Problems and challenges in detection of pre-Mesozoic maar volcanoes: example from the Principálek Volcano in the Permian Krkonoše Piedmont Basin

Jan VALENTA1*, Vladislav RAPPRICH2, Marcela STÁRKOVÁ2, Zuzana SKÁCELOVÁ2, Lucia FOJTÍKOVÁ1, František STANĚK1, Jan BALEK1

1 Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 41, 182 00 Prague 8, Czech Republic; valenta@irsm.cas.cz
2 Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic
*Corresponding author

The Permian pyroclastic deposits on the Principálek Hill SW of Vrchlabí (Czech Republic) were investigated by means of geological mapping and geophysics. The pyroclastic rocks are exposed in several small coherent outcrops, yet many interpretations are based on debris. The preserved textures enable reconstruction of eruptive styles. The volcanism started with phreatomagmatic eruptions documented by the fine-grained tuff with accretionary lapilli at the base. Subsequently, the activity changed to phreato-Strombolian/Surtseyan producing lapilli-tuffs and lapillistones. These events were followed by a Strombolian phase as evidenced by ill-sorted scoriaceous tuff-breccias with volcanic bombs. The uppermost unit consists of welded lava agglutinates and basaltic lavas suggesting a Hawaiian style of eruption. One of the basaltic feeder necks is exposed in a small abandoned quarry.

Geophysical surveys were carried out over the extent of pyroclastic deposits. These included gravimetry, magnetometry, and DC resistivity tomography. The magnetic data indicate the occurrence of basaltic dykes in the central part of the pyroclastic deposits. The DC tomography confirms the presence of dykes, enables estimation of the pyroclastic deposits thickness, and provides evidence for the size and position of the maar-diatreme. Gravity data yield an insignificant low associated with the diatreme, which is likely a product of low rock-density contrast between the diatreme and country rocks. We argue that this is due to short time gap between sedimentation and volcanic activity and also related to conjoint burial and diagenetic history of the diatreme and the surrounding country rocks.

Keywords: diatreme, geophysics, volcanology, Permian, Krkonoše Piedmont Basin, scoria cone

Received: 25 June 2013; accepted: 23 May 2014; handling editor: V. Babuška

1. Introduction

There are significantly fewer research articles on geophysical detection of Pre-Mesozoic volcanoes than those dealing with Tertiary and Quaternary ones, except surveys focused on detection of economically important kimberlite pipes (e.g., Macnae 1995; Sarma et al. 1999; Vasanthi and Mallick 2001; Cunion 2009; Kjarsgaard et al. 2009; Pettit 2009; La Terra and Menezes 2012). The often poor exposure and frequent post-emplacement alteration are among the most likely reasons for this situation.

Recently, the internal architecture and emplacement processes of Late Carboniferous to Early Permian basaltic diatremes into an extensive rift system in the northern Variscan foreland in the East Fife (Scotland) area was studied by Gernon et al. (2013). However, the architecture of these diatremes was based only on the field geological evidence without investigating the geophysical signature reflecting the inner structure of the diatremes.

Evidence of phreatomagmatic explosions were also found by Lorenz (1971) in the Permian of the Saar-Nahe Basin (Germany) and by Stárková et al. (2011) in the Levin volcanic field in the Krkonoše Piedmont Basin (Czech Republic). However, the authors did not attempt to visualise the subsurface volcanic structures, either.

The research and imaging of Tertiary and Quaternary maar volcanoes is often successfully carried out using various geophysical methods, mainly gravimetry and magnetics and, to a lesser extent, geoelectrical and seismic methods (e.g., Cassidy et al. 2007; Mrlina et al. 2009; Matthes et al. 2010; Gebhardt et al. 2011; Bolós et al. 2012; Schmidt et al. 2013). The gravimetry mostly relies on a density contrast between the diatreme and a country rock, as the material within the diatreme (“fluffed up” during eruption) has lower bulk density than the surrounding rocks. The magnetic method is capable of mapping rocks with contrasting magnetic susceptibility – e.g.
dykes and flows of basic lavas. The geoelectrical and seismic methods are usually slower to be carried out in the field and their imaging depth, in most cases, does not enable mapping of the whole volcanic structure. On the other hand, they offer more detailed and precise images of the subsurface.

2. Geological setting

Permian maar-diatreme volcano (named after the spot height Principálek SW of Vrchlabí – Figs 1–2) occurs in the northern part of the Late Paleozoic Krkonoše Piedmont Basin with volcano-sedimentary infill (Pešek 2001). The morphologically noticeable volcano is situated in the northern vicinity of the Lower Rotliegend; it forms a part of the so-called Levin Volcanic Field (Štárková et al. 2011). The Levin Volcanic Field consists of monogenetic basaltic volcanism products – phreato-Strombolian, Strombolian, and Hawaiian pyroclastic deposits and lava flows as well as pillow lavas. The rocks of the volcanic structure studied for this contribution are of the same basaltic character and, together with the other subvolcanic equivalents (sills, dykes), intruded sediments of the surrounding Lower Rotliegend (fluvial and lacustrine claystones, siltstones and fine-grained sandstones of the Prosečné Fm.). Apart from the Prosečné Fm. (with a thickness of c. 200–300 m), the majority of the feeder systems intruded the underlying Rotliegend – the Vrchlabí Fm. (up to 530 m thick) and the older Westphalian–Stephanian Semily Fm. (450 m). The total thickness of the sediments could be nearly 1300 m. According to Awdankiewicz (1999) and Ulrych et al. (2002), the igneous activity could have been related to extensional post-orogenic processes in the Central Variscides. Geissler et al. (2012) suggested, based on a teleseismic receiver-function study, a possibility of an orogenic delamination of the continental lithosphere leading to production of asthenospheric mantle-derived melts (e.g., Awdankiewicz 2007).
3. Methods

3.1. Geological mapping

The locality was discovered during the 1:10 000 geological mapping for a geological map on the scale 1:25 000 (Prouza et al., 2012) when indications of pyroclastic deposits with associated small occurrences of coherent volcanic rocks were found. The variety of observed pyroclastic rocks with associated remnants of lava flows suggested a complex eruptive history ranging from a maar-volcano phreato-magmatic eruption to Hawaiian style eruption. The aerial extent of individual types of pyroclastic rocks was determined by a field mapping based on several small outcrops and debris in tilled fields. The subsequent rock sampling and detailed optical petrography studies were carried out at the Czech Geological Survey.

3.2. Geophysical methods

The geological indications of possible presence of the maar volcanism needed further verification by finding the source diatreme. As geophysical methods are often successfully used for young volcanoes, we have also utilized them within the research of a possible Permian diatreme.

3.2.1. Gravimetry

The gravity was measured using the Scintrex CG-5 relative gravity meter on four profiles 1–4 (Fig. 2) with the step between measuring points of 30 m. The base station was situated roughly in the centre of the area and was reoccupied every 2–3 h to correct the measured data for an instrument drift.

Fig. 2 Detailed topographical map of the Principálek Hill and positions of individual measurements. The gravity profiles (1–4) are plotted with broken lines, DC tomography profiles (5–6) with solid lines and individual magnetic measurements as points. The map contains an additional grid of local Cartesian coordinates – the S-JTSK grid widely used in the Czech Republic utilized for mapping geophysical data in this study.
The gravity on individual stations was averaged for 60 s. Two or three of these readings were then averaged to form a gravity datum for each station. In case of unfavourable measuring conditions (wind, unstable ground), the number of individual gravity readings was increased and, before averaging, outliers were removed. In total, 111 gravity points were measured with the median error, based on repeated measurements, of 0.015 mGal. Heights were surveyed using the Leica TC1010 total station with accuracy of 5 cm.

The measured gravity data were first of all corrected for the instrument drift based on the repeated readings on the base station. The Bouguer anomalies were then calculated (Fig. 3), the density used for the Bouguer slab being 2.45 g/cm³. This density was derived following Nettleton (1939) and corresponds to densities of rock samples (Tab. 1) and also to densities reported for the Permo–Carboniferous sediments throughout the Bohemian Massif (Ibrmajer and Suk 1989). The overall accuracy of the Bouguer anomalies was 0.025 mGal.

3.2.2. Magnetometry

The ground magnetic survey was carried out on two parallel profiles running through the centre of the investigated area and on several additional short profiles (Fig. 2). The magnetic data were acquired using the portable proton magnetometer PGM-1 (SatisGeo, Ltd.) and were corrected for daily variations by repeated measurements on the base station. However, amplitudes of these variations were much lower than those of the registered magnetic anomaly. The measured magnetic field is shown in Fig. 4.

3.2.3. Resistivity tomography

The DC (Direct Current) resistivity tomography (also known as the ERT – electrical resistivity tomography) was measured on two profiles situated according to the results of potential methods (profiles 5 and 6 in Fig. 2). The data were obtained using the ARES resistivity system (GF Instruments, Ltd.) and electrode spacing along the profile was 5 m. The resistivity data were processed using the 2D inversion code Res2dInv by M. H. Loke (Loke and Barker 1996) during five iterations. Final RMS (Root Mean Square) error was relatively low – 7.0 % for profile 5 (Fig. 5) and 2.0 % for profile 6 (Fig. 6).

4. Results

4.1. Geological characteristics

Sequence of volcanic rocks cropping out in the SW vicinity of Vrchlabí (surroundings of the Principálek spot height) is morphologically conspicuous. Various types of pyroclastic rocks can be found on the surface, where they mostly cover coherent volcanic rocks. The base of the pyroclastic sequence consists of fine-grained tuff (Fig. 7a) with abundant accretionary lapilli (Fig. 7b; core-type predominating over rim-type accretionary lapilli) and their fragments up to 1 cm across. The fine-grained tuff crops out at the SE and E margins of the study area with an inferred maximum thickness of a few metres. Intense fragmentation combined with limited spatial extent suggests that

Tab. 1 Densities of rock samples from the Principálek Hill. The unusually low density of the basalt sample is due to its finely vesicular structure which is reflected in the high porosity. However, since the pores are closed and do not communicate, the porosity is underestimated. Hence the measured grain density is lower than the real grain density.

<table>
<thead>
<tr>
<th>sample</th>
<th>bulk density [kg/m³]</th>
<th>grain density [kg/m³]</th>
<th>porosity [vol. %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sandstone</td>
<td>2 412</td>
<td>2 596</td>
<td>7.10</td>
</tr>
<tr>
<td>mica-rich sandstone</td>
<td>2 457</td>
<td>2 684</td>
<td>8.44</td>
</tr>
<tr>
<td>scoria</td>
<td>2 041</td>
<td>2 645</td>
<td>22.83</td>
</tr>
<tr>
<td>scoriaceous lava</td>
<td>2 486</td>
<td>2 813</td>
<td>13.41</td>
</tr>
<tr>
<td>basalt (finely vesicular)</td>
<td>2 303</td>
<td>2 757</td>
<td>16.45</td>
</tr>
<tr>
<td>microgabbro</td>
<td>2 664</td>
<td>2 791</td>
<td>4.55</td>
</tr>
</tbody>
</table>
phreato-magmatic eruptions produced the fine-grained tuff. Locally, low-angle diagonal bedding can also be observed, which we interpret as an evidence of surge deposition accompanying the fall deposits.

The grain-size of tuff increases upwards forming transitions from lapilli-tuff to lapilli-stone. The lapilli-tuff is poorly sorted, matrix supported, and contains fragments of scoria as well as fragments of accretionary lapilli (Fig. 7c). Most of the juvenile fragments are hypocrystalline (palagonitized with phenocrysts of plagioclase up to 3 mm) and poorly vesiculated with scarce or no cuspatate rims (Fig. 7d) suggesting hydroclastic fragmentation and phreato-Strombolian or Surtseyan style of eruption. Therefore, we interpret these deposits as a transition to overlying planar-bedded poorly sorted scoriaceous lapilli-stone to tuff-breccia (Fig. 7e–g). The thickness of this unit does not exceed 50 m. The bedding dips some 10–15° to S–SE, conformably with the surrounding sedimentary sequences. Coarse-grained matrix encloses macroscopically apparent fragments of altered scoria (0.5 cm up to a few cm) and abundant spindle-shaped bombs consisting of fine-grained aphanitic, slightly vesicular mafic lava. The size of bombs reaches 30 cm. Many ash aggregates, cuspatate glass shards, palagonite frag-
ments, scarce isolated phenocrysts (mica and feldspar) and quartz xenocrysts can be observed microscopically in groundmass. Finer layers are dominated by matrix consisting of variable amounts of quartz, feldspar, ash aggregates and deformed accretionary lapilli, rarely also mica flakes and small lithic clasts (red claystones and

Fig. 5 The resistivity tomography section measured along profile 5 plotted together with gravity and magnetic data. The gravity data are taken from the gridded gravity field (Fig. 3). The first set, the measured magnetics, contains data measured directly along a curved profile close to profile 5. The second one, the interpolated magnetics, is taken from the gridded magnetic field (Fig. 4) along the course of profile 5.

Fig. 6 The resistivity tomography section along profile 6. The gravity data are taken from the gridded Bouguer gravity field (Fig. 3). The magnetic data were directly measured along this profile.
Fig. 7 Pyroclastic rocks of the Principálek Volcano: a – Outcrop of the fine-grained phreato-magmatic tuff on the eastern margin of Principálek Hill; b – Photomicrograph of core type accretionary lapilli surrounded by fragments of other accretionary lapilli in the fine-grained phreatomagmatic tuff (plane-polarized light, PPL); c – lapilli tuff containing abundant fragments of scoria and of accretionary lapilli (PPL); d – lapilli tuff containing poorly vesiculated fragments of hypocrystalline basaltic lava with plagioclase laths (PPL); e–f – blocks of scoriaceous lapilli tuff to lapilli breccia with chloritized (green) fragments of scoria, samples from the SW part of the hill (geological hammer is 30 cm long); g – irregular densely vesiculated scoria fragment in scoriaceous lapilli breccia (PPL).
The size of scoria fragments and also their frequency increases upwards. The scoria fragments are altered (chloritized) with plagioclase laths up to 0.5 mm long. The matrix contains abundant altered glass-shards and fragments of plagioclase crystals. Quartz xenocrysts occur rarely.
The entire sequence is capped by lava agglutinates (Fig. 8a–b) with a transition to fine-grained slightly porphyric olivine basalt to basaltic andesite lava (Fig. 8c–d). The lava agglutinates consist of welded lava shreds turning red through oxidation of scoria and highly vesiculated lava. Such deposits are characteristic of Hawaiian style eruptions of gas-poor magmas. Coherent basalts are also associated with a feeder neck exposed in the northeastern part of the locality.

There is a microgabbro sill (Fig. 8e–f) exposed some 500 m north of Principálek extending to the west. The medium- to coarse-grained microgabbro sill has an interstitial texture. The rock consists of plagioclase laths (up to 4 mm long), altered olivine, minor pyroxene, magnetite, and relatively abundant ilmenite. The sill is 30 m thick and inclined southwards. Although the textures (medium-grained interstitial and fine-grained porphyritic respectively) of microgabbro in the northern vicinity and lavas within the Principálek Volcano differ, their mineral composition (Prouza et al. 2012) suggests that these rocks might be of the same source. Therefore, we argue that the microgabbro sill could be associated with the feeder system of the Principálek Volcano.

4.2. Results of geophysical methods

The resulting map of Bouguer anomalies (Fig. 3) shows only a very short gravity range of c. 0.7 mGal. Due to this fact, the registered anomalies are only of low significance. The most distinct is the band of slightly increased values forming a W–E band in the middle of the area and a gravity minimum south of this band.

The density measurements on samples (Tab. 1) revealed surprisingly low density of the basalt sample (2 757 kg/m³ with a porosity of 16.45 %). This value is much lower than the usual 2 900–3 000 kg/m³ due to the finely vesicular texture of the sample where the pores only partly communicate. Hence, the traditional method of measuring density and porosity by immersing samples into liquid yields underestimated results. Nevertheless, the measured values imply that the basic dykes and veins saturated (at least partly) with ground water would have the density very close to that of the surrounding sandstones and most likely would not produce a significant gravity anomaly.

The measured magnetic field (Fig. 4) shows three major local anomalies (amplitudes of several hundreds of nT) and an area of small-scale local maxima (amplitudes usually lower than 50 nT) in the centre of the surveyed area. The geometry and structure of magnetic anomalies, namely the shape of negative pole, suggest that the volcanic eruptions most likely took place during the era of reversely oriented magnetic field. The prominent linear anomaly in the north is caused by the microgabbro dyke of roughly W–E direction forming a morphological ridge between the villages of Horní Branná and Valteřice (Fig. 1).

The three maxima in the SW part of the area are most likely associated with the feeder system of the Principálek Volcano. The resistivity cross-section along the profile 5 (Fig. 5) contains a vertical high-resistivity anomaly (more than 150 Ωm about the x-coordinate 250 m) which coincides with the magnetic maxima. Therefore, we interpret this anomaly as a basaltic feeder-dyke c. 20 m wide and with its top some 40 m below the surface (Fig. 9). This dyke is most likely responsible for, at least, two large magnetic maxima in this area. The dyke is roughly parallel to, and situated between, the gravimetric profiles 1 and 4.

Another prominent feature is the highly inhomogeneous top layer found within the resistivity profile 5 (Fig. 5). This layer is 30–40 m thick in the central part, located just on the top of the interpreted basaltic dyke. We interpret this as a layer of pyroclastic deposits – phreato-magmatic tuffs, phreato-Strombolian and Surtseyan lapilli-tuffs, Surtseyan scoriaceous tuff-breccias, and Hawaiian lava agglutinates (Fig. 9).

The resistivity profile 5 also reveals two low-resistivity slanted anomalies on its edges. The first, located in the SW, begins just beneath the pyroclastic deposit layer (x-coordinates 100–150 m) and is steeply inclined to the NE. The second lies on the NE edge of the profile (x-coordinates 460–500 m). However, only its small part is mapped by the profile; we suppose that much of it is out of the surveyed area. A similar anomaly could also be found on the resistivity profile 6 (Fig. 6) at x-coordinates 50–100 m. All of these anomalies are inclined to the area of abrupt changes in the magnetic field and highly heterogeneous resistivities – possible feeder system in the conduit with vent-breccia – and also a small gravity low (Figs 3–6). These facts lead us to interpret these low resistivity anomalies as diatreme breccia facies inclined towards the centre of the diatreme.

The gravity measurements did not provide easily interpretable data. The observed gravity low (Fig. 3, profiles 2 and 4) is insignificant in contrast to usually prominent gravity lows found when surveying young maar-diatreme volcanoes. Nevertheless, it still could represent a mass deficit caused by the maar eruption. Taking into account the expected low density contrast between the poorly consolidated sediments and a diatreme breccia created shortly after the sedimentation finished (see the next section for discussion) we could consider this gravity low to be caused by the diatreme breccia or scoria layers within the diatreme. This hypothesis is also supported by the resistivity profiles showing slanted low resistivity anomalies which are interpreted as diatreme facies and slightly increased
thickness of pyroclastic deposits in the area of gravity low.

The west end of profile 3 (Figs. 2–3) shows a local gravity high. With respect to the density measurements (Tab. 1), this could be caused by scoriaceous lava flows found by geological mapping in this area.

5. Discussion

The geophysical research of old maar-diattreme volcanoes could be substantially different from studies of Tertiary or Quaternary structures. The gravity method, which is often the workhorse in case of young volcanoes, did not fully fulfill the expectations. The eruption very likely took place soon after sedimentation and, therefore, penetrated poorly compacted heterogeneous and relatively coarse-grained continental sediments. The breccia filling the diatreme shared, until now, a similar burial and compaction history as the country rocks. Hence, there is a little contrast in the gravity field within and around the diatreme as the explosion in such poorly consolidated material likely did not substantially change the density of affected sediments. In other words, the density of loose sediments filling the diatreme did not significantly differ from that of unconsolidated sediments of the country rock and a possible subtle difference remained negligible or even decreased during subsequent diagenesis. Unfortunately, samples of breccia filling the diatreme that would support our hypothesis are inaccessible as no drilling through the Principálek Volcano has been carried out. Thus, our interpretation (Fig. 9) is based more on
The geological evidence could be used to reconstruct the evolution of the volcano (Fig. 10). Several different layers of pyroclastic rocks were found documenting the shift in the type of volcanism:

- The fine-grained tuff with accretion lapilli (Fig. 7b) at the base of the succession is interpreted as a product of phreatomagmatic activity. The occasional cross-bedding suggests the presence of pyroclastic surges.
- The overlying pyroclastic rocks – lapilli tuffs (Fig. 7c–d) – are viewed as products of phreato-Strombolian and Surtseyan eruptions on a transition from the early phreato-magmatic activity to the later Strombolian-style eruptions. Alternating layers of variable grain size could reflect changing influence of water on eruption pulses (phreato-Strombolian blasts).
- The overlying coarser pyroclastic succession represented predominantly by scoriaceous tuff breccias (Fig. 7e–g) with spindle-shaped bombs was likely associated with Strombolian activity.
- Finally, the Hawaiian fire fountain deposited shreds of lava and scoria which welded and agglutinated (Fig. 8a).

Based on the magnetic measurements, the later Strombolian to Hawaiian activity concentrated most likely to the SW and NW corners of the surveyed area, where several magnetic highs indicate the presence of basic dykes at depth. The area of supposed diatreme was transected with resistivity profiles 5 and 6. Profile 6 crossed the diatreme only along the southwesternmost edge; however, profile 5 encountered the whole width of the structure. The resistivity distribution shows inclined layers at the edges of the diatreme (possibly bedded diatreme facies – as also supported by the small gravity low at profiles 2 and 4); the basic dyke in the SW is covered with approximately 30–40 m of pyroclastic deposits.

The previously mentioned inhomogeneous topmost layer has two zones (x-coordinates 110–160 m and 310–350 m) of an increased resistivity (more than 300 Ωm). They could represent areas with high amounts of coarse material less prone to weathering, such as tuff-breccias or agglutinated lava shreds. These zones could indicate two remnants of the scoria and/or spatter cone(s) from the Strombolian and Hawaiian phases.

Fig. 10 Tentative evolution of the Principálek Volcano. The magma reaches water-saturated sediments and the volcanism starts with a phreato-magmatic eruption (a). At the second phase, the available water has been already used and the eruption type changes to the Strombolian (b). Finally, the Hawaiian fountain deposits lava and scoria (c).
6. Conclusions

Geophysical methods have successfully delineated the subsurface structure of a possible maar. In contrast to most of other maar-diatreme volcano studies, the DC resistivity method and magnetometry were proven the most useful. The usually successful gravity method failed here due to the unexpectedly low density contrast between the individual rock types.

The eruption styles of the studied volcano ranged from the phreato-magmatic to the purely magmatic. Geophysical models of the maar structure also correspond well to the interpretations of observed pyroclastic rocks inside the possible maar structure. These comprise deposits of phreato-magmatic eruption at the base, followed by coarse-grained lapilli-tuffs and lapillistones and tuff-breccias with volcanic bombs that document a shift to the Strombolian-style eruption. Finally, lava flows and agglomerates of small spatter cone document the Hawaiian-type eruption in the final phase of the volcano evolution.

The volcano studied developed in several eruptive episodes. The eruption style shifted from the phreato-magmatic via the Surtseyan and Strombolian events to the purely magmatic. An important part of the structure related to the diatreme eruption in the final phase of the volcano evolution. Anhydrite of basaltic dykes and microgabbro sill intruding sediments and pyroclastics.

The volcano studied developed in several eruptive episodes. The eruption style shifted from the phreato-magmatic via the Surtseyan and Strombolian events to the purely magmatic. An important part of the structure related to the diatreme eruption in the final phase of the volcano evolution. Anhydrite of basaltic dykes and microgabbro sill intruding sediments and pyroclastics.

The volcano studied developed in several eruptive episodes. The eruption style shifted from the phreato-magmatic via the Surtseyan and Strombolian events to the purely magmatic. An important part of the structure related to the diatreme eruption in the final phase of the volcano evolution. Anhydrite of basaltic dykes and microgabbro sill intruding sediments and pyroclastics.
NETTLETON LL (1939) Determination of density for reduction of gravimeter observations. Geophysics 4: 176–183


