Original paper

Textural and compositional evidence for a polyphase saturation of tourmaline in granitic rocks from the Třebíč Pluton (Bohemian Massif)

David BURIÁNEK1,2*, Zdeněk DOLNÍČEK3, Milan NOVÁK1

1 Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; david.burianek@geology.cz
2 Czech Geological Survey, Leitnerova 22, 602 00 Brno, Czech Republic
3 Department of Geology, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
*Corresponding author

Crystallization of granite melts produced several textural types of granites and pegmatites in the Třebíč Pluton: dykes of volumetrically dominant muscovite–biotite granite (MBG) locally containing tourmaline nodules with leucocratic halos, minor oval pods to dykes of tourmaline granite and veins of tourmaline pegmatite, both enclosed in the MBG. An aplastic zone with comb textures, locally developed in MBG along the contact with surrounding durbachites, suggests high degree of undercooling. Evidence for polyphase saturation of tourmaline was observed within MBG and related granitic rocks including the following textural and compositional types of tourmaline: (i) nodules surrounded by leucocratic halos; (ii) euhedral to subhedral grains randomly distributed within tourmaline granite and tourmaline–quartz accumulations with leucocratic halos in the marginal part of granite dykes; (iii) rare columnar crystals of black tourmaline occurring locally in central parts of pegmatite; (iv) dravite-rich rims and late dravite veinlets in tourmaline grains from nodules, suggesting crystallization from hydrothermal fluids in the system open to host rocks as supported also by fluid inclusions study.

The dominant substitutions in tourmaline include Fe Mg–1, XNaYR2+W F X Y Al–1 WOH–1 and YR2+WO Y Al–1 WOH–1. Based on zircon and monazite thermometry, near-solidus temperatures of c. 700–660 °C and 680–640 °C were estimated for the central part of the MBG dykes and the volatile-rich tourmaline granite, respectively.

Keywords: tourmaline, chemical composition, granite, pegmatite, magma evolution, fluid inclusions

Received: 14 March, 2016; accepted: 15 December, 2016; handling editor: J. Žák

1. Introduction

Strongly peraluminous granites generated by partial melting of metasedimentary rocks typically contain elevated contents of boron (e.g. Greenfield et al. 1996, 1998; Trumbull et al. 2008). Tourmalines occur in peraluminous granite–pegmatite systems as disseminated and nodular in granites, or a wide spectrum of textural and compositional types in granitic pegmatites and associated quartz veins (e.g. Sinclair and Richardson 1992; Rozendaal and Bruwer 1995; London et al. 1996; Pesquera et al. 2013). The progressive cooling and fractional crystallization of a B-bearing granitic melt may produce two conjugate melts, a B–H2O-poor peraluminous melt, and a B-rich melt (e.g. Thomas et al. 2003; Perugini and Poli 2007), or an immiscible, B-rich aqueous fluid phase (e.g. Sinclair and Richardson 1992; Rozendaal and Bruwer 1995). Such immiscible volatile-rich melts and/or hydrous fluids can be separated during late stages of peraluminous melt evolution to produce various tourmaline-bearing rocks (Veksler et al. 2002; Thomas et al. 2003; Bačík et al. 2013).

Tourmaline from granitic rocks has been routinely examined in the Bohemian Massif (e.g., Němec 1975; Holub et al. 1981; Povondra 1981; Povondra et al. 1998; Buriánek and Novák, 2004, 2007). Detailed studies of distinct textural, compositional and paragenetic types of this mineral from texturally variable dykes of nodular tourmaline granites in the Třebíč Pluton (Buriánek and Novák 2004, 2007) provide an insight on the mechanism controlling the behavior of B during crystallization of granite melt. The studied granitic rocks are excellent examples of tourmaline textures variability and document several stages of granite evolution, from magmatic to hydrothermal.

2. Geological setting

The Moldanubian Zone, the highly metamorphosed core of the Bohemian Massif, represents a crustal (and upper mantle) tectonic collage assembled during the Variscan Orogeny and modified by several events of superimposed deformations and high- to low-grade metamorphism. The following two main units were defined (e.g. Schulmann et al. 2009 and references therein).

The mid-crustal Drosendorf Unit mainly consists of sillimanite–biotite–cordierite migmatites and para-
gneisses with variable intercalations of amphibolites, marbles, calc-silicate rocks, graphitic gneisses, quartzites and orthogneisses. The lower-crustal/upper-mantle Gföhl Unit is dominated by felsic orthogneisses to migmatites and migmatized biotite paragneisses. They are typically associated with amphibolites, HP felsic granulites and minor pyroxene granulites accompanied by variably sized bodies of spinel/pyrope peridotites and eclogites.

The Variscan tectonometamorphic history of the Moldanubian Zone was marked by an extensive igneous activity from Late Devonian to Permian (see Holub et al. 1995; Finger et al. 1997, 2007; Breiter 2010; Žák et al. 2014). This magmatism included (ultra-) potassic, magnesium-rich quartz syenitic to melagranitic plutons (durbachites), which were emplaced into medium- to high-grade metamorphic rocks of the Gföhl Unit at upper-crustal levels (~2–4 kbar) (Novák and Houzar 1996; Houzar and Novák 2006; Leichmann et al. 2017) at 341.6 ± 2.8 Ma (U–Pb SHRIMP on zircon: Kusiak et al. 2010) or 334.8 ± 3.2 Ma (conventional U–Pb on zircon: Kotková et al. 2010). The bulk-rock compositions in the Třebíč Pluton are metaluminous (A/CNK = 0.85–0.93) with high concentrations of K₂O (5.2–6.5 wt. %), MgO (3.3–10.4 wt. %) and P₂O₅ (0.47–0.98 wt. %) as well as high K/Rb ratios (133–171). The high Cr, Ni and mg#, along with striking enrichments in U, Th, LREE (Light Rare Earth Elements) and LILE (Large-Ion Lithophile Elements), depletion in HFSE (High Field Strength Elements) and crustal-like Sr–Nd isotopic compositions, suggest an origin from anomalously enriched mantle domains (Holub 1997; Wenzel et al. 1997) perhaps contaminated by the deeply

The Třebíč Pluton (Fig. 1) represents one of these ultrapotassic bodies. It is composed of amphibole–biotite (quartz) melasyenites to melagranites (durbachites), which were emplaced into medium- to high-grade metamorphic rocks of the Gföhl Unit at upper-crustal levels (~2–4 kbar) (Novák and Houzar 1996; Houzar and Novák 2006; Leichmann et al. 2017) at 341.6 ± 2.8 Ma (U–Pb SHRIMP on zircon: Kusiak et al. 2010) or 334.8 ± 3.2 Ma (conventional U–Pb on zircon: Kotková et al. 2010). The bulk-rock compositions in the Třebíč Pluton are metaluminous (A/CNK = 0.85–0.93) with high concentrations of K₂O (5.2–6.5 wt. %), MgO (3.3–10.4 wt. %) and P₂O₅ (0.47–0.98 wt. %) as well as high K/Rb ratios (133–171). The high Cr, Ni and mg#, along with striking enrichments in U, Th, LREE (Light Rare Earth Elements) and LILE (Large-Ion Lithophile Elements), depletion in HFSE (High Field Strength Elements) and crustal-like Sr–Nd isotopic compositions, suggest an origin from anomalously enriched mantle domains (Holub 1997; Wenzel et al. 1997) perhaps contaminated by the deeply

![Geological sketch map of the Třebíč Pluton with the sample locations (modified after Bubeníček 1968). Grey rectangle in the inset map shows location of the area of interest within the Czech Republic and Bohemian Massif. Detailed informations about the samples are shown in Tab. 1.](image-url)
A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

subducted mature crust (Janoušek and Holub 2007; Lexa et al. 2011).

Small intrusive bodies of subaluminous to slightly peraluminous leucogranites commonly with quartz–tourmaline nodules are spatially related to the durbachitic plutons (Třebíč, Čertovo břemeno and Mehelník intrusions; Němec 1975; Buriánek and Novák 2007) intruding durbachites and host migmatized biotite–sillimanite paragneiss (Novák et al. 1997; Buriánek andNovák 2003, 2004, 2007). The granite that crops out near the village of Lavičky is a typical example of such a peraluminous body (Novák et al. 1997; Buriánek andNovák 2003, 2004, 2007; Jiang et al. 2003; Marschall and Ludwig 2006). It is cut by a steeply-dipping pegmatite dyke (Pl + Qtz + KFs + Mu + Bt), up to 30 cm thick, with simply zoned internal structure and minor tourmaline (Al-rich schorl) with accessory fluorapatite and allanite (Novák et al. 1997).

Numerous intragranitic pegmatites (Pl + Qtz + KFs + Bt) in the Třebíč Pluton contain minor to accessory actinolitic amphibole, allanite-(Ce), ilmenite, titanite, and black tourmaline (dravite to schorl) along with a wide spectrum of accessory minerals, i.e. aegirine and euhedral-group minerals, beryl, niobian rutile, titanite, and zircon in the most evolved dykes (Škoda et al. 2006; Škoda and Novák 2007; Novák and Filip 2010; Novák et al. 2011; Čopjaková et al. 2013, 2015; Zachař and Škoda and Novák 2007). The granite that crops out near the village of Lavičky is a typical example of such a peraluminous body (Novák et al. 1997; Buriánek and Novák 2003, 2004, 2007; Jiang et al. 2003; Marschall and Ludwig 2006). It is cut by a steeply-dipping pegmatite dyke (Pl + Qtz + KFs + Mu + Bt), up to 30 cm thick, with simply zoned internal structure and minor tourmaline (Al-rich schorl) with accessory fluorapatite and allanite (Novák et al. 1997).

Numerous intragranitic pegmatites (Pl + Qtz + KFs + Bt) in the Třebíč Pluton contain minor to accessory actinolitic amphibole, allanite-(Ce), ilmenite, titanite, and black tourmaline (dravite to schorl) along with a wide spectrum of accessory minerals, i.e. aegirine and euhedral-group minerals, beryl, niobian rutile, titanite, and zircon in the most evolved dykes (Škoda et al. 2006; Škoda and Novák 2007; Novák and Filip 2010; Novák et al. 2011; Čopjaková et al. 2013, 2015; Zachař and Novák 2013). The pegmatites form small nests to dykes, up to 2 m thick, commonly with transitional contacts to the host durbachite. They evidently differ from the dykes of peraluminous nodular granites by the absence of primary muscovite, high X_{mb} in biotite, low contents of P in feldspars and tourmaline composition (Ca, Ti-rich Al-poor dravite–schorl; Škoda et al. 2006; Novák et al. 2011). The $\delta^{18}B$ signature of tourmalines from these intragranitic pegmatites ($\delta^{18}B = -13.5 \text{ to } -14.6 \%$), from the pegmatite cutting the Lavičky granite ($\delta^{18}B = -11.9 \%$) and from tourmaline nodules in the Lavičky granite ($\delta^{18}B = -10.8 \%$; Marschall and Ludwig 2006; Miková et al. 2010) are typical of granitic pegmatites and granites (Marschall and Jiang 2011).

3. Analytical methods

Chemical analyses of minerals were obtained using a Cameca SX-100 electron microprobe at the Joint Laboratory of the Department of Geological Sciences, Faculty of Science, Masaryk University in Brno and the Czech Geological Survey, Brno. The measurements were carried out in a wave-dispersion mode under the following conditions: acceleration voltage of 15 kV, beam diameter of 5 µm and probe current of 30 nA. The integration time was 20 s and the standards employed (K_{un} lines) were: augite (Si, Mg), orthoclase (K), jadeite (Na), chromite (Cr), almandine (Al), andradite (Fe, Ca), rhodonite (Mn) and TiO$_2$ (Ti). Data were reduced on-line using the PAP routine procedure (Pouchou and Pichoir 1985). Crystal-chemical formulae of tourmaline were calculated based on the general formula $XYZT_{O_{16}}(BO_3)\cdot V\cdot W$, where $X = \text{Na, Ca, vacancies}; Y = \text{Fe, Mg, Mn, Ti}; A1; Z = \text{Al}; T = \text{Si}; A1; B = B; V + W = OH + F + 4$, normalized on 31 (O,OH,F) apfu, assuming the Z-site is fully occupied by Al, Fe$_{eq}$ as FeO and no Li (Henry et al. 2011). Mineral abbreviations given in text, figures and tables have been taken from Whitney and Evans (2010).

About 3–4 kg samples (Tab. 1) were crushed (by steel jaw crushe) and homogenized in an agate planetary ball mill for the whole-rock chemical analyses. Major and trace elements were determined at Acme Analytical Laboratories, Ltd., Vancouver, Canada. Major oxides and trace elements were analyzed by the ICP-OES method. Loss on ignition (LOI) was calculated from the weight difference after the ignition at 1000°C. The rare earth and other trace elements were analysed by ICP-MS following LiBO$_2$ fusion (analytic code: A4B4 – major oxides, Ba, Be, Co, Cr, Cs, Ga, Hf, Nb, Ni, Rb, Sc, Sr, Ta, Th, U, V, W, Y, Zr, REE; 1DX – Ag, As, Au, Bi, Cd, Cu, Hg, Ho, Mo, Ni, Pb, Sb, Se, TI, Zn; 2ALeco – Ctot, Stot; for analytical details, reproducibility, and detection limits see http://acmelab.com). Geochemical data were handled and plotted using the GCDkit software package (Janoušek et al. 2006).

Oxygen isotope measurements were performed using a Finnigan MAT 251 mass spectrometer at the Activation Laboratories in Ancaster, Canada. Silicates were reacted with BrF$_5$ at ~650°C in nickel bombs following the procedures described in Clayton and Mayeda (1963). Oxygen released in this way was subsequently converted to CO$_2$ using a hot C rod. All $\delta^{18}O$ values are expressed relative to the standard mean ocean water (SMOW); external reproducibility is ± 0.19 % (1σ).

Fluid inclusions (FI) have been petrographically and microthermometrically studied in standard doubly polished plates. Individual genetic types of FI were recognized according to the criteria of Roedder (1984) and Shepherd et al. (1985). Microthermometric parameters were obtained using a Linkam THMSG 600 heating–freezing stage mounted on an Olympus BX-51 microscope (Department of Geology, Palacky University in Olomouc). The stage was calibrated using inorganic standards and fluid inclusions with known phase transition temperatures. The following parameters were measured: initial melting temperature (Te), melting temperature of the last ice (Tm-ice), melting temperature of clathrate (Tm-cla) and temperature of total homogenization (Th-tot). Interpretation of the microthermometric data (composition, densities and isochores) was performed using the FLUIDS and FLINCOR software packages.
312

(Brown 1989; Bakker 2003) with calibrations by Zhang and Frantz (1987) and Duan et al. (1992) for H₂O–CH₄–NaCl and H₂O–NaCl fluids, respectively. The Raman analysis of vapor phase in fluid inclusions was done by V. Mašek at the Institute of the Molecular and Translational Medicine, Olomouc (Czech Republic) using the WITec Confocal Raman Imaging Microscope System alpha300 R+ with excitation wavelength of 532 nm, laser power of 25 mW, 50×/NA 0.8 objective, and spectra acquisition time of 60 s.

4. Results

4.1. Geological setting, internal structure of granite dykes, and petrography of the individual rock types

Dykes of peraluminous granites including common nodular tourmaline granites (Buriánek and Novák 2004, 2007) crosscut the Třebíč Pluton and are predominantly oriented NE–SW to NNE–SWW (Fig. 1, Tab. 1). These dykes, ~1–6 m thick and up to 15 m long, have heterogeneous internal structures and typically sharp contacts to their host durbachites. Only the Lavíčky granite body cutting durbachite and surrounding migmatized gneisses is larger, up to ~50 thick (Novák et al. 1997). Medium-grained, muscovite–biotite granite (Fig. 2a–b) is the most abundant rock type and commonly forms about 90 vol.% of the individual granite bodies. Scarcely, biotite-rich restitic enclaves, up to several cm across, are present close to the contacts. Based on the texture, shape, spatial relations and mineral assemblages, the following rock types were distinguished (Fig. 2a–h):

Muscovite–biotite granite (MBG) (Qtz 23–36, Pl 24–40, perthitic Kfs 23–44, chloritized Bt 4–11, second- ary Ms 0–7; all in vol. %) with accessory muscovitized andalusite and micaceous pseudomorphs after cordierite contains anhedral to subhedral K-feldspar (Ab03–12) and subhedral plagioclase (Fig. 3a) with normal oscillatory zoning (Ab82–96). Granophyric and aplitic textures and/or wedge-shaped K-feldspar are often present in up to several dm thick outer zone of the dyke.

Tourmaline-rich nodules (TN) (Qtz 19–57, Tur 22–48, Pl 5–26, perthitic Kfs 1–20; all in vol. %) are circular (Fig. 2a), oval (Fig. 2b–c), ring-shaped (Fig. 2e), irregular shape (Fig. 2f), accumulation of several tourmaline nodules surrounded by leucocratic halos which partially replaced aplitic zone with comb layering in the muscovite–biotite granite (Svatoslav; GB42); and subhedral plagioclase (Fig. 3a) with normal oscillatory zoning (Ab32–66). Granophyric and aplite textures and/or wedge-shaped K-feldspar are often present in up to several dm thick outer zone of the dyke.

Tourmaline-rich nodules (TN) (Qtz 19–57, Tur 22–48, Pl 5–26, perthitic Kfs 1–20; all in vol. %) are circular (Fig. 2a), oval (Fig. 2b–c), ring-shaped (Fig. 2e), irregular shape (Fig. 2f), accumulation of several tourmaline nodules surrounded by leucocratic halos which partially replaced aplitic zone with comb layering in the muscovite–biotite granite (Svatoslav; GB42); and subhedral plagioclase (Fig. 3a) with normal oscillatory zoning (Ab32–66). Granophyric and aplite textures and/or wedge-shaped K-feldspar are often present in up to several dm thick outer zone of the dyke.

Leucocratic halos (LH) surround the tourmaline nodules and tourmaline granite dykes (Svatoslav; GB42); and subhedral plagioclase (Fig. 3a) with normal oscillatory zoning (Ab32–66). Granophyric and aplite textures and/or wedge-shaped K-feldspar are often present in up to several dm thick outer zone of the dyke.

Tourmaline pegmatites (TP)

Table 1 Location and parageneses of studied samples (WGS84 geographic coordinate system)

<table>
<thead>
<tr>
<th>locality</th>
<th>sample</th>
<th>rock type</th>
<th>mineral assemblage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budíkovice</td>
<td>GB35/G2</td>
<td>MBG</td>
<td>Qtz + Pl + Kfs + Bt + Ms + Ap + Mnz + Zrn</td>
</tr>
<tr>
<td>N 49°14’48.7"</td>
<td>GB35/N</td>
<td>TN</td>
<td>Qtz + Tu + Pl + Kfs + Ms + Ap</td>
</tr>
<tr>
<td>E 15°52’12.2"</td>
<td>GB35/L</td>
<td>LH</td>
<td>Qtz + Pl + Kfs ± Ms + Ap</td>
</tr>
<tr>
<td>E 15°52’12.2"</td>
<td>GB35/G</td>
<td>TP</td>
<td>Qtz + Pl + Kfs + Bt + Ms + Ap + Mnz + Zrn + Ilm + Rt + Tu</td>
</tr>
<tr>
<td>E 15°52’12.2"</td>
<td>GB35/I</td>
<td>MBG</td>
<td>Qtz + Pl + Kfs + Bt + Ms + Ap + Mnz + Zrn</td>
</tr>
<tr>
<td>E 15°52’12.2"</td>
<td>GB35/T2</td>
<td>TG</td>
<td>Qtz + Tu + Pl + Kfs + Ms + Ap</td>
</tr>
<tr>
<td>E 15°52’12.2"</td>
<td>GB35/L6</td>
<td>LH</td>
<td>Qtz + Pl + Kfs ± Ms + Ap</td>
</tr>
<tr>
<td>Horní Radslavice</td>
<td>GB40/G</td>
<td>MBG</td>
<td>Qtz + Pl + Kfs + Bt + Ms + Cdr + Ap + Mnz + Zrn + Ilm</td>
</tr>
<tr>
<td>N 49°20’30.0"</td>
<td>GB40/N</td>
<td>TN</td>
<td>Qtz + Tu + Pl + Kfs + Ap ± Ilm</td>
</tr>
<tr>
<td>E 15°54’07.0"</td>
<td>GB40/L</td>
<td>LH</td>
<td>Qtz + Pl + Kfs ± Ms + Ap</td>
</tr>
<tr>
<td>Svatoslav</td>
<td>GB41/G</td>
<td>MBG</td>
<td>Qtz + Pl + Kfs + Bt + Ms + Ap + Mnz + Zrn + Ilm</td>
</tr>
<tr>
<td>N 49°20’26.5"</td>
<td>GB41/N</td>
<td>TN</td>
<td>Qtz + Tu + Pl + Kfs + Ap</td>
</tr>
<tr>
<td>E 15°51’27.8"</td>
<td>GB41/L</td>
<td>LH</td>
<td>Qtz + Pl + Kfs ± Ms + Ap</td>
</tr>
<tr>
<td>E 15°51’27.8"</td>
<td>GB41/P</td>
<td>TP</td>
<td>Qtz + Pl + Kfs + Tu ± Ms + Ap</td>
</tr>
<tr>
<td>Svatoslav</td>
<td>GB42/O</td>
<td>MBG</td>
<td>Qtz + Pl + Kfs + Bt + Ms + And + Ap + Mnz + Zrn</td>
</tr>
<tr>
<td>N 49°20’22.7"</td>
<td>GB42/N</td>
<td>TN</td>
<td>Qtz + Pl + Kfs + Tu + Ap</td>
</tr>
<tr>
<td>E 15°52’25.4"</td>
<td>GB42/L</td>
<td>LH</td>
<td>Qtz + Pl + Kfs ± Ms + Ap</td>
</tr>
<tr>
<td>E 15°52’25.4"</td>
<td>GB42/B</td>
<td>TG</td>
<td>Qtz + Pl + Tu + Kfs + Bt + Ms</td>
</tr>
<tr>
<td>E 15°52’25.4"</td>
<td>GB42/P</td>
<td>TP</td>
<td>Qtz + Pl + Kfs ± Tu ± Ms + Ap</td>
</tr>
<tr>
<td>Březka</td>
<td>GB12/G</td>
<td>MBG</td>
<td>Qtz + Pl + Kfs + Bt + Ms + Ap + Mnz + Zrn</td>
</tr>
<tr>
<td>N 49°17’00.0"</td>
<td>GB12/N</td>
<td>TN</td>
<td>Qtz + Tu + Pl + Kfs + Ap</td>
</tr>
<tr>
<td>E 16°09’59.6"</td>
<td>GB12/L</td>
<td>LH</td>
<td>Qtz + Pl + Kfs ± Ms + Ap</td>
</tr>
</tbody>
</table>

Rock types: muscovite–biotite granites (MBG), tourmaline granites (TG), leucocratic halos (LH), tourmaline nodules (TN), tourmaline pegmatites (TP)
A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

Buriánek et al. Fig. 2
Leucocratic halos (LH), 0.5 to 3.0 cm thick, rim each nodule as well as tourmaline veins (see also Novák et al. 1997; Buriánek and Novák 2004) and their thickness is related to the size (thickness) of the nodule (vein). The halos (Fig. 2a, d, f) consist of quartz (35–40 vol. %), K-feldspar (29–30 vol. %), plagioclase (28–32 vol. %) and muscovite (0–4 vol. %). They show similar textural features as the host MBG, including the nature of zoning of strongly sericitized plagioclase.

Tourmaline-bearing granite (Qtz 26–31, Kfs 27–30, Pl 29–32, Ms 0–4, Tur 16–22; all in vol. %) forms thin irregular accumulations or veins, up to 5 cm thick, within the MBG (Fig. 2a–b). It occasionally encloses enclaves of MBG, several dm across, that are slightly more leucocratic than the typical MBG (Fig. 2b). Euhedral to subhedral grains of tourmaline in the tourmaline granite (Fig. 2c), 1 to 5 mm in size, are randomly distributed (Fig. 2b). However, locally small tourmaline–quartz accumulations with leucocratic halo are present in the marginal part of the tourmaline-bearing granite dykes (Fig. 2a). Zircon, monazite, xenotime and

2d), or irregular, 2 to 20 cm in diameter. They are locally associated with quartz–tourmaline veins (QTV) and veins with texture and modal composition resembling the tourmaline-rich nodules (TNV), only up to several cm thick (Fig. 2a). Nodules are randomly distributed or concentrated in several meters wide zones within MBG (Novák et al. 1997; Buriánek and Novák 2004) and locally contain tourmaline crystals, 1–3 mm in size, propagating into the leucocratic halos of the nodules (Fig. 2c). Very rare miarolitic cavities, up to 5 mm thick, were found in centers of some nodules (Fig. 2f). Anhedral to subhedral grains of tourmaline (Fig. 2c–d), commonly 0.1–2 mm in size, are typically interstitial between grains of quartz and feldspars and commonly replace altered plagioclase (Ab$_{82-100}$) or albite perthites in K-feldspar, whereas K-feldspar (Ab$_{2-14}$) is usually stable (Fig. 3b). Tourmaline grains are locally crosscut by quartz–tourmaline veins, up to 0.5 mm thick. Anhedral to euhedral fluorapatite, forming also rare inclusions in K-feldspar, predominates over minor xenotime-(Y) and monazite-(Ce).

Fig. 3 Representative backscattered-electron (BSE) images: a – chloritization of biotite and sericitization of plagioclase from muscovite–biotite granite (GB42); b – tourmaline and quartz partially replacing K-feldspar in the central part of a tourmaline nodule (GB41); c – zoning of tourmaline in the tourmaline granite (GB35); d – quartz–tourmaline vein with muscovite crosscutting a tourmaline grain in the pegmatite (GB42).
A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

fluorapatite are common accessory minerals. Chemical composition of subhedral oscillatory zoned plagioclase (Ab$_{89-99}$) and anhedral K-feldspar (Ab$_{1-12}$) are very similar to those in the MBG host.

Pegmatites with tourmaline form rare dykes, up to 35 cm thick, predominantly located in the external part of the MBG bodies. They are usually built of an internal coarse-grained granitic unit with biotite and andalusite or tourmaline. Layered or comb textures are occasionally developed along the contact with the surrounding granites. Only in the innermost unit columnar crystals of black tourmaline, up to 2 cm long (Fig. 2g), locally appear. Needle-like tourmaline (Fig. 2h), wedge-shaped plagioclase (Ab$_{89-99}$), and anhedral K-feldspar (Ab$_{1-12}$) alternate in several mm to cm thick layers (Fig. 2h). Elongated grains of K-feldspar (Ab$_{2-7}$) and plagioclase (Ab$_{88-97}$), 1–4 mm long, are frequently oriented perpendicular to the contact with the host MBG. Tourmaline partly replaces andalusite or albite perthites in the K-feldspar. Columnar crystals of tourmaline are locally crosscut by quartz–tourmaline veins up to 0.8 mm thick (Fig. 3d). Late quartz veins with fibrous tourmaline (dravite) described by Novák et al. (1997) from the Lavičky granite were not studied in detail.

4.2. **Whole-rock chemistry and oxygen isotope composition**

Muscovite–biotite granites (MBG) and leucocratic haloes are subaluminous to peraluminous rocks (A/CNK = 1.04 to 1.20) with SiO$_2$ contents of 73–76 wt. % (Tab. 2). Relatively low contents of F (10–410 ppm) and B (< 10–454 ppm) are typical (Fig. 4a; Tab. 2).

The leucocratic halos have higher K$_2$O and lower TiO$_2$ contents than the host MBG (Fig. 4b–c). Both tourmaline-bearing granites and nodules contain significant amounts of B, F, TiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$, and MgO (Tab. 2). Fluorine contents (400–1480 ppm) in tourmaline-bearing granite and tourmaline nodules correlate positively with B (Fig. 4a).

Muscovite–biotite granites are enriched in LILE when compared to the bulk continental crust (Taylor and McLennan 1995) except for some samples with lower Ba (138–602 ppm, Fig 4d). The CaO/Na$_2$O (0.11–0.23), Rb/Sr (1–8), and Rb/Ba (0.4–2.5) ratios (Tabs 2–3) correspond to melts derived by partial melting.

<table>
<thead>
<tr>
<th>Sample</th>
<th>GB129</th>
<th>GB40G</th>
<th>GB41</th>
<th>GB42/G</th>
<th>GB35/6</th>
<th>GB12/L</th>
<th>GB40/L</th>
<th>GB42/L</th>
<th>35GB/L</th>
<th>GB35/L6</th>
<th>GB12/N</th>
<th>GB40/N</th>
<th>GB42/N</th>
<th>GB42/B</th>
<th>GB35/T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocks</td>
<td>Muscovite–biotite granites</td>
<td>Leucocratic haloes</td>
<td>Tourmaline nodules</td>
<td>Tourmaline granite</td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>74.12</td>
<td>75.21</td>
<td>75.10</td>
<td>74.45</td>
<td>74.76</td>
<td>73.49</td>
<td>74.99</td>
<td>74.37</td>
<td>74.21</td>
<td>73.49</td>
<td>74.37</td>
<td>74.21</td>
<td>73.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.09</td>
<td>0.05</td>
<td>0.03</td>
<td>0.09</td>
<td>0.13</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>0.57</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>3.58</td>
<td>3.60</td>
<td>3.68</td>
<td>3.49</td>
<td>3.98</td>
<td>3.69</td>
<td>3.78</td>
<td>3.49</td>
<td>3.49</td>
<td>3.69</td>
<td>3.69</td>
<td>3.49</td>
<td>3.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K$_2$O</td>
<td>5.03</td>
<td>4.94</td>
<td>4.60</td>
<td>4.86</td>
<td>5.02</td>
<td>4.94</td>
<td>4.60</td>
<td>4.86</td>
<td>4.86</td>
<td>4.94</td>
<td>4.94</td>
<td>4.60</td>
<td>4.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.28</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>1.20</td>
<td>0.80</td>
<td>0.70</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.70</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.70</td>
<td>0.90</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/CNK</td>
<td>1.20</td>
<td>1.11</td>
<td>1.17</td>
<td>1.14</td>
<td>1.11</td>
<td>1.17</td>
<td>1.14</td>
<td>1.11</td>
<td>1.17</td>
<td>1.14</td>
<td>1.11</td>
<td>1.17</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO/Na$_2$O</td>
<td>0.11</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.15</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td>4.10</td>
<td>10.00</td>
<td>11.00</td>
<td>12.00</td>
<td>13.00</td>
<td>14.00</td>
<td>15.00</td>
<td>16.00</td>
<td>17.00</td>
<td>18.00</td>
<td>19.00</td>
<td>20.00</td>
<td>21.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| T(Zrn): zircon saturation temperatures (Watson and Harrison 1983); T(Mnz): monazite saturation temperatures (Montel 1993)
of metapelites (Sylvester 1998; Inger and Harris 1993). The Zr/Hf ratios (18–30; Tab. 3) are characteristic of anatectic granites (Dostal and Chatterjee 2000; Gao et al. 2017) and the HFSE contents are close to, or lower than, those in the bulk continental crust (Taylor and McLennan 1995).

Chondrite-normalized REE patterns (Fig. 5a) show a slight enrichment in LREE (LaN/YbN = 2.3–8.0) and negative Eu anomalies (Eu/Eu* = 0.4–0.8). Also the leucocratic halos display comparable total REE contents and chondrite-normalized REE patterns (Fig. 5b). Typical are variable negative, or even absent, Eu anomalies (Eu/Eu* = 0.7–1.0; Fig. 5b). Tourmaline granites show low contents of Zr and Hf (Fig. 4e), whereas these values in the nodules are similar to the host MBG. Both tourmaline-bearing granites and nodules are enriched in Ga and Sc (Fig. 4f). Chondrite-normalized REE patterns of TN (∑REE 32–53 ppm) resemble those from host MBG (Fig. 5b) with small LREE enrichment (LaN/YbN = 1.9–5.9) but deeper negative Eu anomalies (Eu/Eu* = 0.2–0.5). Tourmaline-bearing granites are characterized by the lowest REE contents (∑REE 16–19 ppm) of all granite types and the shape of chondrite-normalized REE patterns (LaN/YbN = 3.0–4.6; Eu/Eu* = 0.3–0.6) seems to be affected by the M-type tetrad effect (Irber 1999).

The leucocratic halos are depleted in TiO2, Fe2O3t, MgO and Sc relative to MBG, but show comparable concentrations of some major- and trace elements (Ga, Na2O, K2O, Rb and Cs; Fig 6a; Tabs 2–3). Tourmaline nodules are significantly enriched in TiO2, Fe2O3t, MgO, Ga and
depleted in Na$_2$O, K$_2$O, Ba, Rb, Sr, and Cs (Fig. 6b). Tourmaline-bearing granites are enriched in Fe$_2$O$_3$t, Ga and Sc and depleted in Ba and Sr (Fig. 6b). Contents of major elements, B, and F from LH and TN (Fig. 7) are compared with their host rocks (MBG) in isochron plots (Grant 1986; Silverstone and Hyatt 2003). In order to define the best fit isochron, Al$_2$O$_3$ was chosen as immobile constituent. Isocons close to the 1:1 mass line are for the LH, whereas

<table>
<thead>
<tr>
<th>Sample Rocks</th>
<th>Muscovite–biotite granites</th>
<th>Leucocratic haloes</th>
<th>Tourmaline nodules</th>
<th>Tourmaline granite</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB12/9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB40/G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB42/O GB35/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB12/L GB40/L GB42/L GB35/L6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB12/N GB40/N GB42/N GB42/B GB35/T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3 Trace-element analyses of selected samples (ppm)
The zircon saturation temperatures (Watson and Harrison 1983) are 700–668 °C for MBG and 675–641 °C for tourmaline-bearing granite, respectively, and similar are also monazite saturation temperatures (Montel 1993): 703–662 °C and 680–658 °C (Tab. 2).

4.3. Mineral chemistry

4.3.1. Feldspars

The contents of anorthite component in plagioclase and albite component in K-feldspar are given in the petrographic description (Chapter 4.1.). Minor P2O5 concentrations vary from rather high in K-feldspar phenocrysts (Fig. 8a) of pegmatites with tourmaline (0.28–0.68 wt. %) and host MBG (0.10–0.43 wt. %) to rather low in TN and LH (0.02–0.36 wt. %). The P contents decrease with increasing intensity of sericitization. Concentrations of BaO are mostly below detection limit, except for marginal parts of some K-feldspars grains in the TN (up to 0.58 wt. %).

4.3.2. Biotite

Biotite from granitic rocks has rather constant 4Al of 2.58–2.77 apfu (Fig. 8b). However, it differs in XFe and F contents 0.81–0.91 and 0.10–0.19 apfu in pegmatites with tourmaline and 0.69–0.82 and 0.21–0.26 in the host MBG, respectively. Biotite (Tab. 4) from restitic enclaves has lower XFe (0.49–0.55) and 4Al (2.26–2.50 apfu). Late (subsolidus?) biotite (XFe = 0.73–0.74) of the fractures cutting the tourmalines in the nodules shows variable 4Al (2.26–2.71 apfu) and very low F (0.01–0.08 apfu). The Ti contents vary

![Chondrite-normalized (Boynton 1984) REE patterns for muscovite-biotite and tourmaline granites (a), tourmaline nodules and leucocratic halos (b).](image-url)
A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

from 0.15 to 0.43 apfu in MBG up to 0.53 apfu in tourmaline pegmatites.

4.3.3. Tourmaline

The large diversity of textural types of tourmalines is reflected in the high variability of their chemical composition (Fig. 9). The occupation of T-site is variable (5.71–6.05 apfu Si) but commonly close to the ideal stoichiometry (Si = 6). In all analyses (Tab. 5) Z-site is fully occupied by Al (Al$_{tot}$ 5.98–7.00 apfu). The Na content varies from 0.31 to 0.76 apfu; on the other hand, contents of Ca (≤ 0.10 apfu) and K (≤ 0.05 apfu) are low (Fig. 9a). Tourmaline also displays considerable variations in Mg (0.03 to 1.51 apfu) and Fe (0.89 to 2.18 apfu, Fig. 9b) but low contents of Mn (≤ 0.06 apfu) and Ti (≤ 0.21 apfu). Most tourmalines are F-poor, but some have moderate F contents (up to 0.34 apfu).

The compositional changes in tourmaline are expressed by combination of four main substitutions (Fig. 9c–f). The homovalent substitution (1) Fe Mg is dominant (Fig. 9d, f). Alkali-deficiency suggests participation of the heterovalent substitutions (2) xNayRzwF xAl$_{w}$, which are combined with the substitution (4) yRzwOH yAl$_{w}$O$_{1}$ (Fig. 9c–f). Formula calculations yielded low ΣY and commonly high yAl (Tab. 5) indicating significant participation of substitution (4) and abundance of oxy-tourmaline components. Oxy-schorl is a typical tourmaline of various peraluminous granites (e.g. Novák et al. 2004; Bačík et al. 2013).

The tourmalines are almost homogeneous, showing fine oscillatory or patchy zoning (Fig. 3a–d). Three main types of tourmaline were defined based on their textural relations and chemical composition (Fig. 9):

(1) Anhedral to subhedral tourmaline grains in TN and TNV are typically interstitial between quartz and feldspars or replace plagioclases and albite perthites in K-feldspars. They contain homogeneous dravite-rich core and oscillatory-zoned rim with dominating (2) and often also (3) substitutions (Na 0.31–0.66, Mg 0.07–0.95, Al 6.36–7.00, apfu; Fig. 9c–e). The composition of homogeneous tourmaline cores in TN resembles that of skeletal crystals. The main trends from core to rim are parallel to (3, 4) and sporadically (2) substitutions (Fig. 9e).

Fig. 6 Multi-element diagrams normalized to the parental muscovite–biotite granite for leucocratic halos (a), tourmaline nodules and tourmaline granites (b).
(II) Euhedral to subhedral columnar grains of tourmaline randomly distributed in tourmaline-bearing granite are patchy zoned (Fig. 3d) with dominating (3) substitution (Na 0.44–0.76, Mg 0.05–1.51, Al 5.98–6.95 apfu; Fig. 9c–e). The chemical evolution of internal zones of crystals (Na 0.32–0.43, Al 6.75–6.92 apfu) follows the same substitution mechanism (3).

(III) Columnar and needle-like crystals from central part of tourmaline pegmatite dykes are oscillatory zoned, F-poor tourmaline. In tourmaline crystals Na (0.31–0.61 apfu) with Fe (1.16–2.18 apfu) increase and Al with Mg decrease (6.41–6.95 and 0.03–1.25 apfu respectively) outwards (Fig. 9e–f). Most crystals are overgrown by younger dravite-rich rim (up to 0.2 mm thick) with high Mg (1.21–1.38 apfu) and low Fe (< 1.4 apfu) contents (Fig. 9f).

4.3.4. Accessory minerals

Three different compositional and textural types of fluorapatite were identified. Euhedral grains of apatite I (50–100 μm) in MBG and tourmaline-bearing granite
A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

Tab. 4 Representative chemical compositions of micas (wt. % and apfu; structural formulae on the basis of 22 O)

<table>
<thead>
<tr>
<th>Locality</th>
<th>GB40/G</th>
<th>GB40/G</th>
<th>GB40/G</th>
<th>GB42/N</th>
<th>GB42/N</th>
<th>GB42/N</th>
<th>GB41/G</th>
<th>GB42/P</th>
<th>GB40/G</th>
<th>GB40/N</th>
<th>GB40/L</th>
<th>GB40/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>rock type</td>
<td></td>
</tr>
<tr>
<td>Mineral</td>
<td>Bt</td>
<td>Bt</td>
<td>Bt</td>
<td>Bt</td>
<td>Bt</td>
<td>Bt</td>
<td>Ms</td>
<td>Ms</td>
<td>Ms</td>
<td>Ms</td>
<td>Ms</td>
<td>Ms</td>
</tr>
<tr>
<td>SiO₂</td>
<td>33.50</td>
<td>33.66</td>
<td>35.78</td>
<td>35.93</td>
<td>33.38</td>
<td>34.74</td>
<td>47.12</td>
<td>47.25</td>
<td>46.37</td>
<td>46.31</td>
<td>45.27</td>
<td>45.35</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.33</td>
<td>2.95</td>
<td>1.46</td>
<td>1.94</td>
<td>1.86</td>
<td>0.08</td>
<td>1.57</td>
<td>0.05</td>
<td>0.03</td>
<td>0.39</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>20.11</td>
<td>19.93</td>
<td>19.04</td>
<td>18.73</td>
<td>19.22</td>
<td>19.37</td>
<td>36.96</td>
<td>32.97</td>
<td>35.22</td>
<td>37.45</td>
<td>33.73</td>
<td>32.66</td>
</tr>
<tr>
<td>FeO</td>
<td>26.88</td>
<td>25.63</td>
<td>24.73</td>
<td>19.04</td>
<td>28.23</td>
<td>23.48</td>
<td>0.59</td>
<td>1.28</td>
<td>1.79</td>
<td>0.34</td>
<td>4.10</td>
<td>4.69</td>
</tr>
<tr>
<td>MnO</td>
<td>0.62</td>
<td>0.78</td>
<td>0.56</td>
<td>0.55</td>
<td>1.09</td>
<td>1.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>MgO</td>
<td>3.36</td>
<td>3.62</td>
<td>4.82</td>
<td>9.35</td>
<td>5.79</td>
<td>5.08</td>
<td>1.87</td>
<td>1.37</td>
<td>0.33</td>
<td>0.06</td>
<td>0.84</td>
<td>1.14</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.16</td>
<td>0.18</td>
<td>0.12</td>
<td>0.12</td>
<td>0.10</td>
<td>0.13</td>
<td>0.07</td>
<td>0.41</td>
<td>0.46</td>
<td>0.16</td>
<td>0.37</td>
<td>0.26</td>
</tr>
<tr>
<td>BaO</td>
<td>0.00</td>
<td>0.09</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.12</td>
<td>0.00</td>
<td>0.18</td>
<td>0.04</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>RbO</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.18</td>
<td>0.02</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>F</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>1.64</td>
<td>0.38</td>
<td>0.43</td>
<td>0.09</td>
<td>0.77</td>
<td>0.16</td>
<td>0.05</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>Cl</td>
<td>0.06</td>
<td>0.05</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>H₂O*</td>
<td>3.73</td>
<td>3.82</td>
<td>3.87</td>
<td>9.35</td>
<td>5.79</td>
<td>5.08</td>
<td>1.87</td>
<td>1.37</td>
<td>0.33</td>
<td>0.06</td>
<td>0.84</td>
<td>1.14</td>
</tr>
<tr>
<td>Total</td>
<td>100.15</td>
<td>100.04</td>
<td>99.94</td>
<td>99.08</td>
<td>99.31</td>
<td>99.87</td>
<td>99.66</td>
<td>99.61</td>
<td>99.12</td>
<td>99.92</td>
<td>99.92</td>
<td>99.92</td>
</tr>
</tbody>
</table>

* calculated from stoichiometry

Rock types: muscovite–biotite granites (MBG), tourmaline pegmatites (TP), leucocratic halos (LH)

Fig. 8 Chemical composition of rock-forming minerals from pegmatites, tourmaline granites, tourmaline nodules and their parental granites: a – Na₂O vs. P₂O₅ diagram for the feldspars; b – Fe/(Fe + Mg) vs. Al⁴⁺ diagram for the biotite.
are compositionally rather homogenous (MnO = 2.0–2.4 wt. %, FeO = 0.16–0.17 wt. %, F = 4.5–5.0 wt. %). Anhedral to subhedral grains of apatite II (20–400 μm), often enclosed in tourmaline of the nodules, shows irregular zoning characterized by a depletion of Fe and Mn towards the crystal rims (MnO = 1.21–2.09 wt. %, FeO = 0.03–0.16 wt. %, F = 4.8–5.6 wt. %). The cores of apatite II crystals are MnO (2.32–3.59 wt. %) and FeO (0.02–0.84 wt. %) rich. Small (10–40 μm), subhedral grains of (Fe, Mn)-poor apatite III (MnO = 1.20–1.40 wt. %, FeO = 0.00–0.10 wt. %, F = 5.3–5.6 wt. %) occur especially in TN and LH. They are irregularly distributed along intergranulars and in internal parts of plagioclase grains.

Monazite-(Ce) to rare cheralite-(Ce) associated with fluorapatite, zircon and xenotime in MBG occurs as small (< 30 μm) oval subhedral crystals with diffuse or irregular zoning. Chondrite-normalized (Boynton 1984) LREE patterns are mutually comparable (LaN/SmN = 3–5). Very small homogeneous monazite grains (< 15 μm) from tourmaline-bearing granite and TN are compositionally similar to those from the MBG.
A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

Xenotime-(Y) is present in all rock types mainly as inclusions in feldspars, tourmaline and, rarely, monazite. Euhedral, homogeneous or oscillatory-zoned grains of zircon (≤ 80 μm), sporadically intergrown with monazite are common in MBG and tourmaline-bearing granite. Relatively rare, subhedral zircon commonly with sector

Fig. 9 Chemical composition of tourmaline from pegmatites, tourmaline granites and tourmaline nodules: a – Na + K – X-site vacancy – Ca triangle; b – Fe_{tot} – Al – Mg triangle; c – F vs. Fe + Mg; d – Na vs. Fe; e – Na vs. Al; f – Mg vs. Fe. Chemical compositions of tourmalines from NYF pegmatites of the Třebíč Pluton are from Novák et al. (2011).
zoning and locally overgrowing small xenotime nuclei occurs in TN. Unaltered zircon grains from all rock types have relatively uniform Hf contents ($\text{HfO}_2 = 1.0–2.4 \text{ wt.\%}$). Elevated contents of P and Th in some grains are related to late hydrothermal alterations.

Ilmenite to pyrophanite ($\text{Ilm}_{100–11}\text{Pyr}_{89–0}$) is a typical accessory mineral in all rock types. It is most abundant in the MBG, where it forms euhedral to subhedral laths, locally with rutile inclusions. Rare ilmenite from the nodules is partly replaced by rutile.

4.4. Fluid inclusions

Fluid inclusions (Fig. 10) trapped in quartz and tourmaline were studied in three samples; one from the central part of a pegmatite dyke composed of quartz and tourmaline (GB42E), and two from tourmaline nodules (TN) (GB41B and GB42N). Primary (P), pseudosecondary (PS) and secondary (S) inclusions were found in tourmaline from all samples.

In tourmaline, primary inclusions are related to growth zones, forming three-dimensional clusters or being isolated. Quartz-hosted primary inclusions occur only in clusters or as isolated ones. The inclusions (4–18 µm in size) typically have isometric three-dimensional morphology without any tips (in quartz); locally elongated forms are arranged parallel to the c-axis of the host crystal (in tourmaline). All primary inclusions are aqueous, showing L+V phase compositions with essentially stable phase proportions in the individual inclusions (20–30 vol. % of the vapor phase). The PS and S inclusions are concentrated along healed fractures. The PS inclusions have the same phase composition as primary inclusions, whereas secondary inclusions involve both L and L+V types, randomly distributed within a single trail. In addition, the L+V secondary inclusions exhibit a wide variability in liquid–vapor ratios (5–20 vol. % vapor). Secondary inclusions were large enough for conventional microthermometric analysis (i.e., >5 µm) only in quartz from tourmaline pegmatites.

The microthermometric measurements are summarized in Tab. 6 and Fig. 11a–c. Primary and pseudosecondary inclusions display always very similar ranges of microthermometric parameters. The homogenization temperatures of P-PS inclusions range between 208 and 398 °C showing the highest probability density range from 250 to 350 °C (Fig. 11a). The P-PS inclusions freeze at temperatures between –31 and –52 °C, and remain colorless. Though rarely observed, initial melting occurs between –32 and –40 °C. Melting of ice takes place between –0.1 and –9.4 °C (Fig. 11b). In P-PS inclusions from pegmatites with tourmaline melting of clathrate is also observed between +5.0 and +13.4 °C (Fig. 11c), whereas the inclusions from TN lack clathrate except for one inclusion of problematic genetic ranking which showed Tm-cla as high as +15.2 °C (Tab. 6, Fig. 11c). Raman analysis of vapor bubbles in clathrate-forming inclusions yielded methane (peak at ~2917 cm$^{-1}$) as the only detectable gas compound.

Secondary L+V inclusions in quartz from pegmatites with tourmaline exhibit mostly lower homogenization temperatures (162–234 °C) and higher Tm-ice (–0.2 to –2.3 °C) than the primary ones. The secondary L-only inclusions show similar Te and Tm-ice values as the associated L+V inclusions pointing to probable metastability of their phase composition.

5. Discussion

5.1. P–T conditions of crystallization

The examined granitic system crystallized likely in the succession tourmaline-free muscovite–biotite granite → tourmaline-bearing granite → pegmatites with tourmaline → tourmaline nodules (and TNV) + leucocratic halos → quartz–tourmaline veins (see Fig. 2d–g; 12a) and repre-
A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

Tourmaline-bearing granite relative to MBG (zircon and monazite saturation temperatures are consistent with lower solidus temperatures) also suggests ~0.2 GPa; tourmaline from the TN crystallized at similar conditions with a slightly wider temperature range (400–640 °C; Fig. 12b). These P–T conditions are characteristic of the late-stage solidus crystallization of granitic pegmatites (London 1986; Morgan and London 1999; London 2008; Nabelek et al. 2009).

5.2. Nature and origin of the fluid phase hosted by fluid inclusions

The nodule-hosted P and PS fluid inclusions exhibit mutually well comparable microthermometric parameters in quartz and tourmaline from different samples. They do not contain an elevated content of clathrate-forming gas. The initial melting temperatures are consistent with the presence of divalent-metal (i.e. Mg, Fe) chlorides in addition to NaCl with the fluid salinities 0.2–8.3 wt. % NaCl eq. (Bodnar 1993).

The pegmatite-hosted fluid inclusions seem to contain an analogous salt system (similar Tf and Te) but presence of an elevated content of methane (Raman analysis). Based on modelling in the ICE software (Bakker 1997), the microthermometric data are compatible with 92.4–94.8 mol. % H2O, 2.1–5.2 mol. % CH4, 2.2–3.1 mol. % NaCl and the salinity of the aqueous solution 4.1–5.0 wt. % NaCl. The given ranges include also the data with very low Tm-ice values; the effect of lower Tm-ice value is compensated by a higher amount of methane pointing to a negative correlation of both variables. The bulk molar volumes of the fluid phase are 21.72 and 24.99 cm3/mol (BULK software; Bakker 2003).

The composition and densities of TN-hosted fluid inclusions seem to be consistent with a fluid phase exsolved from the crystallizing magma. The subhorizontal trend in the Th–Tm diagram (Fig. 11d) is compatible with

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rock</th>
<th>Mineral</th>
<th>FI type</th>
<th>Phase composition</th>
<th>Th-tot</th>
<th>Tf</th>
<th>Te</th>
<th>Tm ice</th>
<th>Tm cla</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB42/P</td>
<td>Pegmatite</td>
<td>Tourmaline</td>
<td>P, PS</td>
<td>L+V</td>
<td>251–377</td>
<td>-35/-46</td>
<td>-33</td>
<td>-1.6/-4.2</td>
<td>+9.3/+13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quartz</td>
<td>P, PS</td>
<td>L+V</td>
<td>265–333</td>
<td>-31/-44</td>
<td>-37/-38</td>
<td>-3.1/-9.4</td>
<td>+5.0/+11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>L, L+V</td>
<td>162–234</td>
<td>-31/-43</td>
<td>n.d.</td>
<td>-0.2/-2.3</td>
<td>n.a.</td>
</tr>
<tr>
<td>GB42/N</td>
<td>Tour nodule</td>
<td>Tourmaline</td>
<td>P, PS</td>
<td>L+V</td>
<td>250–382</td>
<td>-42/-46</td>
<td>-36</td>
<td>-1.3/-4.0</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quartz</td>
<td>P, PS</td>
<td>L+V</td>
<td>303–393</td>
<td>-34/-49</td>
<td>-37</td>
<td>-0.1/-5.3</td>
<td>n.a.</td>
</tr>
<tr>
<td>GB41/G</td>
<td>Tour nodule</td>
<td>Tourmaline</td>
<td>P, PS</td>
<td>L+V</td>
<td>248–365</td>
<td>-36/-45</td>
<td>-32</td>
<td>-1.2/-4.2</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quartz</td>
<td>P, PS</td>
<td>L+V</td>
<td>208–397</td>
<td>-31/-52</td>
<td>-37/-38</td>
<td>-1.4/-5.0</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td>L+V</td>
<td>317(d)</td>
<td>-47</td>
<td>-40</td>
<td>-1.8</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Temperature parameters are given in °C
(d) – decrепitation temperature
n.d. – does not contain clathrate-forming gas
n.a. – not determined

Table 6 Results of microthermometric measurements of fluid inclusions.

Sent a typical example of evolution from magmatic to hydrothermal stage (e.g. Pichavant and Manning 1984; Trumbull et al. 2008). Granophyric and comb textures in the border zone of the MBG near the contact with surrounding durbachites (Fig. 2g) indicate rapid crystallization of an undercooled granitic melt at a shallow crustal level (e.g., Barker 1970; London et al. 1996; Morgan and London 1999; Webber et al. 1999). The emplacement conditions of MBG have been estimated at 670–740 °C and 0.1–0.4 GPa using the zircon and monazite saturation temperatures (Novák and Houzar 1996; Leichmann et al. 2017). The nodule-hosted P and PS fluid inclusions exhibit mutually well comparable microthermometric parameters in quartz and tourmaline from different samples. They do not contain an elevated content of clathrate-forming gas.
David Buriánek, Zdeněk Dolníček, Milan Novák

Homogenization temperature (°C)

TP (GB42/P)
- tourmaline
- quartz
- quartz (S)

TN (GB42/N)
- tourmaline
- quartz

TN (GB41/G)
- tourmaline
- quartz

Ice melting temperature (°C)

Clathrate melting temperature (°C)

n = 178

n = 142

n = 33

n = 118
A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

327

(i) simple cooling of a high-temperature fluid, (ii) decrease in pressure or (iii) combination of both options (e.g. Cline and Bodnar 1991). However, the first option is the most probable considering the textural and paragenetic evolution of the host tourmaline.

In the absence of redox reactions involving carbon species (e.g. precipitation of graphite), the presence of methane only in tourmaline pegmatites-hosted fluid inclusions is possibly explained by partial infiltration of an external fluid phase (Thomas and Spooner 1988) from the surrounding rocks of the Třebíč Pluton or from its metasedimentary envelope. Many studies demonstrated that even the high-T fluids operating in a magmatic environment can be derived from external sources (e.g. Banks et al. 2000; Polya et al. 2000; Dolníček et al. 2012). The opening of the pegmatite system to external fluids is not surprising because the diagonal distribution of quartz-hosted fluid inclusion data in the Th–Tm plot (Fig. 11d) which clearly points to mixing of two fluids with contrasting T–X characteristics. The presence of methane only in tourmaline pegmatites-hosted fluid inclusions is possibly explained by partial infiltration of an external fluid phase (Thomas and Spooner 1988) from the surrounding rocks of the Třebíč Pluton or from its metasedimentary envelope. Many studies demonstrated that even the high-T fluids operating in a magmatic environment can be derived from external sources (e.g. Banks et al. 2000; Polya et al. 2000; Dolníček et al. 2012). The opening of the pegmatite system to external fluids is not surprising because the diagonal distribution of quartz-hosted fluid inclusion data in the Th–Tm plot (Fig. 11d) which clearly points to mixing of two fluids with contrasting T–X characteristics. The presence of

Fig. 12a – Schematic cross-section across the studied granite dyke showing the relations among muscovite–biotite granites (MBG), tourmaline granites (TG), tourmaline pegmatites (TP), tourmaline nodules (TN) and quartz–tourmaline veins (QTV, TNV). b – An evolutionary diagram summarizing the relevant information pertaining to the P–T history of granite system and featuring: I – immiscibility between B-rich hydrous and peraluminous granite melts, II – exsolution of the pegmatite melt, III – formation of the leucocratic halos. Crystallization temperatures for MBG and TG were assessed by the zircon and monazite saturation temperatures. Pressures were estimated according to the emplacement conditions of the host durbachite (Leichmann et al. 2017), the maximum andalusite stability (Richardson et al. 1969) and experimental data as follows. 1 – H_2O- and Al-saturated granite solidus (Tuttle and Bowen 1958); 2 – range between wet granite solidus and wet granite solidus where B_2O_3 concentration in the melt is buffered by equilibria involving tourmaline; 3 – maximum shift of the haplogranitic wet solidus resulting from the addition of up to 17 wt. % B_2O_3 (Spicer et al. 2004). The grey field covers the area of the estimated P–T conditions defined by isochores of P and PS fluid inclusions hosted by both quartz and tourmaline. Representative isochores for both pegmatite-hosted CH$_4$-bearing fluid inclusions (dashed lines) and nodule-hosted CH$_4$-absent fluid inclusions (dot-and-dash lines) are also shown.

Fig. 11 Graphical presentation of microthermometric data for fluid inclusions hosted by quartz and tourmaline: a – histogram of the homogenization temperature values; b – histogram of the melting temperatures of ice; c – histogram of melting temperatures of clathrate; d – homogenization temperature vs. ice melting temperature plot.
dravite-rich rims (Fig. 9 b, d, f) in tourmaline from the central part of tourmaline pegmatites dykes may suggest an input of Mg-rich external fluids. This was also documented in tourmaline from similar nodular granites at Lavičky (Buriánek and Novák 2004) and from some granitic pegmatites in the Moldanubicum (e.g., Novák et al. 1999, 2011; Gadas et al. 2012).

5.3. Evolution of granitic melts and saturation of tourmaline

Tourmaline is a good indicator for the evolution of granitic melts (e.g. London and Manning 1995; Wolf and London 1997; London 1999; Dutrow and Henry 2011; van Hinsberg et al. 2011). The important factors controlling tourmaline stability in granitic melts at 700–750 °C are sufficiently high contents of B (more than 2 wt. % B$_2$O$_3$), Fe and/or Mg, along with high Al (A/CNK > 1.2) (Benard et al. 1985; London and Manning 1995; Scaillet et al. 1995; Wolf and London 1997; Spicer et al. 2004; London 2011). Still, high Fe$^{3+}$ content may stabilize tourmaline in alkaline conditions (Filip et al. 2012). In contrast, saturation of tourmaline from hydrothermal fluids requires less than 0.1 wt. % B$_2$O$_3$ (London 2011).

During the crystallization of granite melts, B-rich residual melts are often generated (e.g., London et al. 1996; Thomas et al. 2003). They are progressively enriched in water, B, F and other incompatible or volatile elements, leading to a strong reduction of melt viscosity (e.g. Pichavant 1981; Pichavant et al. 1987; Holtz and Johannes 1991; Dingwell et al. 1996; London 1999; Thomas and Webster 2000). Experimental studies on volatile-rich granite pegmatites (Veksler and Thomas 2002; Veksler et al. 2002) and on B-rich inclusions in pegmatites (Thomas et al. 2003) show that hydrous B-rich melts/fluids are immiscible in peraluminous melts. Granitic rocks and associated tourmaline in the Třebíč Pluton discussed below illustrate variability of these processes including several stages of tourmaline saturation from magmatic to hydrothermal stage (Figs 12–13).

5.3.1. Muscovite–biotite granite and tourmaline nodules with the surrounding leucocratic halos

The granophytic and comb textures in the marginal part of the MBG dyke suggest undercooling (Baker and Freda 1999; Webber and Simmons 2007; Nabelek et al. 2009). The central part of the dyke generally exhibits a regular medium-grained granitic texture, an absence of disseminated tourmaline and a low amount of muscovite, which are consistent with low B contents and low to moderate peraluminosity (A/CNK = 1.07 to 1.20). Granitic textures and mineral assemblages indicate crystallization from fluid-undersaturated melt (London 1999).

Boron-rich melt has a lower solidus temperature than a B-poor peraluminous one (e.g. Pichavant 1981; Pichavant et al. 1987; Holtz and Johannes 1991) which is in agreement with the monazite and zircon saturation temperatures that are lower for the tourmaline-bearing granite than for the host MBG. The tourmaline nodules with leucocratic halos within MBG (Fig. 2a) represent further episode of the granite evolution and the abundant concentration of tourmaline manifests that the granitic melt reached B contents high enough to precipitate tourmaline (London and Manning 1995; London 1999).

Fig. 13 Chemical composition of tourmaline from pegmatites (TP), tourmaline granites (TG) and tourmaline nodules (TN) (apfu): a – Na + F vs. Al; b – Fe/(Mg + Fe) vs. (δFe$^{3+}$ + Na + K). Based on the tourmaline chemical zoning, five evolution trends can be distinguished, shown by arrows: TG1 – patchy-zoned tourmaline core from the granite, TG2 – rim of tourmaline crystals from the granite, TP1 – rim of tourmaline in the miarolitic cavities from pegmatite veins, TP2 – tourmaline with comb textures from pegmatites, TN – tourmaline from nodules.
Textural and compositional features of tourmaline-bearing nodules allow two possible explanations of their origin: crystallization from B-rich aqueous fluids (e.g. Sinclair and Richardson 1992; Rozendaal and Bruwer 1995; Kubiš and Broska 2005, 2010; Balen and Broska 2011) or crystallization from B-rich residual melt (Němec 1975; Buriánek 2003; Barbev 2007; Balen and Petrie 2011). It is difficult to explain the spatial segregation of tourmaline-rich nodules by exsolved aqueous fluids because they can hardly accumulate such high concentrations of Fe and/or Mg from internal sources, i.e. from the surrounding granite (Němec 1975; Buriánek 2003; Barbev 2007; Trumbull et al. 2008). Instead, mass-balance calculations for TN and surrounding MBG (Fig. 7) indicate that the (Fe, Mg)-enrichment can be achieved only by scavenging the ferromagnesian elements from the adjacent granite, resulting in the formation of the leucocratic halos (Němec 1975; Buriánek 2003; Barbev 2007; Balen and Petrie 2011).

Indeed, the water-rich, depolymerized melt can be strongly enriched in B, Fe and Al (Thomas et al. 2003; Vekšler 2004). Moreover, high contents of Cl in fluid inclusions (TN) may stabilize B in the melt (Sinclair and Richardson 1992; Swanson and Fenn 1992; Schatz et al. 2004). Crystallization from a B-rich melt is also indicated by the radially growing tourmaline crystals from the center of the nodule toward the leucocratic halo. This morphology is associated with melt crystallization at undercooled conditions (Perugini and Poli 2007; Longfellow and Swanson 2009) whereas small miorolitic cavities found in some nodules (Fig. 2f) are typical of the magmatic to hydrothermal transition at shallow depths (Sinclair and Richardson 1992; Touret et al. 2007). It seems that the tourmaline granites were products of crystallization from a B-rich melt; however, final stage of their formation may have been related with the segregation of a B-rich fluid phase, responsible for the origin of the LH. The oval shape of TN (Fig. 2a, c–f) may be a product of immiscibility of a B-poor melt and a B-rich residual melt/fluid. The textural evolution from bubble-shaped nodules to TNV (see also Buriánek and Novák 2004) indicates their origin across a rheological transition of the host from deformable magma to brittle, almost solid granite (MBG). The mineral assemblages possibly also recorded the transition between magmatic and hydrothermal stages (e.g. Trumbull et al. 2008).

Fluid inclusions in the external parts of tourmaline grains suggest crystallization from hydrothermal fluids indicated also by low K/Rb ratios (54–155) of the TN. The distinct P contents found in TN and LH mimic irregular distribution of apatite III as a product of hydrothermal alteration of feldspars.

The main difference between nodules and the surrounding haloes is the absence of tourmaline in the latter. The haloes have modal composition similar to MBG except for the absence of biotite. The chemical zoning of plagioclases is comparable as are the chemical and oxygen isotope compositions (δ18O = +7.7 and +7.1 ‰). Small differences still exist in the LILE contents as a consequence of the variation in feldspars abundances.

The formation of the halos could be explained by the reaction of MBG with magmatic fluids exsolved from B-rich melt in bubbles and veins (TN, TNV and tourmaline-bearing granite). Biotite breakdown is considered the source of Fe and Mg for the formation of tourmaline (Fig. 13a–b) during late stages of boron-rich nodules’ crystallization (Němec 1975). This process requires diffusion of ferromagnesian components toward TN indicated by decreased contents of some elements (Ti, Fe, Mg, Sc, Ga) preferentially incorporated in biotite (Neves 1997) in the leucocratic nodules as compared with the MBG and TN (Fig. 6).

5.3.2. Intrusive tourmaline-bearing rocks cutting the host MBG – tourmaline granite and tourmaline pegmatite

Tourmaline granite in veins has sharp contacts with the surrounding MBG and LH. The lower REE, Th, Ba and Sr contents compared to MBG correspond to a more evolved granite melt. During the magmatic differentiation of peraluminous granites, both LREE contents and Th/U ratios drop as the result of monazite fractionation (Maruéjol et al. 1990). According to the textural relationships (i.e., the presence of LH), tourmaline-bearing granite crystallized simultaneously with the TN and TNV (Fig. 12). However, tourmaline-bearing granite reached the solidus earlier, probably due to loss of fluid phase during intrusion to the joints. On the contrary, the fluid phase was in the TN preserved forming a closed system and finally interacted with the surrounding MBG and produced the leucocratic halos.

Small irregular bodies and dykes of pegmatites with tourmaline (Fig. 13a–b) represent the last magmatic event in the evolution of these granitic rocks. They are developed mainly near the contact of MBG with surrounding rocks (durbachite) as dykes subparallel with the contact plane.

5.3.3. Hydrothermal tourmaline

The latest saturation of B is represented by several textural and paragenetic types of hydrothermal tourmaline: (i) thin quartz + tourmaline veinlets cutting the early tourmaline grains (Fig. 2g–h), (ii) late quartz veins with fibrous dravite, up to several m long, cutting MBG and (iii) dravite-rich rims and zones of tourmaline grains (see also Novák et al. 1997; Buriánek and Novák 2004). Chemical compositions of the outer zones of tourmaline crystals in granite and from the
6. Conclusions

Crystallization of granite melts in the Třebíč Pluton produced several textural types of granitic rocks. The comb textures developed in other parts of muscovite–biotite granite (MBG) and in minor tourmaline pegmatite suggest a high degree of undercooling, whereas tourmaline granite has equigranular texture. Polyphase saturation of tourmaline produced the following textural and compositional types: (i) tourmaline nodules, each surrounded by a leucocratic halo, within MBG; (ii) euhedral to subhedral grains of tourmaline randomly distributed in tourmaline granite and tourmaline–quartz accumulations resembling the nodules with leucocratic halos, found in the marginal part of the tourmaline granite; (iii) rare columnar schorl crystals occurring locally in inner parts of tourmaline pegmatite; (iv) dravite-rich rims of tourmaline grains in tourmaline granite and pegmatite, as well as late dravite veinlets in tourmaline crystallized from hydrothermal fluids in a system open to host rocks.

These distinct textural and compositional types of tourmaline from granitic rocks of the Třebíč Pluton suggest that, during complex evolution of granitic melts, concentrations of B high enough to saturate tourmaline may have been achieved several times, at solids and in subsolidus conditions.

Acknowledgements. The authors thank Pierre Barbey, Enrique Merino Martínez and an anonymous reviewer for constructive criticism that significantly improved the manuscript. They are also grateful to V. Mašek (LF UP) for Raman analysis of fluid inclusions. This work was supported by the research project IGA UP PrF/2011/010 and PrF/2015/014 to ZD. The fluid inclusion study was financed by projects GAČR P210/14/1347S for Raman analysis of fluid inclusions. This work was funded by projects IGA UP PrF/2011/010 and PrF/2015/014 to ZD.}

References

A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

Duan ZH, Moller N, Weare JH (1992) An equation of state for the CH\textsubscript{4}–CO\textsubscript{2}–H\textsubscript{2}O system. II. Mixtures from 50 °C to 1000 °C and 0 to 1000 bar. Geochim Cosmochim Acta 56: 2619–2631

KUBIS M, BROSKA I (2005) Role of boron and fluorine in evolved granitic rock systems (on example Hnilec area, Western Carpathians). Geol Carpath 56: 193–204

A polyphase saturation of tourmaline in granitic rocks of the Třebíč Pluton

NOVÁK M, FILIP J (2010) Unusual (Na, Mg)-enriched beryl and its breakdown products (beryl II, bazzite, bavenite) from euxenite-type NYF pegmatite related to the orogenic ultrapotassic Třebíč Pluton, Czech Republic. Canad Mineral 48: 615–628

pegmatites of the Trebič Pluton, Czech Republic; substitutions and fractionation trends. Lithos 95: 43–57
van HINSBERG VJ, HENRY DJ, DUTROW BL (2011) Tourmaline as a petrologic forensic tool: a unique recorder of its geologic past. Elements 7: 327–332
WENZEL T, MERTZ DF, OBERHÄNSLI R, BECKER T, RENNE PR (1997) Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen Massif (northern Bohemian Massif) and implications for related occurrences from the mid-European Hercynian. Geol Rundsch 86: 556–570