2 – – 0.42 – – 0.19 – – –
TiO2 0.11 0.06 0.04 0.20 0.52 – 0.47 0.36 0.07
Al2O3 16.59 14.80 16.4 16.93 13.67 13.53 14.76 15.11 15.30
Cr2O3 53.65 55.07 53.78 52.57 56.58 56.52 55.04 54.68 54.81
FeOt 18.02 19.64 19.28 18.85 18.76 19.55 19.80 19.47 18.66
MnO 0.47 – 0.34 – – 0.25 – – –
MgO 10.27 10.17 9.83 10.73 10.16 9.52 10.57 10.91 11.04
Total 99.11 99.74 100.09 99.28 99.69 99.56 100.64 100.76 99.88
apfu
Si – – 0.108 – – 0.050 – – –
Ti 0.021 0.012 0.008 0.039 0.102 – 0.091 0.069 0.014
Al 5.046 4.516 4.955 5.131 4.192 4.177 4.472 4.562 4.642
Cr 10.943 11.269 10.895 10.685 11.636 11.700 11.182 11.070 11.151
Fe3+ – 0.203 0.034 0.145 – 0.073 0.255 0.299 0.193
Fe2+ 3.900 4.050 4.100 3.910 4.020 4.210 4.010 3.880 3.830
Mn 0.103 – 0.074 – – 0.056 – – –
Mg 3.954 3.929 3.759 4.117 3.944 3.720 4.054 4.169 4.240
Σ 23.957 23.979 23.933 24.027 23.964 23.986 24.064 24.049 24.070
Cr# 0.68 0.71 0.69 0.68 0.74 0.74 0.71 0.71 0.71
Mg# 0.50 0.49 0.48 0.51 0.50 0.47 0.50 052 0.53
–: not detected, Cr#: Cr/(Cr + Al), Mg#: Mg/(Mg + Fe2+)
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Whole-rock REE analyses were performed at ActLabs, 
Ontario, Canada, using a Perkin Elmer Sciex ELAN 
9000 Inductively Coupled Plasma-Mass Spectrometer 
(ICP-MS). Crushed dry samples were acid-digested 
for analysis by ICP-MS, by the methods of Bailey et 
al. (1993) and Lewis et al. (1997). 200 mg of the dried 
sample was weighted into a PTFE (polytetrafluoroethyl-
ene) beaker, and moistened with 2 ml of 18 MΩ water; 
3 ml of 40 % v/v HF and 2 ml of concentrated HNO3 

were added. The beaker was then placed on a hot plate 
at 210 ºC and the solution was evaporated just to dryness 
before being removed from the hotplate. 30 ml of 5 % 
v/v HNO3 was added to the cooled beaker and the beaker 
returned to the hotplate to dissolve the cake. The sample 
was made up to 100 ml with 5 % v/v HNO3 after the ad-
dition of an internal standard. The internal standard was 
used to compensate for any analytical drift and matrix 
suppression effects. Calibration of the ICP-MS was via 
international rock standards with the addition of an in-
house peridotite standard. These standards and analyti-
cal blanks were prepared by the same technique as the 
samples. The composition of the reference samples was 
analyzed as unknown during the same analytical runs as 
Vourinos peridotite samples. For REE reproducibility of 
these reference samples was generally better than 5 %. 
Detection limits were: 0.05 ppm for La, Ce, and Nd, 0.01 
ppm for Pr, Sm, Gd, Tb, Dy, Ho, Er and Yb, 0.005 ppm 
for Eu and Tm and 0.002 ppm for Lu. Two representative 
bulk-rock REE analyses of the investigated peridotites 
are listed in Tab. 3.

4.	Field relations

Deformed massive harzburgite is the dominant peridotite 
type in the Vourinos mantle suite accompanied by minor 

Tab. 2 (continued)

Peridotite Coarse-grained Dunite Fine-grained Dunite
Sample A7 A7 A7 K14 K14 K14 V1 V1 V1 X3 X3 X3 X3

Analysis (wt. %) 3 4 5 1 4 5 4 8 9 2 3 6 7
SiO2 0.15 0.38 – – – 0.11 – – – – – – –
TiO2 0.05 0.15 0.16 0.21 0.44 0.26 0.17 0.18 0.17 0.20 0.12 0.41 0.27
Al2O3 14.53 13.16 15.01 9.86 10.11 9.24 11.58 11.98 12.14 11.27 12.25 11.96 11.16
Cr2O3 56.47 56.33 55.89 59.27 58.50 58.80 60.88 59.55 58.72 60.01 60.30 60.51 60.65
FeOt 19.15 18.66 19.29 21.49 21.26 21.60 14.31 15.05 14.82 14.37 13.09 13.75 14.54
MnO – – – 0.43 – – 0.18 0.19 0.22 0.30 – – –
MgO 10.51 11.19 10.60 8.97 9.19 9.58 13.88 13.71 13.98 13.40 13.63 13.61 12.53
CaO – 0.11 – – – – – – – – – – –
Total 100.86 99.98 100.95 100.23 99.50 99.59 101.00 100.66 100.05 99.55 99.39 100.24 99.15
apfu
Si 0.038 0.098 – – – 0.030 – – – – – – –
Ti 0.010 0.029 0.031 0.042 0.089 0.053 0.033 0.034 0.033 0.039 0.023 0.079 0.053
Al 4.391 4.017 4.526 3.103 3.191 2.926 3.473 3.587 3.646 3.422 3.704 3.587 3.422
Cr 11.443 11.531 11.300 12.509 12.383 12.485 12.250 11.955 11.826 12.219 12.226 12.170 12.471
Fe3+ 0.118 0.325 0.143 0.346 0.337 0.506 0.244 0.424 0.495 0.320 0.047 0.164 0.054
Fe2+ 3.990 3.720 3.990 4.460 4.430 4.350 2.801 2.780 2.670 2.780 2.760 2.770 3.110
Mn – – – 0.097 – – 0.039 0.041 0.048 0.066 – – –
Mg 4.020 4.324 4.046 3.574 3.672 3.840 5.266 5.196 5.315 5.151 5.217 5.167 4.864
Ca – 0.031 – – – – – – – – – – –
Σ 24.010 24.075 24.036 24.131 24.102 24.190 24.106 24.017 24.033 23.997 23.977 23.937 23.974
Cr# 0.72 0.74 0.71 0.80 0.80 0.81 0.78 0.77 0.76 0.78 0.77 0.77 0.78
Mg# 0.50 0.54 0.50 0.45 0.45 0.47 0.63 0.65 0.67 0.65 0.65 0.65 0.61
–: not detected, Cr#: Cr/(Cr + Al), Mg#: Mg/(Mg + Fe2+)

Tab. 3 Whole-rock REE data of normal and transitional harzburgite 
from Vourinos

Peridotite Normal Harzburgite Transitional Harzburgite
Sample V6 V2

La 0.08 0.26
Ce 0.16 0.54
Pr 0.01 0.04
Nd < 0.05 0.11
Sm 0.01 0.02
Eu < 0.005 < 0.005
Gd < 0.01 0.01
Tb < 0.01 < 0.01
Dy < 0.01 0.02
Ho < 0.01 < 0.01
Er 0.01 0.01
Tm < 0.005 < 0.005
Yb 0.02 0.02
Lu 0.004 0.003
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dunite. Harzburgite commonly contains blocky-shaped 
pyroxene. Pyroxene lineation/elongation is frequently cut 
by diffusely distributed spinel (Fig. 2a). Thick mylonitic 
zones crop out within the harzburgite at the northern part 
of the Ophiolite Complex. The dunite bodies are pres-
ent in various modes of occurrence (e.g., pods, lenses) 
and range in size from a few m up to a few km (e.g., 
Xerolivado district). The contacts between harzburgite 
and dunite are transitional at the meter- to tens of meters 
scale and are difficult to be mapped in the field. Dunite 
deformational layers are intercalated with harzburgite. 
Moreover dunite commonly hosts chromitite bodies. 
Frequently dunite and chromitite are “entrapped” in 
shear zones. In the vicinity of the chromitites dunite 
commonly turns to be fine-grained. Rarely small dunite 
“blocks” can be recognized within harzburgite (Fig. 2b), 
thus suggesting a replacement relation between these two 
peridotite types.

5.	Petrography

The peridotites hosted in the Vourinos mantle suite are 
harzburgites and dunites. Two varieties of harzburgites 
are distinguished: normal and transitional. This division 
is based on the distinct petrographic features. Normal 
harzburgite is granular to (framed) porphyroclastic 
(Fig.  2c) in texture. Main constituent minerals are ol-
ivine (70–83 vol. %), orthopyroxene (15–28 vol. %), 
clinopyroxene (< 5 vol. %) and chromian spinel (≤ 1 vol. 
%). Olivine–orthopyroxene boundaries are irregular and 
both phases display deformational characteristics, such 
as anomalous extinction band configurations. Interstitial 
chromian spinel is brown to reddish under the microscope 
and is mostly irregularly shaped, showing lobate boundar-
ies (“vermicular” spinel, Fig. 2d). Sporadically anhedral 
intergrowths of orthopyroxene and chromian spinel can 
be recognized in the most clinopyroxene-rich samples. 
Transitional (/olivine-rich) harzburgite is porphyroclastic 
in texture, containing olivine (85–87 vol. %), orthopy-
roxene (12–14 vol. %), chromian spinel (1–3 vol. %) and 
occasionally traces of clinopyroxene. Olivine crystals 
have irregular shapes with sinuous boundaries, commonly 
elongated showing undulose extinction. Orthopyroxenes 
exhibit concave boundaries filled with olivine and spinel 
neoblasts (Fig. 2e). Subhedral to euhedral chromian spi-
nel is present either interstitially to mantle phases or in 
the form of inclusions in orthopyroxene porphyroclasts 
(Fig. 2e). Orthopyroxene crystals also show undulose 
extinction, kink bands and clinopyroxene exsolution 
lamellae (Fig. 2f). Although all harzburgitic rocks are 
intensely deformed, they may contain unstrained phases 
such as olivine and minor clinopyroxene (the latter only 
in normal harzburgite), mainly in the form of inclusions 

in orthopyroxene porphyroclasts and infrequently inter-
stitially to mantle phases. 

The degree of serpentinization in all the studied harz-
burgitic samples does not exceed 20 vol. %. Replacement 
to serpentine affected both olivine and pyroxene, leading 
to the local formation of a mesh and bastite texture, respec-
tively. Sometimes chromian spinel grains may be partially 
altered to ferritchromite and chromian chlorite, as a result 
of metamorphic alteration (Grieco and Merlini 2011). 
Tremolite also occurs as an accessory secondary phase. 

Dunite is variably textured, ranging from coarse- to 
fine-grained. Main constituent minerals in both dunite 
types are olivine (90–95 vol. %), accompanied by or-
thopyroxene (≤ 5 vol. %) and dark reddish chromian 
spinel (≤ 5 vol. %). Coarse-grained dunite shows equi-
granular to mylonitic texture. It is composed of sizeable 
olivine crystals (up to a few mm across), exhibiting 
strong deformational features. In equigranular dunite 
olivine is polygonal in shape, displaying many 120º triple 
grain junctions (Fig. 2g) indicating recrystallization, and 
kink bands. Mylonitized dunite contains elongated oliv-
ine grains, showing intense undulose extinction. Olivine 
porphyroclasts are surrounded by a recrystallized matrix 
of tiny olivine neoblasts. In some mylonitized dunite 
samples elongated tremolite crystals may occur. Coarse-
grained dunite is characterized by euhedral chromian spi-
nel, frequently embodied within the olivine megacrysts. 
Fine-grained dunite shows mosaic texture (Fig. 2h) and 
is composed of small olivine grains and euhedral chro-
mian spinel, commonly found at the triple junctions of 
annealed olivine crystals. It is worthy to mention that 
the amount of chromian spinel is commonly higher in 
fine-grained dunite compared to that in coarse-grained 
one (5 vol. % vs. 3–5 vol. %, respectively). 

6.	Morphology of chromian spinel

To define chromian spinel morphology quantitatively 
the so-called “degree of roundness” (DR#, according to 


Fig. 2 Photographs of mantle peridotites from the Vourinos Ophiolite 
Complex. a – Diffusely distributed spinel in harzburgite interrupting 
pyroxene lineation. b – Dunite enclosed in harzburgite (contact be-
ing marked by the black dashed line). Photomicrographs of mantle 
peridotites from the Vourinos Ophiolite Complex: c – Porphyroclastic 
texture in normal harzburgite [crossed nicols (XPL)]. d – Anhedral 
(“vermicular”) chromian spinel in normal harzburgite [plane polarized 
light (PPL)]. e – Orthopyroxene porphyroclast with euhedral chromian 
spinel inclusions surrounded by olivine neoblasts (XPL). f – Exsolu-
tion lamellae of clinopyroxene in an orthopyroxene porphyroclast from 
transitional harzburgite [back scattered electron image (BSE)]. g – An-
nealing olivine texture in coarse-grained dunite (XPL). h – Fine-grained 
dunite exhibiting mosaic texture (XPL). Abbreviations: Sp – chromian 
spinel; Dn – dunite; Hz – harzburgite; Ol – olivine; Opx – orthopyrox-
ene; Cpx – clinopyroxene.
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Matsumoto and Arai 2001) was calculated, according 
to the equation: A/[(1/4π)×R2], where A and R stand 
for area and circumference of chromian spinel grains, 
respectively. Measurement results are listed in Tab. 1.

It is expected that the DR# is low (< 0.40) if the grain 
is irregularly shaped (“vermicular”) and high (> 0.60) 
if it is euhedral (Matsumoto and Arai 2001). Since the 
studied chromian spinels do not preserve any obvious 
stress-induced characteristics (e.g., elongation, disruption 
followed by rearrangement), which could have modified 
their original morphology, they can be used as key tools 
to help us understand the processes involved in the for-
mation of the Vourinos mantle rocks. Chromian spinel 
crystals from the Vourinos peridotites show a wide range 
of DR# values, varying between 0.16 and 0.77. Chromian 
spinel has relatively high DR# in dunite (0.54–0.73) and 
low DR# in normal harzburgite (0.16–0.40). On the other 
hand, chromian spinel in transitional harzburgite shows 
a wide range of DR# of 0.38 to 0.77. Although it is harz-
burgitic rock it contains euhedral chromian spinel, which 
resembles the same mineral in dunite. This controversy 
implies the significance of this very rock type in the in-
terpretation of the petrologic processes locally affecting 
the formation of the Vourinos peridotites.

7.	Chromian spinel chemistry

Homogeneous opaque accessory chromian spinel occurs 
in all the investigated peridotite samples. Despite the ef-
fects of serpentinization, chromian spinel grains are gen-
erally unaltered, although the replacement of chromian 
spinel by ferritchromite has been reported by previous 
studies on the alteration of chromite from the Vourinos 
chromitites (Grieco and Merlini 2011). Therefore the 
unaltered nature is indicative of their primary origin. 

Their Cr# [Cr/(Cr + Al)] ranges from 0.47 to 0.84 
and Mg# [Mg/(Mg + Fe2+)] from 0.45 to 0.66 (Fig. 3). 
The normal harzburgite contains chromian spinel with a 
wide range of Cr# values (0.47–0.74), whereas the tran-
sitional harzburgite features chromian spinel with a more 
restricted range of Cr# (0.68–0.74). Dunitic rocks contain 
chromian spinel with higher Cr# (0.71–0.84).

Two compositional groups of chromian spinel in nor-
mal harzburgite can be distinguished in terms of Cr# and 
Mg# values (Fig. 3). The first includes chromian spinel 
with lower Cr# (0.47–0.65) and higher Mg# (0.57–0.64) 
in granular textured normal harzburgite and the second 
chromian spinel of higher Cr# (0.57–0.74) and lower 
Mg# (0.47–0.53) in porphyroclastic normal harzbur-
gite. The latter fall in the field of spinel from fore-arc 
peridotites, whereas chromian spinel compositions from 
granular normal harzburgite plot at the boundary between 
the fields of spinel from fore-arc peridotites (Ishii et al. 

1992; Ohara and Ishii 1998) and modern abyssal perido-
tites (Dick and Bullen 1984; Juteau et al. 1990; Fig. 3). 
Moreover, chromian spinel from the transitional harzbur-
gite plots in the field of spinels from fore-arc peridotites 
(Ishii et al. 1992; Ohara and Ishii 1998). 

Chromian spinel in coarse-grained dunite has low 
Mg# (0.45–0.55), whereas that in fine-grained dunite it 
is characterized by high Mg# values (0.59–0.66). On Cr# 
vs. Mg# plot, dunitic chromian spinel compositions form 
two clusters at the high-Cr# end of the diagram (Fig. 3). 
Additionally, the composition of chromian spinel from 
fine-grained dunite is similar to that of spinels in equilib-
rium with magmas of boninitic affinity (Dick and Bullen 
1984), whereas the composition of chromian spinel from 
coarse-grained dunite plots between the fields of spinel 
from boninites and fore-arc peridotites. 

Chemistry of chromian spinel is related with mor-
phology. The DR# is positively correlated with Cr# (r2: 
0.79, Fig. 4). In particular, there is a positive correlation 
between Cr# and DR# of chromian spinel from normal 
harzburgite (r2: 0.61) and dunite (r2: 0.70), but no cor-
relation exists between Cr# and DR# of chromian spinel 
from transitional harzburgite (r2: 0.43) and the Cr# values 
rise only gently with increasing DR#. The DR# seems to 
be independent of TiO2 or Fe3+# [Fe3+/(Fe3+ + Cr + Al)]. 
However, the range of TiO2 contents and Fe3+# in chro-
mian spinel appears to be dependent on lithology, being 
relatively wider in dunitic spinel (Tab. 1). 
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8.	Whole-rock REE chemistry

The peridotites are generally characterized by extremely 
low Rare Earth Elements (REE) concentrations. In fact, 
only the heaviest REE (Yb and Lu) were analyzed in 
most of the investigated peridotites, whereas the remain-
ing REE were lower than the detection limits. Almost a 
complete range of REE was possible to detect only in 
two harzburgitic samples (from the Voidolakkos district) 
a porphyroclastic normal (V6) and a transitional harzbur-
gite (V2). The REE contents range from 0.1 to 0.3 times 
the chondritic value, and chondrite-normalized REE 
patterns for both harzburgitic rock types are U-shaped, 
exhibiting positive MREE to HREE slopes and relative 
LREE enrichment [(La/Yb)N = 6.86 and 22.28, (La/Sm)N 
= 9.23 and 15.00; Fig. 5]. Normal harzburgite has lower 
REE concentrations compared to transitional harzburgite. 

Both samples are little affected by alteration pro-
cesses [Loss on ignition (L.O.I.) < 3.7 wt. %, Kapsiotis 
2009], thus implying that their REE contents are most 
likely undisturbed. Furthermore, the obtained U-shaped 
REE patterns are comparable to those reported from 
more or less serpentinized ultramafites (e.g., De Hoog 
et al. 2008).

9.	Discussion

9.1.	Interpretation of textural and bulk-rock 
REE data

The petrographic data show that the granular texture in 
normal harzburgite is a primary mantle feature, which 
indicates deformation at near-solidus or hyper-solidus 
temperatures (1 200 ºC; Nicolas 1989). In particular, the 

blocky-shaped orthopyroxene in normal harzburgite in 
the northern regions of the Ophiolite Complex (Voidolak-
kos and Rizo) is thought to represent a “mantle” fabric 
originating from asthenospheric flow in an upwelling 
mantle diapir (Rassios et al. 1994; Rassios and Moores 
2006; Rassios and Dilek 2009). This early high-temper-
ature fabric reflects the strain imposed on mantle rocks 
shortly after, and possibly concurrent, to partial melting 
(Rassios et al. 1994). On the other hand, the porphyro-
clastic texture in normal and transitional harzburgite (as 
well as the equigranular and mylonitic texture in dunite) 
indicates lower temperature ductile flow (700–900 ºC), 
presumably representing deformation within relatively 
cold lithospheric mantle (e.g., Dijkstra et al. 2002; Michi
bayashi 2009). Moreover, these rocks commonly contain 
deformed orthopyroxene crystals that display concave 
grain boundaries filled with olivine, suggesting melt–rock 
reactions that consumed pyroxene and precipitated oliv-
ine (e.g., Kelemen et al. 1995). 

On the basis of petrological data the Vourinos pe-
ridotites have traditionally been viewed as refractory 
residues produced by multi-stage partial melting of an 
initially undepleted mantle source (e.g., Beccaluva et al. 
2005; Saccani et al. 2008). However, this interpretation 
does not seem to explain sufficiently the formation of 
the harzburgites in the Voidolakkos district. In particu-
lar, the low MREE and HREE contents of the Vourinos 
harzburgites compared to undepleted mantle and Alpine 
lherzolites, confirm that they represent mantle residues 
(e.g., Godard et al. 2000; Takazawa et al. 2003; Zhou 
et al. 2005) after more than one melting episodes (e.g., 
Beccaluva et al. 2005; Saccani et al. 2008; Fig. 5), 
since the melting degree needed to cause such extreme 
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MREE–HREE depletion during a single melting event 
is geologically unattainable (Arai 1994a). However, the 
relative enrichment of some of the Voidolakkos harz-
burgites in LREE contradicts the operation of partial 
melting processes on their own (Kapsiotis et al. 2009). 
The U-shaped REE patterns are rather attributable to 
interaction between an already depleted peridotite and 
hydrous boninitic melt (e.g., Kelemen et al. 1992; Suhr 
et al. 1998; Zhou et al. 2005; De Hoog et al. 2008; 
Uysal et al. 2012), as it is the case for Alpine harzbur-
gites (Li 1992) and peridotites from Leg 125 (Parkinson 
et al. 1992; Fig. 5). It is likely that the added melt had 
an external mantle source since depleted harzburgites 
can only produce low-LREE liquids (De Hoog et al. 
2008), which precludes any possibility for the trapped 
melt to have a residual origin. 

The same metasomatic agent could have affected 
both normal and transitional harzburgite as is indicated 
by their parallel U-shaped normalized REE patterns. In 
addition, transitional harzburgite is characterized by total 
LREE abundances higher than in the normal harzbur-
gite (e.g., Kapsiotis et al. 2009). Normally lower LREE 
abundances are expected in peridotites of more refractory 
nature. Such an inconsistency is commonly attributed to 
chromatographic effects during diffuse porous flow of 
LREE-enriched melts through (reactive) harzburgites, 
where the more incompatible elements travel faster 
through the melting column (Navon and Stopler 1987; 
Xu et al. 2003). It also provides evidence that the melt 
percolated through transitional harzburgite first and then 
proceeded to normal harzburgite. Boninite–harzbur-
gite interaction did not significantly perturb the mineral 
modes or whole-rock compositions (cryptic metasoma-
tism) perhaps due to low melt/rock ratio at that stage of 
diffuse porous melt flow through harzburgites. Based on 
pyroxene geothermometry data, Vils et al. (2005) also 
assumed an invasion of a mafic melt in the Vourinos 
harzburgites to having been responsible for a cryptic 
metasomatic event (Bizimis et al. 2000).

Since clinopyroxene is the main repository for REE 
in spinel peridotites (Wiechert et al. 1997) their bulk-
rock REE patterns should bear resemblance to those of 
clinopyroxene. LREE-enriched clinopyroxenes are com-
monly found in mantle peridotites and are interpreted as 
a result of metasomatism (e.g., Godard et al. 2000; Xu et 
al. 2003; Ntaflos et al. 2007; Tamura et al. 2008). How-
ever, the examined sample of normal harzburgite lacks 
clinopyroxene, whereas transitional harzburgite sample 
contains only traces of deformed residual clinopyroxene. 
Generally, clinopyroxene is only a minor constituent in 
the Vourinos harzburgitic rocks; therefore it is supposed 
that their local LREE enrichment may be due to the in-
terstitial entrapment of LREE-enriched melts (Bizimis et 
al. 2000; Kapsiotis et al. 2009). 

9.2.	Interpretation of chromian spinel data

The composition of accessory spinel in peridotites is re-
garded as a useful tool for revealing melting processes in 
mantle (e.g., Okamura et al. 2006; Uysal et al. 2007). It is 
also known that Al content of spinel is sensitive to mantle 
melting processes and that systematically decreases with 
the degree of peridotite depletion (e.g., Zhou et al. 2005; 
Uysal et al. 2012). Based on this criterion it is deduced 
that the Vourinos peridotites (except for fine-grained 
dunite) were produced by variable degrees of mantle 
melting. The Cr# is lower in chromian spinel from the 
harzburgitic rocks compared to that in chromian spinel 
from coarse-grained dunite; therefore the latter should 
represent a mantle residue resulting from higher melting 
degrees. 

The Cr# and Mg# of some anhedral chromian spinels 
from granular normal harzburgite falls on the intersection 
of the fields of spinels from modern abyssal and fore-arc 
peridotites (Fig. 3). The hybrid petrogenetic character of 
these chromian spinels indicates that granular textured 
normal harzburgite probably formed by a two-stage melt-
ing process in different geotectonic regimes.

Compared to chromian spinel from the porphyroclas-
tic normal harzburgite, that from the granular normal 
harzburgite has higher Mg#. This difference may be 
attributed to distinct deformation processes by which 
the harzburgitic rocks have been affected. Deforma-
tion of porphyroclastic normal harzburgite under cold 
lithospheric conditions may have been responsible for 
the input of Fe2+ in chromian spinel structure thus low-
ering its Mg# (Ozawa 1989). Additionally, the lower 
Mg# values in chromian spinel from porphyroclastic 
normal harzburgite may be ascribed to spinel–pyroxene 
equilibration, which is also characterized by an increase 
of Fe2+ content in spinel (Bédard and Hébert 1998). Fur-
thermore, according to Okamura et al. (2006) the low 
Mg# of spinel from depleted harzburgite and dunite may 
have resulted from cooling exclusively in the fore-arc 
mantle wedge by H2O released from the subducted slab. 
Although deformation seems to have controled differ-
ences in chromian spinel composition, it is suggested 
that a combination of the above mentioned processes 
may account for the low Mg# values of chromian spinel 
from porphyroclastic normal harzburgite, transitional 
harzburgite and coarse-grained dunite.

Chromian spinel from these three rock types plots 
in the field of spinel from fore-arc peridotites (Fig. 3), 
forming a continuous trend of negatively correlated Cr# 
and Mg# values, suggesting that these rocks were formed 
by different degrees of partial melting. This is in accor-
dance with the commonly observed linear covariation 
between Cr# and Mg# in residual spinels from abyssal 
or arc peridotites (e.g., Ahmed et al. 2001; Zhou et al. 
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burgite). The Cr# of the melt remained high because of 
combined volume decrease and selective dissolution of 
orthopyroxene remnants in transitional harzburgite and 
coarse-grained dunite. 

9.3.	Synthesis and geotectonic implications

Overall data show that the Vourinos mantle suite initially 
most likely evolved as an upwelling asthenospheric diapir 
under a mid-ocean spreading center that was afterward 
entrapped in the mantle wedge above a subduction zone. 
In particular, the studied peridotites resemble fore-arc 
peridotites containing accessory spinels with elevated 
Cr# (up to 0.80, e.g., Arai 1994b; Ohara and Ishii 1998; 
Ahmed and Arai 2002; Murray 2007). Granular normal 
harzburgites containing blocky pyroxene and low Cr# 
(< 0.60) anhedral chromian spinel are considered to be 
residual after a first-stage melting episode of a fertile 
peridotite under a mid-ocean spreading center. The gen-
erally low REE abundances in the studied peridotites are 
considered to have resulted from H2O assisted re-melting 
of a mantle wedge, which did not undergo any other sig-
nificant enrichment by fluids except for H2O (Beccaluva 
et al. 2005). Water is known to be present in the mantle 
wedge above supra-subduction zones (e.g., Ahmed and 
Arai 2002; Andal et al. 2005; Uysal et al. 2005). Spe-
cifically, in a fore-arc geotectonic regime both water and 
depleted mantle are available, thus providing the ideal 
conditions for the formation of boninitic melts (e.g., 
Crawford et al. 1989; Pearce et al. 2000; Khalil and Azer 
2008). Boninite release from the Vourinos mantle is sup-
ported by the U-shaped normalized REE patterns of the 
harzburgitic rocks and elevated Cr# values of chromian 
spinel. In the fore-arc region peridotites are commonly 
affected by a combination of processes including partial 
melting and metasomatism, as it is the case for the in-
vestigated peridotites.

10.  Conclusions

Normal harzburgite and coarse-grained dunite make up 
most of the Vourinos mantle suite, whereas transitional 
harzburgite and fine-grained dunite may locally also 
occur, the latter in contact with chromitites. Chromian 
spinel is anhedral in normal harzburgite, but turns to be 
more euhedral in all other peridotite types. Chromian 
spinel is characterized by increasing Cr# values from 
normal harzburgite to coarse-grained dunite, which dis-
plays evidence for a multi-stage melting in the Vourinos 
mantle. Chromian spinel in fine-grained dunite bears 
compositional similarities with the same mineral from 
the adjacent chromitites, which further indicates their 
co-genetic origin from a reactive boninitic melt. After 

2005). However, the systematic changes of chromian 
spinel morphology from normal harzburgite to coarse-
grained dunite are not in favor of partial melting pro-
cesses. Moreover, mantle peridotites containing spinels 
with high Cr# (> 0.70) are expected to derive from high 
degrees of partial melting yielding pyroxene-free dunites 
(Uysal et al. 2012). In contrast, some normal and transi-
tional harzburgite samples contain chromian spinel with 
Cr# > 0.70. This controversy combined with the pres-
ence of euhedral chromian spinel grains in transitional 
harzburgite and coarse-grained dunite, reflects probably 
an involvement of melt–rock reaction processes in their 
formation (Godard et al. 2008). The presence of TiO2-
enriched chromian spinels in these peridotites also sup-
ports an influence by spinel addition processes. Normally, 
Cr# in spinel is expected to increase, whereas TiO2 should 
decrease as the degree of peridotite depletion rises (e.g., 
Zhou et al. 2005; Uysal et al. 2007; Delavari et al. 2009). 

Furthermore, the formation of dunite in many ophio-
lite mantle sections is thought to represent the result of 
interaction between infiltrating melts and peridotites, 
which leads to incongruent pyroxene dissolution and 
precipitation of olivine and spinel (e.g., Dai et al. 
2011). The present data show that transitional harzbur-
gite may represent the wall-rock of such an interaction 
zone and that coarse-grained dunite could have served 
as “channels” for melt percolation (e.g., Kelemen et 
al. 1995).

During mantle melting, related to melt–rock reaction, 
and the formation of olivine-rich residues, Cr behaves 
incompatibly, becoming sufficiently concentrated in 
the melt to crystallize podiform chromitites through 
melt–rock reaction and magma mixing (e.g., Matveev 
and Ballhaus 2002; O’Driscoll et al. 2012). Chromitite 
masses hosted in the studied peridotites have formed 
from influxes of boninite melt in the Vourinos depleted 
mantle (Kapsiotis 2009; Grammatikopoulos et al. 2011). 
Chromian spinel in fine-grained dunite bears resemblance 
in terms of Cr# and Mg# with the ore-hosted chromian 
spinel (Fig. 3). Since any effects of rock recrystalliza-
tion and re-equilibration between spinel and olivine are 
expected to lower Mg# in spinel (Bédard and Hébert 
1998), a genetic linkage between chromitite and fine-
grained dunite must exist. It seems that after chromitite 
formation the volume of the melt decreased and started to 
crystallize solely olivine and minor chromian spinel, thus 
retaining Cr# and Mg# in chromian spinel at (nearly) the 
same values compared to those in chromian spinel from 
the neighboring chromitites, leading to the formation of 
fine-grained dunite. After fine-grained dunite formation, 
smaller volumes of melt could have impregnated the 
adjacent wall–rock peridotites and started modifying 
their accessory chromian spinels or even crystallizing 
new ones (in coarse-grained dunite and transitional harz
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chromitite and fine-grained dunite formation the rem-
nant melt could have invaded the adjacent peridotites to 
modify their chromian spinels or to crystallize new ones. 
The U-shaped REE patterns of the harzburgitic perido-
tites from the Voidolakkos district support their origin 
by interaction between an external metasomatic agent of 
boninitic affinity and depleted peridotites, most likely in 
a fore-arc setting.
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