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Numerous dykes of lamprophyres and various types of granitoid, syenitoid, dioritoid, and gabbroid porphyries of Variscan 
age crop out in the area of the Central Bohemian Plutonic Complex and adjacent high- to low-grade metamorphic units 
of the Moldanubian Zone and Teplá-Barrandian Unit. Magnetic fabric in fourteen dykes of lamprophyres and related 
rocks was investigated. Mostly, the magnetic foliation is roughly parallel to the dyke plane and the magnetic lineation 
is horizontal with the relics of originally steep fabrics. This type of magnetic fabric originated through magma flow in 
which the larger surfaces of the magnetic minerals were oriented parallel to the dyke plane and their longer dimensions 
were parallel to the magma flow. In two localities, the so-called inverse fabrics were found in which the maximum and 
minimum susceptibility directions were swapped. 
The dykes of lamprophyres and related rocks were emplaced into already juxtaposed and cooled Teplá–Barrandian Zone, 
Central Bohemian Plutonic Complex and western Moldanubian Zone not later than 339 Ma. Parallel orientation of dykes 
giving a steep intrusive contacts mainly in W(NW)–E(SE) trend was caused by the regional stress field of ~WNW–ESE 
convergence (arc-parallel stretching) during the Variscan Orogeny. 
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parallel to the dyke plane, can be vertical, horizontal, or 
even oblique according to the magma flow in a dyke (e.g. 
Knight and Walker 1988; Rochette et al. 1991; Ernst and 
Baragar 1992; Raposo 2011). This fabric type was called 
normal by Rochette et al. (1991) or Type I by Raposo and 
Ernesto (1995) (see Fig. 1). During magma flow, the larger 
surfaces of magnetic minerals align approximately parallel 
to the dyke, while the longer dimensions orient parallel to 
the magma flow direction. The second and much less fre-
quent type is characterized by the approximately perpen-
dicular orientation of magnetic foliation to the dyke plane 
and magnetic lineation parallel to the dyke (intermediate 
fabric of Rochette et al. 1991, Type II fabric of Raposo 
and Ernesto 1995; Fig. 1). This orientation may originate 
through a compaction of a static magma column along 
the dyke and the magnetic minerals reorient with their 
larger surfaces perpendicular to the flow direction (Park 
et al. 1988; Bates and Mushayandebvu 1995; Raposo and 
Ernesto 1995). The third, scarce type is characterized by 
the magnetic foliation and magnetic lineation perpendicu-

1. Introduction

Magma ascent and emplacement in dykes is one of 
important mechanisms of the mass transport within the 
Earth’s crust and the upper mantle. Structural aspects of 
this mass transfer can be advantageously studied using 
the anisotropy of magnetic susceptibility (AMS), which is 
a rapid and efficient geophysical (petrophysical) method 
for investigation of the preferred orientation of magnetic 
minerals (magnetic fabric) in rocks (for more details see 
Tarling and Hrouda 1993). This method is very sensitive 
and extremely fast (an order of magnitude faster than 
the classical methods of structural analysis). In addition, 
there are extensive data-bases of the AMS data in various 
volcanic bodies and dykes (for summary see Cañón–
Tapia 2004; Raposo 2011) and their deformed equivalents 
(e.g., Henry 1977; Hrouda and Přichystal 1995).

In dykes, the most common magnetic fabric type is 
characterized by the magnetic foliation approximately 
parallel to the dyke plane and the magnetic lineation, also 
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lar to the dyke. This type was termed reverse by Rochette 
et al. (1991) or inverse by Raposo (2011) or Type III by 
Raposo and Ernesto (1995) (Fig. 1). This magnetic fabric 
is attributed to secondary processes such as hydrothermal 
alteration (Rochette et al. 1991) or to single domain effect 
if very small magnetic grains carry the AMS (Stephenson 
et al. 1986). There is also a fourth type showing almost 
random orientations of magnetic foliations and lineations, 
which may result from very complex flow patterns or 
from severe post-magmatic changes of magnetic minerals 
(Hrouda 1985; Raposo 2011).

The relationship between magnetic fabric and dyke 
orientation described in preceding paragraph was revealed 
through investigation of crustally derived intermediate to 
mafic dykes. Much less information is available about 
magnetic fabric in mafic and ultramafic ultrapotassic dykes 
(e.g. Holub et al. 2012; Machek et al. 2014) generated 
from the mantle (e.g. Edgar and Mitchell 1997; Guo et al. 
2006; Chalapathi Rao and Srivastava 2012; Gupta 2015).

The (ultra-) potassic dykes are abundant late members 
of the Central Bohemian Dyke Swarm spatially associ-

ated to the Variscan Central Bohemian Plutonic Complex 
(CBPC) but also cut the adjacent parts of the upper-crustal 
Teplá–Barrandian Unit and mid- to lower crustal western 
Moldanubian Zone (Fig. 2). The Central Bohemian Dyke 
Swarm has an asymmetric area of extent, elongated pre-
dominantly in the NNE–SSW direction along the border 
between western Moldanubian and Teplá–Barrandian 
zones. The individual dykes are approximately perpen-
dicular to the asymmetric Central Bohemian Dyke Swarm 
and are mostly perpendicular to the regional fabrics in host 
units. The studied dykes penetrate the older medium- and 
high-K calc-alkaline granitoid rocks of the CBPC dated at 
354.1 ± 3.5 Ma (Janoušek et al. 2004) and 346.4 ± 1.1 Ma 
(Janoušek et al. 2010), respectively. Concurrently they 
must be older than the emplacement of the Tábor Pluton 
(dated at 336.9 ± 0.6 Ma; Janoušek et al. 2013). This means 
that despite the extensive area of occurrence and composi-
tional variations these dykes show only a limited variation 
in age (~346 to 337 Ma; Holub 1997; Holub et al. 1997a). 

In this paper we discuss the petrology and AMS of 
the dykes of calc-alkaline and potassic lamprophyres and 
related rocks of the Central Bohemian Dyke Swarm. This 
study aims to analyse the magma ascent and emplacement 
during the dyke formation that occurred along the western 
border of the Moldanubian Zone at the contact with the 
Teplá–Barrandian Unit. This event dated the final stage of 
regional ~WNW–ESE convergence and crustal exhumation 
that occurred at around 340 Ma (e.g. Schulmann et al. 2009).

2. Geological setting

2.1. Metamorphic and magmatic units  
hosting the dyke swarm

2.1.1. Teplá–Barrandian Unit

The Teplá–Barrandian Unit consists of low- to medium-
grade Neoproterozoic metasediments, originally forming 
a part of the Cadomian accretionary wedge, later intruded 
by Cambro–Ordovician granitoids and containing un-
metamorphosed mid-Cambrian to mid-Devonian volcano-
sedimentary sequences (for review see Chlupáč et al. 1998; 
Schulmann et al. 2009; Žák et al. 2014; Hajná et al. 2017). 

2.1.2. Moldanubian Zone

The Moldanubian Zone represents exhumed lower- to 
mid-crustal orogenic root that builds up the internal part of 
the Variscan orogenic belt in central Europe (Fig. 2). The 
Moldanubian Zone experienced polyphase metamorphism 
and complex deformational history (e.g. Franke 2006; 
Schulmann et al. 2009; Faryad et al. 2010; Lardeaux et al. 
2014). In general, the overall structure of the orogenic root 
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Fig. 1 Schematic sketch of variable types of magnetic fabrics in dykes. 
Dyke plane is denoted by vertical great circle in grey. Equal-area pro-
jection on lower hemisphere. Adapted from Raposo and Ernesto (1995).
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resulted from stacking of several lithotectonic units at ~360 
to 345 Ma followed by HT/LP metamorphism, anatexis and 
late-Variscan wrench tectonics (for review see Schulmann et 
al. 2009; Žák et al. 2014). The Moldanubian Zone consists 
of metasedimentary sequences of Neoproterozoic to Lower 
Palaeozoic protolith age (Košler et al. 2014) dominated by 
sillimanite–biotite (± cordierite) paragneisses to migmatites 
with variable presence of small bodies of metaquartzites, 
marbles, calc-silicate rocks, graphite-bearing schists and 
amphibolites (e.g. Urban and Synek 1995). 

The Variscan geodynamic evolution in the Moldanu-
bian Zone was characterized by 380 to 335 Ma subduc-
tion–collision tectonics and metamorphism, magmatic 
activity, and fast exhumation and cooling from ~346 to 
335 Ma onward (e.g. Schulmann et al. 2009; Dörr and 
Zulauf 2010; Žák et al. 2012, 2014; Faryad et al. 2013). 

2.1.3. Central Bohemian plutonic Complex 
(CBpC)

Syn-collisional Late Devonian–Early Carboniferous (~370 
to 340 Ma) crustal thickening broadly overlapped with the 

emplacement of medium- and high-K calc-alkaline, I-type 
plutons of the prevailing part of the CBPC (Holub et al. 
1997a, b; Žák et al. 2011). The CBPC crops out along 
significant tectonic boundary between the upper-crustal 
Barrandian Unit (eastern Teplá–Barrandian Zone) and 
high-grade western part of the Moldanubian Zone (WMZ). 
It covers an area of about 3,000 km2 and comprises a 
number of various granitoid and subordinate mafic rocks 
that can be divided into several suites (e.g. Janoušek et al. 
1995, 2000; Holub et al. 1997b; Žák et al. 2005b).

Widely distributed are mainly medium-K calc-alkaline 
rocks (quartz diorites to granodiorites of the Sázava 
Pluton) dated by conventional zircon U–Pb method to 
354.1 ± 3.5 Ma (Janoušek et al. 2004). The high-K to 
shoshonitic rocks (monzogabbros, quartz monzonites to 
granodiorites of the Blatná Composite Pluton) gave the 
SHRIMP U–Pb zircon age of 346.4 ± 1.1 Ma (Janoušek 
et al. 2010). The ultrapotassic rocks (melasyenites to 
melagranites of the durbachitic Milevsko and Tábor 
plutons) were dated at 343 ± 6 Ma by Pb–Pb zircon 
evaporation (Holub et al. 1997a) and at 336.9 ± 0.6 Ma 
by conventional U–Pb dating of zircon (Janoušek et al. 
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2013), respectively. Rapid exhumation and cooling of the 
lower- to mid-crustal level at ~343 to 337 Ma was associ-
ated with formation of one of the largest calc-alkaline and 
(ultra-) potassic lamprophyre dyke-swarms in the Central 
European Variscides (e.g. Žežulková 1982; Holub et al. 
1995, 1997b, 2012; Janoušek and Holub 2007). 

2.2. Central Bohemian Dyke Swarm 

The Central Bohemian Dyke Swarm (Fig. 2) has been 
emplaced predominantly into older magmatic units of 
the CBPC, but also into adjacent parts of the Teplá–Bar-
randian a Moldanubian zones (Žežulková 1982; Holub et 
al. 1997b, 2012). The composition of these dykes varies 
from mafic to felsic and from calc-alkaline (spessartites, 
kersantites, gabbrodiorite to granodiorite porphyries) to 
(ultra)-potassic (minettes, vaugnerites and melasyenite 
to melagranite porphyries). The latter dykes reveal geo-

chemical similarities to the (ultra-) potassic (durbachitic) 
plutonic rocks (Holub 1997; Holub et al. 1997b). 

The overall occurrence of the Central Bohemian Dyke 
Swarm defines a rectangle c. 115 km long stretched ap-
proximately in the NNE–SSW direction from northeast-
ern flank of the CBPC to its southwestern tip (Fig. 2). 

The calc-alkaline spessartite to gabbrodiorite dykes 
were emplaced mainly into the oldest granitoids of the 
CBPC (medium-K calc-alkaline Sázava Pluton) and also 
into the adjacent upper-crustal Teplá–Barrandian Zone 
(Fig. 2). The average thickness of these dykes is ~1 to 6 
meters. Prevailing intrusive contacts are steep and mostly 
discordant with respect to the regional fabrics in host 
rocks (Fig. 3a). The orientation of the dykes is mainly 
E–W to NW–SE; rarely, also NE–SW or N–S trending 
intrusive contacts have been observed. 

All the (ultra-) potassic dykes (minettes, vaugnerites 
and melasyenite to melagranite porphyries) were emplaced 
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Fig. 3 Field photographs to show intrusive relationships of the dykes to host metamorphic rocks and fabric patterns. a – Originally steep discordant 
intrusive contacts between several kersantite dykes and host Neoproterozoic sequences of the Teplá–Barrandian Zone (Dobříš). b – Subparallel 
~E–W trending steeply dipping ultrapotassic dykes (minette and syenite porphyry) which are discordant to regional metamorphic foliation in the 
host migmatite of the western Moldanubian Zone (Nihošovice). c – Magmatic (flow) foliation in syenite porphyry dyke defined by planar preferred 
orientation of K-feldspars (Nihošovice). Hammer for scale. d – Folded metamorphic foliation (compositional banding) in migmatites of western 
Moldanubian Zone which is discordantly intruded by the dyke-swarm (Nihošovice). Coin for scale.
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into partly exhumed mid-crustal paragneisses to migma-
tites of the WMZ and into older intrusive bodies of the 
CBPC (medium-K calc-alkaline Sázava and high-K calc- 
Blatná suites dated at 354 and 346 Ma, respectively), but 
not into ultrapotassic plutons and younger intrusions of the 
CBPC c. 340–335 Ma old (Holub et al. 1997). 

The individual melasyenite to melagranite porphyries 
(U–Pb zircon age 337.87 ± 0.21 Ma; Kubínová et al. 
2017) are oriented W–E to WNW–ESE and are nearly 
vertical or steeply dipping southwards (Fig. 3b). Dyke 
thickness varies from 5 to 20 m, the lengths are often 
limited to less than 1–2 km, perhaps due to segmentation 
of dykes by younger faults. Horizontal distances between 
parallel porphyry dykes vary considerably being about 
0.5–1.0 km in districts with the highest density of dyk-
ing. These dykes show well-developed magmatic (flow) 
foliation, which is defined by planar preferred orientation 
of K-feldspar phenocrysts (Fig. 3c). External contacts 
of porphyry dykes are sharp and generally discordant 
to folded metamorphic foliations of host gneisses and 
migmatites (Fig. 3d). At southern margin of the CBPC, 
dykes of the same rock type are discordant to the fabric 
of the host granodiorites. 

Minettes are commonly parallel to porphyry dykes 
(Fig. 3b) and their field relations are comparable. 
However, owing to their apparently lower magma 
viscosity, minette dykes are generally much narrower, 
frequently with offshoots and strings. The most fre-
quent thickness ranges 0.5–1.5 m, only rarely exceed-

ing 2 meters. Their intrusive contacts are mostly sharp 
and discordant with respect to regional fabrics and 
older plutons. All ultrapotassic dykes have similar 
trend, ~W(WNW) to E(ESE), with steeply dipping 
intrusive contacts. Repeated intrusions of magma por-
tions from dykes of almost uniform strikes exemplify 
the long-lasting uniformity of the regional stress field 
with the least compressional stress oriented roughly 
N(NNE)–S(SSW) thus allowing a limited extension 
in this direction.

3. Analytical techniques

The oriented specimens were drilled in 14 selected 
dykes of the Central Bohemian Dyke Swarm using 
portable drilling machine and oriented using geological 
compass mounted on special orientating fixture (see 
Tab. 1).

The AMS was measured with the KLY-3S (Jelínek and 
Pokorný 1997) and MFK1-FA kappabridges (Pokorný et 
al. 2011) in the driving field 425 A/m peak at the operat-
ing frequencies 920 Hz and 976 Hz, respectively, using 
the 3D rotator in the latter instrument (Studýnka et al. 
2014), and the results were calculated by the SAFYR 
program (version 5). 

The mean bulk susceptibility (Km), degree of AMS (P) 
and shape of the AMS ellipsoid (T) are defined as follows 
(Nagata 1961; Jelínek 1981)

Tab. 1 Dykes of lamprophyres and related rocks investigated (location and geological characteristics)

Latitude Longitude Locality
No.

Locality
Name Rock Type Host Unit Thickness Orientation Mesoscopic fabric

49.80185 14.20024 ZR-1 Dobříš Kersantite TBZ 
Proterozoic Unit  8.5 m NW–SE

41/86, 60/85, no apparent

49.72086 14.01888 ZR-2 Příbram – Trhové 
Dušníky

Spessartite TBZ 
Proterozoic Unit ~3 m NE–SW

145/48 no apparent

49.62877 14.05309 ZR-3 Milín – Kojetín Spessartite CBPC 
Marginal granite 1.5 m NW–SE

47/88 no apparent

49.62538 14.05157 ZR-4 Milín W Minette CBPC 
Marginal granite 1.7 m NW–SE

60/85, 63/79 contact parallel

49.62688 14.05196 ZR-5 Milín E Minette CBPC 
Marginal granite 0.45 m N–S

90/89 no apparent

49.54967 14.10815 ZR-6 Zalužany – Kozárovice Minette CBPC 
Blatná Pluton 1.60 m W–E

170/85 no apparent

49.86089 14.51760 KV-KU Kamenný Újezdec Syenite  
porphyry

CBPC 
Sázava Pluton ~8 m WNW–ESE

27/62 contact parallel

49.84214 14.69152 KV-PS Poříčí nad Sázavou Minette CBPC 
Sázava Pluton 4 m NW–SE

51/88, 206/86 contact parallel

49.85915 14.66266 KV-Ne Městečko  – Nespeky Minette CBPC 
Sázava Pluton 1.5 m NW–SE

62/86 contact parallel

49.40026 13.70356 KV-C Újezd u Chanovic Minette CBPC
Blatná Pluton 8 m W–E  

186/81 no apparent

49.32149 13.53378 KV-NH Nalžovské Hory – 
Letovy

Syenite  
porphyry

CBPC
Blatná Pluton 7 m WNW–ESE 

194/87 contact parallel

49.18331 13.85323 KV-Ni Nihošovice Syenite  
porphyry Moldanubian Zone 21 m W–E

189/82  magmatic foliation

49.38048 14.05131 KV-Ma Malčice Syenite  
porphyry

CBPC
Blatná Pluton 6 m W–E

7/72, 358/84  magmatic foliation

49.88826 14.75448 KV-Se Senohraby Spessartite TBZ 
Proterozoic Unit  2.5 m NW–SE

not known no apparent

TBZ – Teplá Barrandian Zone; CBPC – Central Bohemian Plutonic Complex
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where k1 ≥ k 2 ≥ k3 are the principal susceptibilities, η1 = 
ln k1, η2 = ln k2, η3 = ln k3. 

The statistical evaluation of the AMS at individual 
localities was made using the ANISOFT program package 

Km = (k1 +k2 + k3)/3
P = k1 / k3
T = (2 η2 – η1 – η3)/( η1 – η3) = 2 ln F/ln P – 1
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(Jelínek 1978; Hrouda et al. 1990; Chadima and Jelínek 
2008). The orientation of magnetic foliations and mag-
netic lineations, the respective mean directions and cor-
responding confidence areas are presented in equal-area 
projections on the lower hemisphere in the dyke coordi-
nate system (dyke was rotated about its strike to vertical 
position and about the vertical axis to N–S position).

The magnetic minerals carrying the AMS were inves-
tigated through the Maximum Theoretical Paramagnetic 
Susceptibility (MTPS) method (Aydin et al. 2007) and 
through the susceptibility variation with magnetizing 
field, with operating frequency, and with temperature. 
The susceptibility was measured in the magnetizing fields 
ranging from 2 A/m to 700 A/m at the operating frequen-
cy 976 Hz using the automated mode of the MFK1-FA 
Kappabridge. It can be concisely characterized by the Vm 
parameter defined as follows (Hrouda et al. 2006):

Vm = 100(kmax – kmin)/kmin [%]

where kmax and kmin are the maximum and minimum sus-
ceptibilities, respectively, obtained during one measuring 
run. The susceptibility variation with operating frequency 
was investigated at the frequencies 976 Hz and 15,616 
Hz in the driving field 200 A/m. It can be represented 
quantitatively by the commonly accepted percentage loss 
of susceptibility (Dearing et al. 1996):

XFD = 100(kLF – kHF)/kLF [%]

where kLF and kHF are susceptibilities measured at low and 
high frequencies, respectively. The susceptibility variation 
with temperature was measured on coarsely powdered pilot 
specimens at –194 to 0 °C, 25 to 700 °C (heating curve) and 
back to 40 °C (cooling curve), and then again between –194 
and 0 °C, using the CS-L Cryostat, CS-4 Furnace (Parma 
et al. 1993) and the MFK1-FA Kappabridge. The Curie 
temperatures were determined using the Petrovský and 
Kapička (2006) method looking for the beginning of the 
paramagnetic hyperbola exactly at the Curie temperature.

4. Petrology

The selected 14 dykes of lamprophyres and related rocks 
show a compositional range from calc-alkaline to (ultra) 
potassic. Most dykes are represented by one rock type, but 
texturally they may change from relatively coarse-grained 
in the core to fine-grained or even to aphanitic variety at 
the contact with the host lithology. In one case (locality of 
Dobříš), a composite dyke, formed by symmetric zones of 
three rock types, is present (Holub 2003). Based on modal 
composition and textures, the rocks from selected dykes can 
be classified into four groups as outlined below.

4.1. The composite dyke from Dobříš

The overall thickness of the dyke is about 8.5 m and it 
consists of three symmetric zones. The dyke is dominated 
by the outermost kersantite (Fig. 4a) that is separated 
from c. 1 m thick axial hornblendite zone by a thin tran-
sitional zone of spessartite composition. In general, there 
are gradual transitions between individual zones and the 
grain size of mafic minerals increases inwards. The whole 
dyke is characterized by ocellar texture, with the spherical 
ocelli filled by carbonate and partly by quartz. In addition 
to clinopyroxene phenocrysts with spinel inclusions, the 
kersantite contains pseudomorphs of talc after olivine. 
Spinel is also present in the talc pseudomorphs. The matrix 
is fine-grained and consists of plagioclase, clinopyroxene, 
biotite and small amounts of quartz, carbonate and acces-
sory apatite and opaque phases. In addition to high am-
phibole content, the hornblendite contains pseudomorphs 
after olivine, clinopyroxene, plagioclase, biotite and spinel. 
The amphibole is magnesio-hornblende and shows optical 
zoning with green-brown cores and green rims. 

4.2. Spessartite

It is a dark-grey, medium- to fine-grained rock dominated 
by amphibole, biotite and plagioclase with minor alkali 
feldspar, secondary chlorite, actinolite, carbonate and 
quartz (Fig. 4b). Spessartite from Dobříš contains also di-
opsidic augite and pseudomorphs of talc after olivine. Am-
phibole forms euhedral prismatic phenocrysts up to 4 mm 
long. It is magnesio-hornblende–tschermakite that is partly 
replaced by actinolite, chlorite or overgrown by biotite. 
The matrix is formed by biotite, plagioclase and amphi-
bole. Biotite is very fine-grained and occurs in the matrix. 
Apatite, Fe–Ti oxides and chromium spinel are common 
accessory phases. Spessartite from Milín (Fig. 4b) contains 
xenocrysts of quartz within plagioclase, amphibole and 
biotite matrix. The quartz appears as monocrystals but it 
forms round grains similar to vesicles. 

4.3. Minette

Minette is a dark-grey, fine-grained and porphyritic rock 
with hypidiomorphic texture. The grain size usually 
decreases towards the outer contact with the host rocks, 
where it becomes glassy or more aphanitic in appear-
ance. Olivine and/or clinopyroxene phenocrysts are typi-
cally subhedral to euhedral and c. 1 mm in size. Olivine 
phenocrysts are replaced by talc. The matrix consists of 
biotite (phlogopite), alkali feldspar, amphibole, and small 
amounts of albite and calcite. In cases, the minettes have 
amygdaloidal texture; the vesicles are filled by calcite 
(Fig. 4c). Biotite and amphibole may define magmatic 
foliation in the rock (Fig. 4d). Apatite, titanite and Fe–
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Ti oxides can occur as accessory phases. Amphibole 
is actinolite and it is mostly formed by replacement of 
clinopyroxene. 

4.4. Quartz syenite to melagranite porphyry

This is a grey, fine-grained porphyritic rock dominated by 
plagioclase or K-feldspar with biotite and amphibole. In 
cases, it may contain pseudomorphs of talc after olivine, 
rimmed by biotite (Fig. 4e). Euhedral to subhedral K-
feldspar phenocrysts are up to 6 mm in size. Amphibole 
occurs as euhedral, prismatic phenocrysts up to 5 mm 
long (Fig. 4f). It is usually actinolite, which formed by 
replacement of clinopyroxene or possibly also of primary 
hornblende. The feldspar laths and prismatic amphibole 
phenocrysts show locally a magmatic flow alignment. 
The matrix is formed by plagioclase and/or alkali feld-
spar, biotite, occasionally amphibole and rare quartz. 
Accessory phases are Fe–Ti oxides and apatite.

5. Whole rock geochemistry

Based on the TAS diagram (Le Bas et al. 1986), the 
above-mentioned four groups range from basalt, through 
basaltic trachyandesite to trachyte/trachydacite (Fig. 5a). 
The mafic varieties (hornblendite, spessartite and kersan-
tite) show calc-alkaline affinity, while the minette and 
quartz syenite porphyry belong to high-K calc-alkaline 
series or, more commonly, shoshonite series (Fig. 5b). 
A continuous compositional change exists in the MgO, 
FeO and CaO variations, where all three oxides decrease 
from hornblendite and spessartite/kersantite to minette 
and quartz syenite porphyry (Fig. 5c–d). Both FeO and 
CaO show positive correlation with MgO. 

6. Magnetic mineralogy

The mean volume susceptibility of the dykes investigated 
is variable, ranging from the order of 10–4 to the order of 
10–2 (Fig. 6, Tab. 2). The MTPS method, which calculates 
the rock paramagnetic susceptibility from the Fe and Mn 
contents obtained from the whole-rock chemical analyses, 
shows that the contribution of paramagnetic minerals to the 
whole-rock susceptibility is relatively low, ranging from 
0.2 × 10–3 to 0.7 × 10–3. Consequently, in weakly magnetic 
dykes (Km < 0.7 × 10–3), the susceptibility can be signifi-
cantly affected by paramagnetic minerals, while in the 
dykes with higher susceptibility the ferromagnetic minerals 
play a more important, sometimes even dominant, role.

The susceptibility variation with field is either non-
detectable practically (Fig. 7a), very weak (Fig. 7b), or 
even very strong (Fig. 7c). The mean values of the Vm 
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parameter for individual dykes are presented in Tab. 2. 
Among ferromagnetic minerals sensu lato, pure magnetite 
shows virtually field-independent susceptibility, while in 
titanomagnetite, pyrrhotite and hematite the susceptibility 
may be clearly field-dependent even in low fields used in 
common AMS meters (e.g., Worm et al. 1993; Jackson et 
al. 1998; Hrouda 2002, 2006; de Wall and Nano 2004). 
From this point of view, none or very weak susceptibility 
variation of most specimens investigated may indicate 
presence of more or less pure magnetite. The suscepti-
bility vs. field curves of the specimens from the locality 
ZR-3 showing strong susceptibility increase with field 
resembling curves of some types of pyrrhotite (cf. Hrouda 

et al. 2006, 2009). This conclusion is supported by very 
strong variation of out-of-phase susceptibility with field 
(Fig. 7d). The out-of-phase susceptibility originates in 
materials in which, if measured in alternating magnetic 
field, the magnetic response delays behind the magnetizing 
field. The susceptibility may then be formally resolved into 
the component that is in-phase (almost exclusively used 
in rock magnetism) and that which is out-of-phase with 
respect to magnetizing field. The strong field variation of 
the out-of-phase component is characteristic of minerals 
with wide hysteresis loop such as pyrrhotite.

The grain size of ferromagnetic sensu lato minerals 
can be assessed, at least partially, through frequency-de-
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pendent susceptibility. Namely, the frequency-dependent 
susceptibility is effectively zero in multi-domain (MD) 
and single-domain (SD) grains of magnetite (titanomag-
netite) as well as in its ultra-fine superparamagnetic (SP) 
grains (e.g. Dearing et al. 1996; Hrouda 2011). On the 
other hand, it can be clearly non-zero in magnetically 

viscous grains that are on the transition from SP state to 
SD state. The XFD parameter in the dykes investigated 
ranges from 2.5% to 6.5%. If we realize that the detec-
tion limit of the XFD parameter is less than 1% (Hrouda 
and Pokorný 2011) and the XFD parameter is mostly less 
than 15% (Dearing et al. 1996; Eyre 1997; Worm 1998), 
it is obvious that the dykes investigated contain magnetic 
grains that are on the transition from SP to SD states in 
non-negligible amounts. Assuming that the magnetic par-
ticles show continuous size distribution, it is likely that 
the rocks investigated contain also SD particles.

The heating curves mostly show one acute susceptibil-
ity decrease due to Curie temperature at 500–600 °C (Figs 
8a–d). The Curie temperatures that are near 585 °C corre-
spond to those of magnetite, whose presence is confirmed 
by the susceptibility decrease at c. –155 °C at Verwey 
transition, which is typical of relatively pure magnetite 
(Dunlop and Özdemir 1997). The Curie temperatures 
less than 550 °C probably indicate Ti-richer Fe–Ti ox-
ides. In the dyke ZR-1, there are three susceptibility 
decreases on the heating curves, at 335 °C, c. 500 °C, 
and 585 °C (Fig. 8b). The last temperature probably 
points to magnetite, the second may reflect the presence 
of titanomagnetite. The susceptibility decrease at 335 °C 
may indicate Fe–Ti oxide with relatively high content of 
Ti or pyrrhotite. As the Curie temperature of pyrrhotite 
is usually very near 325 °C, the first interpretation seems 
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more likely. It is interesting that the curves of kersantite/
spessartite and hornblendite are very similar thus sup-
porting the observation of Holub (2003) of gradual tran-
sitions between individual rock types within this dyke. 
In the dykes ZR-3 and KV-C, the heating susceptibility 
vs. temperature curves show the most conspicuous and 
acute susceptibility decrease due to Curie temperature at 
327 and 322 °C, respectively, and very minor decreases 
at 505 and 575 °C, respectively (Fig. 8c). The former 
undoubtedly indicates pyrrhotite and the latter probably 
Fe–Ti oxides to magnetite. 

The cooling curves may run higher than the heating 
ones (see Fig. 8d, Tab. 2). This difference indicates that 
the assemblage of magnetic minerals is rather unstable 
and prone to activating various magnetic phases due 
to specimen heating. This may for instance result from 
post-magmatic alterations during magma cooling or from 
the effect of epigenetic fluids. On the other hand, the 
cooling curves may also run lower than the heating ones 
(see Fig. 8d, Tab. 2). This may indicate dissolution of the 
earlier separated phases resulting in the creation of a less 
magnetic phase.

In weakly magnetic specimens, the most conspicuous 
feature of the heating curves is paramagnetic hyperbola 
(for example see the low temperature segment of the 
curve KV-C in Fig. 8c). The paramagnetic susceptibili-
ties determined through resolution of the susceptibility 
vs. temperature curve into paramagnetic hyperbola and 
ferromagnetic straight line using the method by Hrouda 
(1994) are mostly in the order of 10–4, thus being of the 
same order as those obtained by the MTPS method.

Magnetite is dominant contributor to the rock suscep-
tibility and AMS in strongly magnetic dykes ZR-1, ZR-4, 
ZR-5, KV-KU, KV-PS, and partially also KV-Ne. As the 
magnetite AMS is controlled by its grain shape, the rock 
AMS is determined by the magnetite grain-shape preferred 
orientation. Even though there may be some other mag-
netic phases in the above dykes, their contributions to the 
rock susceptibility are relatively low. In the dyke ZR-3, 
the AMS is dominantly carried by pyrrhotite preferentially 
oriented by mineral lattice. In weakly magnetic dykes, the 
AMS signal is often dominated by paramagnetic mafic 
silicates; sometimes the magnetic fabric is composite, due 
to both paramagnetic minerals and Fe–Ti oxides. 
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7. Magnetic fabrics

7.1. Dobříš composite dyke

The degree of AMS is very low in all rock types (Fig. 9a). 
The shape of the AMS ellipsoid ranges from prolate to 
oblate in kersantite, from neutral (on the transition be-
tween prolate and oblate) to moderately oblate in spes-
sartite and from moderately prolate to moderately oblate 
in hornblendite (Fig. 9).

Both the magnetic foliations and lineations are al-
ways relatively well defined. In the central hornblendite, 
the magnetic foliation is approximately parallel to the 
dyke plane, while the magnetic lineation is horizontal 
and also parallel to the dyke plane (Fig. 9b). This fabric 
corresponds to the Type Ia. In kersantite, the magnetic 
foliation is sometimes oblique to the dyke plane but in 
the most specimens vertical and perpendicular to the dyke 
plane; the magnetic lineation is mostly perpendicular 
to the dyke (Fig. 9c). The magnetic fabric of the most 
specimens corresponds to the Type IIIb. In spessartite, 
both the magnetic foliations and magnetic lineations are 
virtually horizontal, approximately perpendicular to the 
dyke plane (Type IIIa; see Fig. 9d).

The fact that the magnetic fabrics are conspicuously 
different in the individual rock types excludes a pos-
sibility of post-magmatic origin and can be interpreted 
in terms of magma flow. The Type Ia magnetic fabric 

in central hornblendite that is the most frequent in the 
intermediate and mafic dykes the world over, evidently 
indicates relatively free flow during which the magnetic 
minerals orientate parallel with their larger surfaces to 
the dyke and with their longer dimensions parallel to the 
magma flow. The horizontal flow direction indicates that 
the hornblendite part of the dyke was not fed by vertical 
flow along the entire dyke length, but only locally and 
then the magma propagated through horizontal flow.

In kersantite and spessartite dykes, the magnetic foliations 
are perpendicular to the dyke, being vertical in kersantite 
and horizontal in spessartite, and the magnetic lineations 
are also perpendicular to the dyke and approximately hori-
zontal. These fabric types belong to the most controversial 
Types IIIa and b, the origins of which are disputable. The 
magnetic foliation perpendicular to the dyke could indicate 
the magma movement mechanism hypothesized by Raposo 
and Ernesto (1995) for the Type II, i.e. compaction of a static 
magma column along the dyke in which the magnetic min-
erals reoriented with their larger surfaces perpendicular to 
the magma movement. If true, the magma movement would 
be horizontal in kersantite and vertical in spessartite. The 
origin of magnetic lineations perpendicular to the dyke is 
extremely difficult to explain. One explanation would be that 
of Rochette et al. (1991) ascribing this magnetic lineation 
to secondary processes such as hydrothermal alteration. The 
other assumes squeezing of some portions of magma due 
to the pressure of the other portions of magma resulting in 

thickening of the dyke and faint 
magma movement in the direc-
tion perpendicular to the dyke.

7.2. Minette dykes

The magnetic fabric of minette 
dykes was investigated at six 
localities. The degree of AMS 
is mostly very low, only in the 
KV-C dyke it ranges from very 
low to moderately high (Fig. 
10a). The shape of the AMS el-
lipsoid is mostly oblate, prolate 
one was found only in a few 
specimens in ZR-4 and KV-C 
dykes (Fig. 10a). In each of the 
minette dykes investigated, the 

a) ZR-1 – Dobříš

1.0

0.5

0.0

–0.5

–1.0

S
h
a
p
e
 p

a
ra

m
e
te

r 
(T

)

X

Y–Y

–X

X

Y–Y

–X

X

Y–Y

–X

b) ZR-1 Hornblendite c) ZR-1 Kersantite d) ZR-1 Spessartite

N = 9 N = 20 N = 11

1.005

1.015

1.02 1.025 1.03

1.01

ZR-1 Hornblendite
ZR-1 Spessartite
ZR-1 Kersantite

Degree of AMS (P)

DMax Min Average

Fig. 9 Pattern of the AMS in the com-
posite dyke ZR-1 (Dobříš). a – Mag-
netic anisotropy P–T plot. Orientations 
of magnetic lineations (squares) and 
magnetic foliation poles (circles): in 
hornblendite (b), kersantite (c) and 
spessartite (d). Equal-area projection 
on lower hemisphere. Ellipses represent 
confidence areas.



Magnetic fabrics of lamprophyres and related rocks, Bohemian Massif

347

magnetic foliation of either almost all (dykes ZR-5, ZR-6, 
KV-Ne) or at least majority of specimens (dykes ZR-4, 
KV-PS, KV-C) is near the dyke plane (Fig. 10b–g). Some 
dykes (ZR-4, KV-PS, KV-C) yielded also a few specimens 
with magnetic foliation at a large angle to the dyke plane, 
being sometimes even perpendicular. The magnetic linea-
tion is roughly parallel to the dyke plane in all dykes, be-
ing virtually vertical in two (ZR-4, KV-PS), horizontal in 
three (ZR-5, ZR-6, KV-Ne), and ranging from vertical to 
horizontal in one (KV-C) of them (Fig. 10b–g). 

The magnetic fabric in the majority of specimens cor-
responds to the Type Ia. This type evidently originates 
from relatively free flow during which the magnetic 
minerals orientate parallel with their larger surfaces to 
the dyke margins and with their longer dimensions 
parallel to the magma flow. The vertical orientation of 
magnetic lineation in the dykes ZR-4 and KV-PS indicate 
vertical magma flow. The horizontal magnetic linea-
tions in the dykes ZR-5, ZR-6, 
KV-Ne probably document that 
these dykes were fed by verti-
cal flow only locally and then 
the magma propagated through 
horizontal flow. In some dykes, 
there are rare specimens with 
magnetic foliation roughly per-
pendicular to the dyke plane. 
They suggest that the magma 
movement need not be repre-
sented by free flow in the entire 
volume of the dyke, but could 
have been rather represented 
by compressive deformation 
in which the magnetic miner-
als reorient with their larger 
surfaces perpendicular to the 
magma movement. In the KV-C 
dyke one can observe gradual 
transitions from one mechanism 
to the other.

7.3. Quartz syenite  
to melagranite  
porphyry dykes

The magnetic fabric of syenite 
porphyry dykes was investi-

gated at four localities. The degree of AMS is very low 
in most specimens, only rarely slightly higher (mainly in 
KV-Ma dyke) (Fig. 11a). The shape of the AMS ellipsoid 
ranges from very prolate to almost perfectly oblate (Fig. 
11a). In three dykes (KV-KU, KV-NH, KV-Ma), the 
magnetic foliation is relatively near the dyke plane (Figs 
11b–d; 12a–b). At two localities (KV-Ni and KV-Ma), 
the magnetic foliation scatters widely, creating a wide 
girdle in its poles, at a large angle with the dyke margins 
(Figs 11d–e; 12a–b). The magnetic lineation is very 
roughly parallel to the dyke plane in all four dykes, being 
virtually horizontal in KV-NH and creating girdles very 
near to dyke plane in KV-KU and KV-Ma (Fig. 11b–d). 
In the dyke KV-Ni, the magnetic lineations of the most 
specimens are sub-horizontal or show only mild plunges, 
even though there are also a few specimens that plunge 
moderately to steeply (Figs 11e, 12a). In the dyke KV-
NH, the magnetic fabric corresponds well to the Type Ib 
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fabric which evidently originated from relatively free 
flow. The horizontal magnetic lineations indicate that 
the flow was horizontal. The magnetic fabric in the dykes 
KV-KU and KV-Ma in principle also corresponds to the 
Type I (in fact transition between Type Ia and Type Ib). 
However, the mean magnetic foliation differs from the 
dyke azimuthally by c. 20°. We ascribe this difference 
rather to measurement error in the dyke orientation due 
to local unevenness of the dyke plane rather than to the 
flow oblique with respect to the dyke plane. The girdle 
in magnetic lineations suggests that the magma flow 
may have been complex, spatially varying from vertical 
to horizontal. 

7.4. Spessartite dykes

In addition to the locality ZR-1 where spessartite occurs 
in a composite dyke consisting of three rock types (see 
Section 6.1) and whose degree of AMS is very low (see 
Fig. 9a), this rock was investigated in the dykes ZR-3 and 
KV-Se. In the dyke ZR-3, the degree of AMS is an order 
of magnitude higher but in the host granite it is very low. 
The dyke KV-Se (Fig. 13a) shows highly variable, low to 
high, degree of AMS. 

The shape of the AMS ellipsoid ranges from mod-
erately prolate to strongly oblate at all three localities 
(Fig. 13a). In the most strongly anisotropic specimens, it 
is neutral to weakly prolate. Both the magnetic foliation 
and lineation in the dyke ZR-3 are oblique with respect to 

the dyke (Fig. 13b). The magnetic foliation and lineation 
in the host granite are almost precisely perpendicular to 
the dyke (Fig. 13c). In KV-Se dyke, both magnetic folia-
tion and magnetic lineation are perpendicular to the dyke 
margins (Type IIIb; Fig. 13d). In neither of the spessartite 
dykes investigated, the magnetic fabric corresponds to the 
generally most common Type I. It means that the move-
ment of the spessartite magma did not resemble the free 
flow known mainly from minette magmas but was much 
more complex.

8. Discussion

Almost two thirds of the dykes investigated show Type 
I magnetic fabric characterized by approximate parallel-
ism of the magnetic foliation and magnetic lineation to 
the dyke plane. The magnetic lineation is mostly nearly 
horizontal and only exceptionally vertical. This magnetic 
fabric type is commonly assumed to originate through 
magma flow within the dyke (e.g. Raposo 2011). It is 
interesting that the flow directions inferred from magnetic 
lineations are horizontal and only exceptionally verti-
cal. Consequently, the dyke magma propagated through 
horizontal flow, which may indicate that the dykes inves-
tigated are not located above the magma source.

In the Dobříš composite dyke, the innermost horn-
blendite shows Type Ia magnetic fabric, the outermost 
spessartite Type IIIa, and the kersantite in between 

Type IIIb. Only hornblendite 
therefore experienced relatively 
free flow of magma, while the 
mechanisms of kersantite and 
spessartite magma movement 
were more complex. 

The magnetic fabric in ker-
santite is precisely inverse to 
that in hornblendite. The first, 
geological explanation of this 
phenomenon assumes dramati-
cally different magma move-
ment in both rock types and the 
second, physical explanation 
assumes that the grains of the 
magnetic minerals carrying the 
AMS were very small, virtually 
single domain (SD) particles in 
one of the rock types. As shown 
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by Potter and Stephenson (1988) for example, the maxi-
mum susceptibility is along the minimum axis, while the 
minimum susceptibility is along the maximum dimension 
of a SD particle. 

Were the second, physical explanation true, the mag-
netic particles would define the most frequent fabric 
type whereby the larger planes of magnetic minerals are 
aligned parallel to the dyke plane and their longer dimen-

sions are parallel to the flow direction within the dyke. 
However, the susceptibility variation with temperature is 
very similar in hornblendite and kersantite. In addition, the 
frequency-dependent susceptibility is in these rock types 
relatively low (mostly XFD = 2–3 %) indicating that the 
ultrafine magnetically viscous particles on transition from 
superparamagnetic (SP) to SD state are indeed present, 
albeit in relatively small amounts. Assuming grain-size 
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distribution continuous from SP, through SD to MD, and 
realizing that the susceptibility of SD particles is lower 
than that of MD or SP particles, the relatively low values 
of frequency-dependent susceptibility may indicate that the 
SD particles are not abundant enough to dominate the rock 
magnetism. All this makes the physical explanation very 
unlikely and the above phenomenon should be ascribed to 
different mechanisms in detail magma movement.

In spessartite, the magnetic fabric is of the Type IIIa. 
We assume that the magma flow was not free because the 
injected joint was not fully open or was filled in with ini-
tial portions of magma. Consequently, the magma move-
ment resembled that of forceful injection. The magnetic 
minerals were then orientated with their larger surfaces 
perpendicular to the magma movement and the magnetic 
foliation was horizontal. The existence of magnetic lin-
eations perpendicular to the dyke can be explained by a 
mechanism when joint, gradually filled with the magma, 
was simultaneously widened and the magma also flew 
horizontally on a small scale. 

The studied dykes are mostly perpendicular to the elon-
gation of the CBPC as well as to magmatic to subsolidus 
fabrics in individual plutons and regional metamorphic 
fabrics in the WMZ. In addition, the dykes are parallel with 
the direction of regional ~WNW–ESE crustal convergence 
during the main phase of the Variscan Orogeny at ~355 to 
340 Ma (e.g. Žák et al. 2005a, b, 2009; Schulmann et al. 
2009; Faryad and Žák 2016). Therefore, we can assume 
that NW(W)–SE(E) trending extensional joints and accom-
panying dykes originated synchronously during dilatation 

(orogen arc-parallel stretching) which was perpendicular 
to their intrusive contacts. 

Analyses of fabric pattern and AMS have been ap-
plied for identification of the direction of initial magma 
flow through dykes (e.g. Varga et al. 1998; Geoffroy et 
al. 2002). In general, magnetic lineations are usually 
subparallel to the direction of magma flow (Callot et al. 
2001; Callot and Geoffroy 2004). Relics of steeply dipping 
magnetic lineations which have been identified mainly in 
the central parts of the dykes indicate an originally vertical 
flow direction during magma ascent after dyke propaga-
tion, mainly in marginal parts of the dykes. However, 
predominant subhorizontal magmatic lineation (0 to 40° 
to ~W to WNW) suggests changes in rate and direction 
of magma flow. The reason can be increasing viscosity of 
the magma (e.g. Petford 1996; Mathieu et al. 2008) and/
or effect of regional stress field (Féménias et al. 2004). 
Indeed, the regional stress conditions in the WMZ changed 
from the NW–SE compression to subvertical shortening of 
the crust due to exhumation of orogenic root domain (e.g. 
Verner et al. 2008; Žák et al. 2012). In addition, rare im-
brication of magnetic foliation (e.g. Geoffroy et al. 2002) 
with respect to the intrusive contacts of the dyke (e.g. at 
Nihošovice; Figs 11e, 12a) indicates the redirection of 
magma flow from east to west.

9. Conclusions

The investigations of magnetic fabrics in the calc-alkaline 
to (ultra)potassic lamprophyre 
dykes of the Central Bohemian 
Dyke Swarm (Bohemian Massif, 
Czech Republic) have drawn the 
following conclusions:

(a) Even though various 
magnetic phases, represented 
by various Fe–Ti oxides, were 
identified in the dykes investi-
gated, it is magnetite or low-Ti 
titanomagnetite that is evidently 
the principal carrier of rock 
susceptibility as well as of the 
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AMS. As the AMS of this mineral is controlled by the 
grain shape, the rock’s AMS reflects its grain-preferred 
orientation. The contributions of the other Fe–Ti oxides 
to the rock susceptibility are low. In one dyke, the pre-
dominating carrier of susceptibility is pyrrhotite, the 
AMS of which is controlled by the lattice-preferred ori-
entation of grains. The intensity of this effect depends on 
the pyrrhotite and magnetite/titanomagnetite proportions.

(b) The magnetic fabric in the most dykes is conformable 
to the dyke shapes. This corresponds to the most common 
type of magnetic fabric in dykes the world over (Type I; 
Raposo and Ernesto 1995), which no doubt originates 
through a magma flow, during which the larger surfaces of 
magnetic minerals orient approximately parallel to the dyke, 
while the longer dimensions orient parallel to the magma 
flow direction. It is considered to be relatively free flow 
that requires relatively open, likely extensional structures. 
The flow directions inferred from magnetic lineations are 
horizontal and only exceptionally vertical suggesting that 
the magma propagated through horizontal flow within the 
dyke. This may indicate that the dykes investigated were not 
located immediately above the magma source.

(c) In most spessartite dykes, both the magnetic fo-
liation and magnetic lineation are perpendicular to the 
dyke, thus corresponding to the magnetic fabric Type 
III of Raposo and Ernesto (1995). We assume that the 
magma movement had character of forceful injection. 
The larger surfaces of the magnetic minerals were ori-
ented perpendicular to the magma movement and the long 
dimensions of the same minerals oriented perpendicular 
to the progressively widened dyke. 

(d) In the Dobříš composite dyke, the innermost 
hornblendite shows Type Ia magnetic fabric, the outer-
most spessartite Type IIIa, and the kersantite located in 
between Type IIIb. Only hornblendite, therefore, indicates 
relatively free flow of magma, while the mechanisms of 
magma movement in kersantite and spessartite were more 
complex, possibly changing during the generation of that 
single composite dyke.

(e) Studied dykes were emplaced into already juxta-
posed the Teplá–Barrandian Zone, Central Bohemian Plu-
tonic Complex and exhumed western Moldanubian Zone 
at ~346 to 337 Ma. Identical orientation of dykes (steep 
intrusive contacts in W(NW)–E(SE) trend was caused 
by the regional stress field of ~WNW–ESE convergence 
(arc-parallel stretching) and subvertical shortening of due 
to crustal exhumation of the Variscan orogen root.
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