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The Tseel Terrane in SW Mongolia contains abundant Devonian and Permian granitoid intrusions that formed during 
the evolution of the Central Asian Orogenic Belt (CAOB). The newly obtained SHRIMP zircon ages for three granitoid 
intrusions in the central part of the Tseel are all Permian, 281.3 ± 1.1 Ma, 279.1 ± 0.8 Ma and 278.0 ± 1.6 Ma (2σ). On 
the La/Gd vs. La diagram the granitoids are classified into two groups, whereby Group 1 has higher La concentrations 
and La/Gd ratios than Group 2. Although the number of dated samples is limited, Devonian and Permian ages are 
assumed for the Group 1 and 2, respectively. Group 1 shows enrichment in Large Ion Lithophile Elements, as well as 
negative anomalies for High Field Strength Elements such as Nb, Hf, and Zr in Primitive mantle-normalized spiderplots. 
This may indicate a contribution of slab-derived fluids to melting or anatexis of upper continental crust. The Group 2 
is poorer in Ba, Eu, Sr, Ti and LREE indicating fractionation of feldspar, ± Bt with Mnz and opaque mineral(s). These 
findings, combined with the results of previous petrological and chronological studies, suggest that the Devonian grani-
toids were generated by relatively deep melting, within garnet stability field; they were emplaced at mid-crustal levels, 
during regional high-T and low-P metamorphism. On the other hand, the Permian intrusions solidified from a highly 
fractionated melt, probably in a relatively shallow crust. 
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Paleozoic arc-related assemblages (Zonenshain et al. 
1975; Badarch et al. 2002) and fragments of ophiolites 
and serpentinite mélanges (Rippington et al. 2008).

The Tseel Terrane is located in SW Mongolia imme-
diately south of the MML (Fig. 1b), and it extends east–
west for more than 600 km. The Tseel Terrane is a high-T 
and low-P crustal segment of an early Paleozoic arc sys-
tem within the CAOB (Kozakov et al. 2002; Burenjargal 
et al. 2012, 2014; Jiang et al. 2012; Fig. 1). Burenjargal et 
al. (2014) proposed that two metamorphic events oc-
curred in the Tseel Terrane: the Silurian (450–400 Ma) 
high-P/low-T metamorphism, and the Devonian (377 ± 
30 Ma) low-P and high-T metamorphism. The later event 
suggests elevated geotherms during the Devonian caused 
by the ongoing intrusion of granitoid bodies and/or by 
radioactive heat production subsequent to the granitoid 
intrusions (Burenjargal et al. 2014). Previous studies have 
examined the petrology of metamorphic rocks and geo-
chronology of few granitoids in the Tseel area, whereas 
geochemical studies of the granitoids are lacking.

In this contribution, we investigate the age and geo-
chemistry of granitoids in the Tseel area in order to un-

1. Introduction

The Central Asian Orogenic Belt (CAOB) is one of the 
largest orogens worldwide, and extends from the Urals 
in the west through Kazakhstan, Mongolia, southern 
Siberia, northern China to the Okhotsk Sea in the east 
(Fig. 1a). The CAOB contains several high-temperature 
metamorphic zones associated with the intrusion of gran-
itoids (Kozakov et al. 2002; Wei et al. 2007; Windley et 
al. 2007; Burenjargal et al. 2014; Broussolle et al. 2015). 
The geochemical characteristics are of special importance 
for constraining the tectonic setting of these intrusions and 
their relations to the high-T/low-P metamorphism that oc-
curred during the evolution of the CAOB.

The immense region of Mongolia makes up much of 
the CAOB (Fig. 1a) and is subdivided into the northern 
and southern domains separated by the Main Mongo-
lian Lineament (MML; Fig. 1b). The northern domain 
contains many granitic plutons of various ages and 
compositions, occurring in association with Precambrian 
and Lower Paleozoic metamorphic rocks (Badarch et al. 
2002). The southern one is composed of middle to Late 
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derstand their nature and the tectonic setting of the Tseel 
Terrane. We present differences in geochemical charac-
teristics between Devonian and Permian granitoids, and 
discuss their relation to the metamorphic development 
of the Tseel area.

2. Geological setting

The CAOB extends from the Urals to the Pacific Ocean 
and from the Siberian and East European (Baltica) 
cratons to the North China (Sino–Korean) and Tarim 
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cratons (Şengör et al. 1993; Jahn et al. 2000; Windley et 
al. 2007). The CAOB was formed through the accretion 
of island arcs, ophiolites, oceanic islands, seamounts, ac-
cretionary wedges, and microcontinents at a convergent 
margin (e.g. Khain et al. 2002; Windley et al. 2007). The 
Tseel Terrane in SW Mongolia is characterized by high-
T metamorphism and abundance of granitoid intrusions 
(Kozakov et al. 2002; Burenjargal et al. 2012, 2014).

The Tseel area, which lies in the eastern block of the 
Tseel Terrane (Fig. 1b), is composed mainly of pelitic 
gneisses and amphibolites intruded by numerous granit-
oids (Figs 1c and 2). The rocks in this area mainly have 
an E–W striking foliation that locally curves around 
granitoid bodies (Fig. 1c). 

Four mineral zones have been identified in the Tseel 
area based on index minerals in the metapelites: garnet, 
staurolite, sillimanite, and cordierite (Fig. 1c; Burenjargal 
et al. 2014). The distribution of mineral zones is sym-
metrical about an E–W trending axis, with the high-grade 
sillimanite assemblages occurring along a central strip, 
and the grade decreasing to a sillimanite-absent biotite 
± garnet assemblage to the north and south (Fig. 1c). 
Petrological analyses of the pelitic gneisses in the Tseel 
area have revealed two metamorphic events: an earlier 
high-P and low-T metamorphism (kyanite stability field) 
and a later low-P and high-T metamorphism (sillimanite 
stability field) (Burenjargal et al. 2012, 2014). The former 
event is mainly recorded in the garnet zone, and the latter 
in the sillimanite and cordierite zones. The garnet in the 
staurolite zone preserves imprint of both metamorphic 
stages (Burenjargal et al. 2012, 2014). Granitoids are 
common in the sillimanite and cordierite zones, but rare 
in the garnet zone (Fig. 1c; fig. 14 of Burenjargal et al. 
2014). The sillimanite and staurolite zones of the Tseel 
area are cut by aluminosilicate-bearing quartz veins (Bu-
renjargal et al. 2012, 2014). These veins contain all three 
aluminosilicate polymorphs, which formed in the order of 
Ky → Sil → And (Burenjargal et al. 2012, 2014).

3. Analytical techniques

3.1. Whole-rock geochemistry

Major and trace elements were determined by ICP–AES 
and ICP–MS at the Graduate School of Environmental 
Studies, Tohoku University, Japan. Half a gram of 
each finely ground sample was treated with 10 ml of 
perchloric acid (HClO4) and nitric acid (HNO3) (1:1 
mixture), followed by a double treatment with 15 ml 
of HClO4 + hydrofluoric acid (HF) (1:2 mixture) in a 
polytetrafluoroethylene (PTFE) beaker on a hot plate. 
The residue was heated with 5 ml of HNO3 and dis-
solved by the addition of 30–50 ml of H2O with gentle 
boiling and finally made up to 100 ml. The final solu-
tions were stored in plastic bottles until measurement. 
After a 10–100× dilution, the acid digests were analyzed 
by ICP–MS for trace elements. Indium was used as an 
internal standard (Yamasaki 1996, 2000). The working 
standards were prepared from a series of SPEX Multi-
Element Plasma Standards (XSTC-1, XSTC-7, XSTC-8, 
and XSTC-13) supplied by SPEX Industries (New 
Jersey, USA). A quadrupole type ICP–MS, (HP-4500, 
Hewlett Packard, now Agilent Technologies, Palo Alto, 
CA, USA) was used for analyzing most of the trace ele-
ments (>0.1 mg kg–1 sample).

3.2. Zircon dating

The U–Pb dating of the samples was carried out using 
a SHRIMP II at the National Institute of Polar Research 
(NIPR), Japan. Zircon grains for SHRIMP analyses were 
separated from rock samples (about 500 g) using standard 
crushing, grinding, sieving, and heavy-liquid and mag-
netic separation techniques, followed by hand picking 
under a binocular microscope. We carried out magnetic 
separation twice with ferrite magnet and neodymium 
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Fig. 2 Field photographs of the rocks in the Tseel area. a – Granitoid intrusion at Tseel town and its contact with amphibolite. b – Granite interla-
yered with pelitic gneisses (AbQ – aluminosilicate-bearing quartz vein).
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magnet, respectively. Zircon grains isolated from each 
sample were mounted together with standards in an epoxy 
resin disc. After curing, the discs were polished to reveal 
the internal parts of the mounted grains. To investigate 
the internal structures of individual zircon crystals, 
backscattered electron (BSE) and cathodoluminescence 
(CL) images were obtained using a JEOL JSM-5900LV 
scanning electron microscope (SEM) housed at the NIPR. 
These images were then used as guides in choosing sites 
for analysis. Prior to analysis, the surfaces of each grain 
mount were washed with 2% HCl to remove any lead 
contamination (Amelin et al. 2003) and then coated with 
a thin (~100 Å) layer of gold. During analysis of zircon in 
polished grain mount, an O2− primary ion beam was used 
to sputter analytical spots of ∼20 µm in diameter. The 
procedures for Pb and U isotopic analyses of zircon fol-
lowed closely those outlined in Compston et al. (1984), 
Williams (1998), and Horie et al. (2006). In this study, 
TEMORA2 (206Pb/238U age = 416.8 Ma; Black et al. 2004) 
and SL13 (U concentration 238 ppm; Claoué-Long et al. 
1995) were used as calibration standard materials for the 
U–Pb analyses and concentration standard for U analysis, 

respectively. The U–Pb data were reduced in a manner 
similar to that described by Williams (1998), using the 
SQUID2 add-in for Microsoft Excel (Ludwig 2009). 
Common Pb was corrected on the basis of the measured 
204Pb content and the two-stage model of terrestrial 
Pb isotope evolution proposed by Stacey and Kramers 
(1975). Therefore, the individual SHRIMP U–Pb ages 
presented in this study are all calculated after this initial 
correction for common Pb, and the final pooled ages 
were then calculated using Isoplot/Ex software (Ludwig 
2008). The analytical uncertainty for individual SHRIMP 
analyses is reported at the 1σ level, and errors on final 
pooled ages are quoted at the 2σ level. 

4. Results

4.1. Petrology

In the Tseel area, granitoids intruded to pelitic gneisses 
and amphibolites. The granitoids are even grained,  and 
occur as large, kilometer-scale massive bodies or as lay-
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ers up to several meters thick (Fig. 2a–b). Their main 
constituents are (in vol. %): quartz (20–40), plagioclase 
(22–42), K-feldspar (10–18), biotite (4–14), minor 
garnet, amphibole and muscovite with accessory mag-
netite, zircon, apatite and monazite. Plagioclase forms 
subhedral crystals 0.6–0.8 mm across. K-feldspar occurs 
as anhedral grains, 0.5–1 mm in size, associated with 
quartz, plagioclase, biotite and muscovite. Biotite flakes 
are large, 0.3–0.5 mm in size. Garnet occurs as rare and 
small crystals up to 0.3 mm across.

4.2. Whole-rock geochemistry

Eleven granitoid samples were selected for major- and 
trace-element analyses. The localities of the analyzed 
samples in the Tseel area are shown in Fig. 1c.

4.2.1. major elements

The SiO2 contents of the granitoids range from 69.82 to 
75.73 wt. % (Tab. 1; Fig. 3). Harker diagrams reveal neg-
ative correlations between SiO2 and Al2O3, Fe2O3t, MgO, 
CaO, MnO, TiO2, and K2O (Fig. 3). The Na2O content 
is largely constant regardless the SiO2 value; the K2O/
Na2O ratio (by weight) shows a wide range from 0.16 to 
3.40 (Tab. 1). The Mg number [molar 100×MgO/(MgO 
+ FeOtotal)] ranges from 23.2 to 59.0 (Tab. 1). The total 
alkali–silica (TAS; Middlemost 1994) diagram indicates 
that all the granitoid samples are subalkaline granites 
(Fig. 4a). Except for sample M2605, which shows higher 
Al2O3 and lower K2O contents (Tab. 1), the granitoid 
samples yield Shand’s index {A/CNK, [molar Al2O3/(CaO 
+ Na2O + K2O)]} values of 0.93–1.22, and A/NK [molar 
Al2O3/(Na2O + K2O)] values of 1.21–1.52 (Fig. 4b). The 
felsic granitoids are poor in ferromagnesian elements and 
rich in alkalis in the AFM diagram, and thus cannot be 
used to decipher their calc-alkaline vs. tholeiitic character 
(Irvine and Baragar 1971) (Fig. 4c). 

4.2.2. trace elements

On the Y + Nb vs. Rb tectonic discriminant diagram 
(Pearce et al. 1984), almost all the granitoid samples 
plot in the volcanic-arc granite field (Fig. 5a), except for 
sample G1103 that falls in the within-plate granite field. 

On the La vs La/Gd diagram (Fig. 5b), the granitoid 
samples form two clusters: Group 1 is characterized by 
higher La and La/Gd compared to Group 2. 

The Y contents of the granitoid samples are less than 
25 ppm (Fig. 5c) and the Sr content ranges from 64 to 
531 ppm (Tab. 2). For Group 1 samples, the Sr/Y ratio 
broadly increases with decreasing Y contents (Fig. 5c), 
which results in a shift from the field for normal volcanic-
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arc rocks to the adakite field on the Y vs. Sr/Y diagram 
(e.g., Defant et al. 1991). Most of the Group 2 samples 
show lower Sr/Y ratios (< 10), only one has Sr/Y reach-
ing nearly 40. 

The REE (Fig. 6a, c) and a broader selection of trace 
elements (Fig. 6b, d) are presented in spider diagrams 
normalized to Primitive mantle (Sun and McDonough 
1989). Heavy rare-earth element (HREE) contents display 
large variations within each group, whereas light rare-
earth element (LREE) patterns are rather homogeneous. 
Group 1, however, shows higher LaN and steeper LREE 
gradients (Fig. 6a), in accord with its definition based on 
elevated La and La/Gd values (Fig. 5b). 

According to classification by Eby (1990) and Whalen 
et al. (1987), the high Mg-number and low value of Zr + 
Nb + Ce + Y (< 200 ppm; Tab. 2) in the studied samples 
indicates that they are not A-type granitoids, but S- or I-
type. It is difficult to determine the type of the analyzed 
granitoids (S- or I types), because they plot at around the 
boundary of metaluminous and peraluminous fields (Fig. 

4b; e.g., Chappell and White 1974). However, absence of 
inherited zircon in the analyzed samples, and high Na2O 
contents (>3.2 wt. % except for G0807) may suggest that 
these are I-type granites (e.g., Chappell and White 1974).

Group 1 granitoids are characterized by negative 
anomalies in Nb, Hf, Zr and Ti, and no anomalies in 
Ba, Sr and Eu (Fig. 6b). Group 2 granitoids have trace-
element characteristics similar to each other, except for 
sample M2605 (Fig. 6d). Most of the Group 2 granitoids 
show negative anomalies in Ba, Sr, Eu, Zr, Ti and LREE. 
Sample M2605 has negative anomaly in Hf and positive 
anomaly in Sr.

4.3. Zircon U–Pb dating of granitoids

Our previous work (Burenjargal et al. 2014) revealed 
that sample M2505, which belongs to Group 1, yielded 
a Devonian age (385 ± 7 Ma). In this study, three Group 
2 granitoid samples (G0709, G0903, and G0807) were 
selected for SHRIMP U–Pb zircon age dating. These 
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Tab. 2 Whole-rock trace-element (ppm) data from the Tseel area

Sample M2605 G1102 M2505 M2701 S0806 G1103 S0805 G1101 G0903 G0709 G0807
Rb 8.9 55.9 103 83.7 113 184 113 72.6 74.8 133 193
Ba 78.2 979 894 204 125 223 1166 724 271 242 243
Th 2.9 6.6 8.1 5.5 10.7 17.9 13.1 19.1 14.0 9.0 13.0
Nb 0.6 7.2 8.8 9.9 25.1 81.2 15.1 5.0 12.0 18.4 18.6
Sr 256 531 237 92.1 50.8 64.2 339 271 74.8 69.6 114
Hf 1.1 1.5 1.2 2.1 2.1 5.1 1.8 1.7 3.2 2.7 2.9
Zr 16.3 32.4 21.5 46.7 30.5 62.5 44.5 37.7 67.1 47.7 67.3
Y 6.2 8.0 5.2 11.2 8.2 9.8 15.0 21.0 8.9 10.0 24.7
La 8.9 22.1 25.2 9.2 9.9 11.4 29.0 38.4 10.5 9.2 9.4
Ce 18.6 44.5 46.0 23.6 21.8 26.7 67.3 74.3 22.3 20.4 23.6
Pr 2.2 4.5 4.3 2.8 2.6 3.4 6.7 8.0 2.6 2.4 2.7
Nd 8.7 15.8 13.8 11.3 9.1 12.3 23.7 27.0 10.5 9.4 11.0
Sm 2.1 2.6 2.0 2.8 2.4 4.5 4.1 5.2 2.9 2.5 3.1
Eu 0.9 0.8 0.6 0.4 0.3 0.4 0.8 0.9 0.5 0.4 0.6
Gd 1.9 2.0 1.2 2.6 2.0 2.8 3.3 4.1 2.5 2.1 3.2
Tb 0.3 0.3 0.2 0.4 0.3 0.4 0.5 0.6 0.4 0.3 0.6
Dy 1.5 1.5 1.0 2.7 1.5 2.2 2.9 3.5 1.9 2.1 3.9
Ho 0.2 0.3 0.1 0.5 0.3 0.4 0.6 0.8 0.3 0.4 0.9
Er 0.6 0.8 0.6 1.6 0.9 1.2 1.7 3.1 1.0 1.3 2.7
Tm 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.6 0.1 0.2 0.4
Yb 0.4 0.8 0.7 1.7 1.2 1.7 1.6 4.5 1.0 1.6 3.4
Lu 0.1 0.2 0.1 0.3 0.2 0.3 0.3 0.8 0.2 0.3 0.6
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samples were collected from a granitoid body (G0903; 
Fig. 1c) and from granitoid veins (G0709 and G0807) 
which are concordant with pelitic gneiss (Fig. 2b) in the 
sillimanite zone of the Tseel area (Fig. 1c). 

Representative cathodoluminescence (CL) images 
of zircons for dated samples are shown in Fig. 7. The 
granite samples contain large (>100 μm) euhedral zircon 
grains. Zircon grains show oscillatory zoning, character-
ized by alternation of bright and dark zones. The most 
zircon cores display bright CL, while the mantles and 
rims are CL-dark. 

The weighted mean age for granite G0709 (n = 20) is 
281.3 ± 1.1 Ma (2σ; MSWD = 1.3; Fig. 8a–b). The Th/U 
ratios range from 0.30 to 0.58 (Tab. 3). 

The weighted mean age for granite G0903 (n = 40) 
is 279.1 ± 0.8 Ma (MSWD = 1.3; Fig. 8c–d). The Th/U 
ratios of zircon range from 0.16 to 0.72. 

The weighted mean age for granite G0807 (n = 15) 
is 278.0 ± 1.6 Ma (MSWD = 0.95; Fig. 8e–f). The Th/U 
ratios of zircons range from 0.09 to 0.78. 

5. Discussion

5.1. contrasting geochemical features of the 
Devonian and Permian granitoids

The ages of granitoids in the Tseel Terrane range from 
580 to 270 Ma (Bibikova et al. 1992; Kozakov et al. 
2002; Demoux et al. 2009; Jiang et al. 2012; Buren-

jargal et al. 2014 and this work), with peaks in Middle 
Devonian (400–380 Ma) and Permian (277–282 Ma). 
However, it has been unclear so far how the geochemical 
characteristics of the granitoids vary with age. 

In this study, we analyzed the whole-rock composi-
tions of 11 granitoid samples from the Tseel area and 
identified two groups (Fig. 5b) with contrasting trace-
element characteristics (Fig. 6). Although only four 
samples were dated [one Devonian (Burenjargal et 
al. 2014), and three Permian granitoids in this work], 
the Devonian sample is classified into Group 1 and the 
three Permian samples belong to the Group 2. There-
fore, it is possible that the Group 1 and 2 granitoids 
formed in the Devonian and Permian, respectively. 
The Y + Nb vs. Rb discrimination diagram (Fig. 5a) 
indicates that for both the Devonian and Permian 
granitoids the melts (or their sources) formed in a 
volcanic-arc setting. 

The Devonian granitoids (Group 1) show nega-
tive anomalies in HFSE such as Nb, Hf, and Zr (Fig. 
6b), indicating a contribution by fluids derived from 
a subducting slab (e.g., Pearce et al. 2005) or melting 
of ordinary upper continental crust. The large range 
in HREE concentrations among the samples can be 
produced by the fractionation of garnet (e.g., Irving 
and Frey 1978; Ma et al. 2015), indicating that melting 
occurred at depths within the stability field of garnet. 
As a consequence of relatively deep melting, several 
analyses fall in the adakite field in a Sr/Y vs Y diagram 
(Fig. 5c) (Moyen 2009). 

The geochemistry of the Permian granitoids (Group 
2) is more evolved (see negative anomalies in Sr, Eu, Ba 
and Ti as well as depletion in LREE) than that of Group 
1, indicating fractionation of feldspars ± biotite, monazite 
and opaque phase(s).


Fig. 6 Chondrite-normalized REE plots (Boynton 1984) and trace-
-element spider diagrams normalized to Primitive mantle (Sun and 
McDonough 1989) for a, b – Group 1 and c, d – Group 2 granitoids.

282
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278
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G0903
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280
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282

Fig. 7 Representative cathodolumine-
scence images of zircon grains from 
the dated granites (samples G0709, 
G0903, and G0807). Scale bar is 200 
μm in all cases.
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5.2. tectonic implications 

Based on petrological analyses of 
the garnet-bearing pelitic gneiss, the 
estimates of metamorphic P–T condi-
tions in the Tseel Terrane are roughly 
divided into two groups: high-P and 
low-T (Grt and St zones), and low-P 
and high-T (St, Sil, and Crd zones) 
(Burenjargal et al. 2014). The high-P 
and low-T conditions are 520–570 °C 
and 4.5–7 kbar, in the kyanite sta-
bility field. The low-P and high-T 
conditions are 570–680 °C and 3–6 
kbar, in the sillimanite stability field 
(Fig. 9; Burenjargal et al. 2014). The 
textural relationships among the three 
aluminosilicate polymorphs (Ky–Sil–
And) in quartz veins reveal that they 
formed in the order of Ky → Sil → 
And (Burenjargal et al. 2012, 2014), 
which suggests a transition from 
high-P and low-T conditions to low-
P and high-T conditions (Burenjargal 
et al. 2012). Such an evolution has 
been also reported from the Chinese 
Altai (Wei et al. 2007), which is the 
eastward continuation of the Tseel 
Terrane.

The results of zircon age dating 
of the metapelites in the Tseel area 
revealed that the high-P and low-T 
metamorphism occurred at 450–400 
Ma and was followed by the low-P 
and high-T metamorphism at 377 ± 30 
Ma (Burenjargal et al. 2014). Based 
on the spatial correlation between 
granitoid distribution and peak tem-
perature distribution of pelitic gneiss-
es, Burenjargal et al. (2014) suggested 
that Devonian granitoids (385 ± 7 Ma) 
were the possible heat source respon-
sible for a high geothermal gradient 
at middle to upper crustal levels 
(10–20 km depth) during the Middle 
Devonian (377 ± 30 Ma) (Fig. 9). 
The signature of garnet fractionation 
in the Devonian granitoids (i.e., the 
HREE trends in Fig. 6a) is consistent 
with the deep source of the granitic 
melts, which could have heated the 
surrounding pelitic gneisses.

Given the negative anomalies of 
Nb, Hf, Zr and Ti (Fig. 6b), the pa-
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rental magmas could have been produced in a 
subduction zone setting, catalyzed by slab-derived 
fluids, or by melting of upper continental crust. In 
contrast, the ~280 Ma Permian granitoids, includ-
ing the bodies analyzed in this study (Figs 1c, 8), 
were emplaced after the main metamorphic events 
(Fig. 9). The P–T evolution and its relation to the 
granitoid bodies of the Tseel Terrane (Fig. 9) shows 
similarity to those during the crustal evolution of 
the other orogenic belts, including the Hercynian 
crustal section in the Serre Massif, in the southern 
Italy (e.g., Angi et al. 2010).

In summary, high-P and low-T metapelitic rocks 
of the Tseel area occurred in close relationship to 
Devonian granitic magmatism, perhaps in a subduc-
tion zone setting. Consequently, the conditions of 
metamorphism in the area changed from high-P and 
low-T (450–400 Ma) to low-P and high-T (377 ± 30 
Ma) (Burenjargal et al. 2014). The Permian granit-
oids intruded after the low-P and high-T regional 
metamorphism.

6. Conclusions

We documented the geochemical characteristics of 
Devonian and Permian granitoids in the Tseel area 
of the Tseel Terrane, SW Mongolia. Presented are 
three new Permian (281–271 Ma) zircon SHRIMP 
ages for granitoids in the central part of the Tseel 
area. In spite of the differences in age, the studied 
granitoids all share a geochemical signature of arc-
related magmatism. On the La–La/Gd diagram, the 
11 granitoid samples are classified into two groups. 
The Primitive-mantle normalized spiderplots for 
Devonian granitoid samples (Group 1) are charac-
terized by negative anomalies in Nb, Hf, Zr and Ti, 
indicating the contribution of slab-derived fluids 
or melting of upper continental crust. In contrast, 
Group 2, which includes all the Permian samples, 
shows negative anomalies in Ba, Sr, and Eu, docu-
menting fractionation of feldspars with or without, 
biotite. The depletion in LREE and Ti in addition 
underlines the importance of monazite and opaque 
mineral(s) fractionation. 

These features, combined with the results of 
previous petrological and geochronological studies 
of the pelitic gneisses, suggest that the Devonian 
granitoids intruded into the middle crustal levels, re-
sulting in regional high-temperature metamorphism, 
whereas the Permian granitoids were emplaced at 
relatively shallower levels, after the main metamor-
phic events. 
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