Review paper

Drill hole CS-1 penetrating the Cínovec/Zinnwald granite cupola (Czech Republic): an A-type granite with important hydrothermal mineralization

Miroslav ŠTEMPROK

Institute of Petrology and Structural Geology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic; miroslav.stemprok@natur.cuni.cz

The Sn–W deposit at Cínovec and Zinnwald (Eastern Krušné hory/Erzgebirge) is associated with a granite cupola of Late Variscan age intruded into the Teplice rhyolite. The 1596 m deep CS-1 drilling was completed in 1961–1963 at Cínovec in the center of the granite cupola. This paper reviews earlier and new petrological and geochemical data revealed by the CS-1 drill core. The drill-log showed that the upper granite zone of the cupola consists of lepidolite–albite granite grading continuously into zinnwaldite granite in fine-grained and medium-grained variants. Below 730 m depth, medium-grained, porphyritic lithian annite granite enclosing small bodies of porphyritic lithian annite microgranite was observed. Chemical analyses of the drill core are discussed in terms of increasing depth, significant textural variations and trace-element concentrations for As, Ba, Be, Bi, Mo, Nb, Rb, Sn, Th, U, Y, W, and Zr. The zinnwaldite/lithian annite transition in the granite profile is well demonstrated by the abrupt changes in Li, Fe and Ti concentrations with depth. High concentrations of Sn, W, and Bi are mainly confined to the greisen zones, associated with both sub-horizontal and steep fissure systems. As a consequence of subsolidus albitization, the pink coloration of lithian annite granite was changed to white-grey in the upper cupola zone above c. 730 m depth. The textural changes are interpreted as modifications of earlier microgranites by the later emplacement of medium-grained granites along sharp contacts. The major effect of subsolidus hydrothermal alteration is manifested by pervasive development of lepidolite and zinnwaldite at the expense of earlier lithian annite and by an intense albitization (Ab ~98 mol. %) reaching a depth of c. 730 m below the surface. The hydrothermal overprinting in the CS-1 drill core is interpreted to be caused by fluids derived from a deep lower crustal source, probably near the boundary with the mantle, as witnessed by the coexistence of lamprophyres and albite-rich granites in several ore districts of the Krušné hory/Erzgebirge with Li, Sn, and W mineralization.

Keywords: Cínovec/Zinnwald, A-type granite, zinnwaldite, lithian annite, rare-metal mineralization

Received: 5 June, 2016; accepted: 10 January, 2017; handling editor: V. Rapprich

The online version of this article (doi: 10.3190/jgeosci.226) contains supplementary electronic material.

1. Introduction

Rare-metal deposits (Sn, W, Mo, Ta and Nb) are spatially associated with felsic magmatism (Pirajno 2009 and references therein). Indeed, the original definition of S-type granites by Chappell and White (1974) suggests their association with tin mineralization. In-situ fractional crystallization of granitic melts has been advocated as a predominant explanation of rare-metal concentration in residual silicate melts and their evolving hydrothermal fluids (Groves and McCarthy 1978; Lehman 1982; Černý et al. 2005; Chappell and Hine 2006). Other mechanisms for rare-metal concentration invoked primary enrichment of a crustal source (Pollard et al. 1988; Romer and Kroner 2015) and concentration of some large-ion lithophile (LIL) elements in fluids/melts liberated from the lower crust in course of the granulite-facies metamorphism (Cuyney and Barbe 2014). More recently has been proposed the effect of pulses from the mantle interacting with the lower crust to form granitic magmatism and providing the addition of rare metals derived from the mantle (Štemprok and Seifert 2011).

According to the fractional crystallization hypothesis, compatible elements are progressively removed from a melt. Consequently smaller volumes of differentiated melt become enriched in incompatible components and volatiles, including water, which eventually exsolve. The dyke equivalents of albite-rich granitic rocks known locally as “ongonite” in Mongolia (Kovalenko et al. 1970), appeared at that time to support this hypothesis.

Fractional crystallization hypothesis differs from the metasomatic model of the origin of rare-metal granites developed by Jacobson et al. (1958) in anorogenic granites of Northern Nigeria and by Beus et al. (1962) in post-collisional settings on the territory of the former USSR. This mechanism accounts for the metasomatic overprinting of the endocontacts of mineralized granites
by external hydrothermal solutions to explain their enrichment in LILE and some rare metals.

In the present review, results from drill core CS-1 (Cinovec/Zinnwald) are being re-examined and the concept of a primary sodium-rich felsic melt called into question. Previous data are included, especially on (1) contacts between individual textural variants of granites, (2) major- and trace-element compositions, and (3) changes of Li–Fe mica compositions with depth. However, they are subject to detailed re-examination in the light of current hypotheses including the results of the recent study on ongonites from Mongolia (Dostal et al. 2015).

2. Geological setting of the Cinovec/Zinnwald granite cupola

2.1. Geological position in the Bohemian Massif

The studied Cinovec/Zinnwald cupola is located in the NW part of the Bohemian Massif in the Eastern Krušné hory/Erzgebirge. The crystalline basement includes Proterozoic and Paleozoic lithologies intruded by a sequence of Variscan granites forming the Krušné hory/Erzgebirge Batholith (KHEB). The Altenberg–Teplice caldera (ATC; Fig. 1) is a large elliptical collapse structure, 630 km² across, which contains a succession of felsic volcanic rocks and subvolcanic biotite granite intrusions (Mlčoch and Skácelová 2010; Walther et al. this issue). Various granite intrusions are hidden and their apical parts are observed near the surface and in drill cores of numerous drillings. According to geophysical and geological evidence, large subsurface accumulations of granitic rocks were emplaced in a NW–SE trending belt with the Cinovec granite cupola as the highest elevation of the hidden relief of the Cinovec/Krupka Pluton (Štemprok et al. 1994).

Fig. 1a – Geological position of the eastern Krušné hory/Erzgebirge area in the Bohemian Massif (white quadrangle); b – Geological map of the outcrop of Cinovec/Zinnwald granite cupola with the position of the drill hole CS-1; c – Geological map of the eastern Krušné hory/Erzgebirge from Dolejš and Štemprok (2001).
2.2. Petrography and modal composition of the granite cupola

The Li–Fe granites of the Cínovec/Zinnwald cupola form an outcrop of 1.4 × 0.3 km size covered by c. 10 m thick granite residuum and rock fragments. The drilling CS-1 was completed in the center of the granite outcrop in 1961–1963 (Fig. 1). The drill core has been the target of numerous studies in course of more than fifty years. The petrology, density, porosity and geochemistry of the granites were studied by Štemprok (1965), Chlupáčová and Štemprok (1965), Štemprok and Šulcek (1969). Additional mineralogical and geochemical data were presented in Rub et al. (1983, 1997, 1998), Cocherie et al. (1991), and Dolejš and Štemprok (2001). The compositions of rock-forming minerals including some accessory minerals were determined by electron microprobe analyses by Johan and Johan (2005), Johan et al. (2012) and Breiter and Škoda (2012). The results of the new sampling and new interpretation of chemical analyses were presented at workshop held in Prague in 2015 (Breiter et al. 2015a, b; Rambousek and Knésl 2015).

The drilling CS-1 made it possible to distinguish in the vertical profile the upper and lower granite suites essentially on the basis of dark mica composition and rock color (Štemprok 1965; Rub et al. 1983, 1998). Figure 2 shows granite textural variants in the core profile and the changes of modal composition with depth. The amount of orthoclase varies between 20 and 40 vol. %. Plagioclase represented exclusively by albite is unzoned, its amount is significantly different in the upper granites (up to ~35 vol. %) whereas in the lower suite it is 20–25 vol. %. The amount of quartz greatly varies from 20 to c. 50 vol. % and varies on a dm scale due to uneven distribution of quartz phenocrysts or quartz grain clusters. The amount of trioctahedral mica changes usually from 4 to 6 vol. %, with exceptions of the amounts below 1 vol. % in a zone between 300–350 m. The sum of modal quartz and feldspars reaches 90–95 vol. %, while quartz/feldspars ratio varies from 0.3 to ~1.2.

Figure 1 shows the outcrop of Li–Fe mica granites without distinction between lepidolite and zinnwaldite types. In the CS-1 drill core, the granitic rocks have been subdivided into the upper and lower suite granites (Rub et al. 1983). The upper suite consists of lepidolite or zinnwaldite-bearing granites in fine- (microgranitic) and medium-grained variants.

Fine-grained lepidolite–albite granite occurs in the apical part to a depth of c. 90 m and consists of albite (38–44 vol. %), quartz (28–35 vol. %), orthoclase (14–21 vol. %), sericite (5–10 vol. %) and of Fe lepidolite (1.5–2 vol. %). It contains rare Ta-enriched columbite, U microlite and struverite (Rub et al. 1998). Some quartz crystals enclose albite inclusions exhibiting a characteristic “snow flake” textures described by Beus et al. (1962) from apogranites or Kovalenko et al. (1970) from ongonites.

These granites are underlain by medium-grained zinnwaldite granite with a seriate texture. Orthoclase (29–41 vol. %) forms allotropic singular or twinned grains up to 5 mm across. Albite (29–34 vol. %) occurs in laths (0.2 to 1.5 mm) and is concentrated mainly in

Figure 1 Geological profile of the borehole with the distribution of rock-forming minerals (based on planimetric analyses in Štemprok 1965, values at 1527.3 m depth averaged). Notation: fgLG – fine-grained lepidolite granites and greisens, mgZG – medium-grained zinnwaldite granite, mg/pZG – alternation of medium-grained zinnwaldite granite and porphyritic microgranite, pZG – porphyritic zinnwaldite microgranite, mg-pBG – porphyritic medium-grained lithian annite granites, pBG – porphyritic lithian annite microgranite, f/mgBG – alternation of porphyritic lithian annite microgranite and porphyritic medium-grained lithian annite granite (Dolejš and Štemprok 2001). le – lepidolite, zw – zinnwaldite, lia – lithian annite.
interstices of quartz and orthoclase grains (3–5 mm), where it may form monomineral aggregates. Accessory minerals include topaz, fluorite, Hf-rich zircon, monazite, xenotime, thorite, columbite, pyrochlore, ilmeno-rutile, bastnäsite, synchisite and fluorite (Cocherie et al. 1991; Rub et al. 1998; Breiter and Škoda 2012; Fig. 3). In the granites of the ore zone cassiterite occurs in hypidiomorphic grains, accompanied by less abundant wolframite, scheelite, pyrite and sphalerite. Secondary minerals include sericite, kaolinite (dickite), hematite and calcite.

The predominant variety in the upper suite is medium-grained seriate zinnwaldite granite (Fig. 4a). Zinnwaldite microgranite is represented in the CS-1 drill core from 369 m downwards with several variants. They occur as 0.5 to 15 m thick interchanging with medium-grained zinnwaldite granite and as a continuous body from c. 450 to 530 m depth in the center of the cupola (Fig. 2). Such textural interplay of medium grained and fine-grained zones was repeated at a depth of 724–750 m. Contacts are usually sharp, but exceptionally they appear also gradational. Most of the contacts dip 30 to 45° but some are steeply inclined (70–80°). Microgranite is a compact dark grey rock consisting of quartz (32–40 vol. %), albite (29–37 %), orthoclase (20–27 %) and zinnwaldite (4–6 %; Fig. 4b–c). Quartz phenocrysts are up to 7 mm across, globular, or stubby columnar often with overgrowths of a younger quartz generation. Perthitic orthoclase forms singular, twinned grains and aggregates up to 5 mm in size. It encloses randomly orientated albite laths, 0.2–0.5 mm long. Secondary minerals are sericite, kaolinite, hematite and calcite. The lower section of the drill core consists of lithian annite granites marked with porphyritic phenocrysts of orthoclase and of globular quartz. They consist of quartz (32–39 vol. %), albite (27–31 vol. %), perthitic alkali feldspar (20–34 vol. %) and lithian annite (formerly called protolithionite; c. 4 vol. %) as the only mafic mineral. The abundance of accessory topaz and fluorite is lower compared with the granites in the upper suite but the amount of zircon is slightly increased.

Lithian annite porphyritic microgranite (Fig. 4d) forms a continuous body from 823.4 to c. 925.0 m (Fig. 2) interrupted by a layer of medium-grained lithian annite granite at 915 to 922 m. The microgranite consists of c. 23 vol. % albite, 31 % orthoclase, 38 % quartz and 4 % lithian annite. Down to the bottom of the known profile several such minor layers occur. Medium-grained lithian annite granite, occasionally porphyritic, forms a continuous body from 1020 m downward (Figs 2, 4e–f). The rock is grey or pinkish with phenocrysts of orthoclase up to 3 cm and globular quartz up to 2 cm or lithian annite flakes, isolated or in aggregates up to 0.5 cm. In places the granite contains pegmatitic schlieren or pock-
Review of the Cínovec/Zinnwald A-type granite emplacement and mineralization
ets, several cm in size, formed by orthoclase, quartz and lithian annite. The granite is composed of quartz (32–52 vol. %), orthoclase (19–33 %), albite (20–27 %) and lithian annite (2–6 %) with accessory zircon, xenotime, monazite, thorite, rutile, columbite, pyrochlore, syn-
chiesite and fluorite (Rub et al. 1998; Johan and Johan 2005; Fig. 3), secondary minerals are hematite, calcite, sericite and kaolinite.

2.3. Porosity and density data

Density (dry and wet bulk density, grain density) and porosity were measured on 58 samples by Chlupáčová and Štemprok (1965). The changes in these properties are shown in Fig. 5. Average wet bulk density of the granite variants is 2.58 g/cm3, of medium-grained zinnwaldite granite 2.59 g/cm3 and of the porphyritic medium-grained granite, predominant in the lower suite 2.57 g/cm3. In alteration zones these values are lowered e.g. to 2.38 g/cm3 at depth of 588 m, to 2.3 g/cm3 at 841 m and to 2.36 g/cm3 at 1259 m. On the contrary, in greisens the bulk density is slightly increased to 2.84 g/cm3. The increased porosity is located in the upper part of the cupola, where substantial phyllic alteration has occurred. The porosity below the ore zone is lowered to ~1 %; its increase over 8 % is related to zones of fracturing and alteration by circulating fluids (connected mainly with sericitization and kaolinitization) at c. 600 m, 820 m and 1250 m depth.

2.4. Metasomatic and ore bodies

The drill core of CS-1, numerous shallow drillings in the Cinovec mine area and underground mine workings (Štemprok 1965) encountered minor flat bands of albitties several cm thick throughout the whole upper suite, as well as several granitic zones enriched in K-feldspar and albite from 0.7 to 5 m thick underlying the ore zone at a depth from 270 to 369 m. A single zoned minor body of pegmatite was found from 308.4 to 309.8 m depth composed of coarse grained quartz, Li-mica, K-feldspar and aplitic bands.

The Sn–W mineralization is hosted by a system of flat and steeply inclined veins, wall-rock greisens and greisen lenses at the top of the cupula. Flat quartz veins encircle the inner contact of the granite cupula with the Teplice rhyolite and are accompanied by greisens of various shapes and sizes (Čabla and Tichý 1965; Štemprok et al. 1994; Seltmann et al. 1998). Steep veins, which strike predominantly NE–SW or N–S, and dip 80° towards the SE, are seen both in the granite and in the host Teplice rhyolite. The effect of massive argillitic alteration can be traced down to c. 150 m depth in the center of the cupola.

2.5. The age of the granites and greisens

The granites of the Older Intrusive Complex (OIC) of the KHEB have not been found in the mine area, the nearest body assigned to the OIC is the Fláje Massif c. 10 km to the west of Cinovec (Fig. 1; Štemprok et al. 2003). The ages of Younger Intrusive Complex (YIC) granites in the Eastern Krušné hory/Erzgebirge dated by standard geochronological methods are uncertain due to highly evolved nature of the granites, their repeated hydrothermal overprint, multiple fault reactivation and regional thermal reequilibration in the Mesozoic times (Gerstenberger 1989; Romer et al. 2007, 2010a). The maximum intrusion age of the Li–F and P-poor granites in the Eastern Erzgebirge, unaffected by Sn–W mineralization, is constrained by U–Pb zircon dating of the microgranite from Písečný vrch at 319 ±2 Ma (Romer et al. 2010b).

The K–Ar dating of trioctahedral micas separated from the granite samples of the drill core CS-1 was done in the Czech Geological Survey, Prague in 1964 (V. Šmejkal, H. Mašková) It determined the age of zinnwaldite from a depth of 498.5 m at 290 Ma, and from a depth of 647.6 m at 295 Ma. The samples of lithian annite from a depth of 887.3 m yielded an age of 325 Ma, and from the 1246 m 316 Ma. These values were recalculated by Dolejš and Štemprok (2001) using decay constants provided by Steiger and Jäger (1977) as 281–286 Ma for zinnwaldite.
granite, and 306–312 Ma for lithian annite granite. Intrusion ages lower than 300 Ma do not agree with the Re–Os ages for molybdenite from Altenberg granites (318±2 and 324±3 Ma: Romer et al. 2007). These age determinations are, however, supported by new molybdenite Re–Os dating from the Krupka ore district. Two samples from the Knötel Mo deposit yielded 319.2±2.0 and 317.7±2.0 Ma, and a single one from the Preiselberk Sn deposit 315±2.3 Ma (Ackerman et al. in print).

Seven Li-mica separates from the greisens of Zinnwald were dated by Ar–Ar method at Argonlab Freiberg (ALF) using the laser step-heating technique. The ages, interpreted as near-formation ages of Li-mica, ranged between 312.6±2.1 and 314.9±2.3 Ma (Seifert et al. 2011). Two new ages obtained by the same method from the Zinnwald quartz–mica greisens are 311.4±2.0 Ma, and 312.5±3.1 Ma (Seifert and Pavlova 2016).

3. Sampling and methods used

The drill core of CS-1 stored in the core repository of the Czech Geological Survey in Chotěboř has been sampled in several campaigns (Štemprok 1965; Rub et al. 1983; Johan and Johan 2005; Breiter et al. 2015a). The first was done in 1963–1965 by collecting 193 samples (c. 0.5–3 kg each), subjected to detailed petrological examination (Štemprok 1965). Sections of the drill core revealing the contacts between the textural variants have been cut and polished, documented by macrophotographs and examined using binocular microscope. In total, 295 thin sections have been prepared from the whole drill core, most of which have been re-examined in the present study.

Silicate analyses evaluated here were published by Štemprok and Šulcek (1969), Rub et al. (1983), Cocherie et al. (1991), Rub et al. (1998), Dolejš and Štemprok (2001), Rykl and Štemprok (1992) and Breiter and Škoda (2012). Most of them have been carried out at the Czech Geological Survey, Prague (CGS) by classical wet chemical methods. A systematic sampling of the drill core for chemical analyses was done on samples of c.10 kg mass collected mostly in 10 m intervals (Štemprok and Šulcek 1969). The powders from these samples were used for analyses of Sn and Be, completed by optical emission spectroscopy (OES) at CGS (detection limit for Sn 2 ppm, for Be 1 ppm; Weiss 1983) and the results are interpreted in this paper (Electronic Supplementary Material 1).

The samples at c. 100–300 m intervals were analyzed by X-ray fluorescence method (XRF; Ti, Fe, Pb, Ba, As, Bi, Sn, W, Zn, Pb, Cu, U, Zr, Y, Nb, Mo, Ag) in the chemical laboratory of Geoindustria, Prague-Černošice (Tab. 1). A separate set of 46 samples was analyzed for U, Th, U, and K in Geofyzika Brno on a laboratory
gamma-ray spectrometer with a scintillation detector and is also presented and interpreted in this paper (Tab. 2).

New systematic sampling of the drill core has been done in 2014–2015 by the CGS staff with 254 samples taken for trace-element analyses and mineral-composition studies (Rambousek and Kněsl 2015; Breiter et al. 2015a, b).

Two new chemical analyses examined the composition of the medium-grained and porphyritic microgranite in mutual contact at a depth of ~725 m, within the transition zone between the upper and lower suite granites. They were carried out at the Faculty of Science, Charles University in Prague by wet chemical methods (Tab. 3) and by ICP-MS analysis (Tab. 4). The trace-element analyses were done after modified total digestion in mineral acids (HF + HClO₄) and borate fusion (Na₂CO₃ + Na₂B₄O₇) in Pt crucibles. Fluorine concentrations were determined by ion selective electrode, Sn and Mo by XRF and As by atomic absorption with generation of hydrides (HGAAS) at CGS.

The electron-microprobe analyses of albite and Li–Fe micas were completed on a Jeol microprobe JXA-8530F, equipped with five WDS spectrometers at the Faculty of Science, Charles University in Prague. Measurements were carried out with an accelerating voltage of 15 kV, beam current of 20 nA, beam diameter of 5 μm and the acquisition time of 30–60 s. ZAF correction procedure was used.

Textural variants of the granites

4.1. Textural variants of granites in the CS-1 drill core

Contacts between the textural variants in both the upper and lower granite suites were examined in new studies of the CS-1 drill core. Microgranites (<1 mm grain size) are frequently enclosed in predominant medium-grained...
granite (c. 1 to 5 mm) as enclaves or minor bodies (dm to m sizes), in places characterized by alternation of medium-grained granites and microgranites of dm up to tens of m thicknesses (Fig. 2).

Enclaves of microgranites varying from cm to dm sizes have been encountered in the medium-grained zinnwaldite granite. For instance, at depth of 399.2 m their contact was gradational (Fig. 6a) but at a depth of 594.2 m (Fig. 6b) it was sharp. An albite-rich groundmass penetrates from the medium-grained zinnwaldite granite into the microgranite.

In the lower granite suite, enclaves of lithian annite microgranites have been observed in several sections of the drill core, e.g. at 1339.8 m (Fig. 6c). A microgranite enclave, c. 0.5 m across, is enclosed by medium-grained lithian annite granite and separated by a sharp contact from the hosting pink medium-grained granite. The contact is accentuated by postmagmatic hematitisation.

A fine-grained lithian annite granite hosts accumulation of 3–5 mm K-feldspar crystals, with lithian annite in aggregates and/or single grains up to 7 mm size. These are accompanied by smaller quartz and albite grains in aggregates up to 3 mm; all forming irregular schlieren in microgranite (Fig. 6d). The uneven distribution of feldspar- and mica-rich groundmass (Fig. 6e) is a typical feature of some porphyritic medium-grained lithian annite granites, hence termed “mixed granites” in earlier petrographic studies (Štemprok 1965). At 1591.0 m, a band of K-feldspar (Fig. 6f) with large crystals of lithian annite transects the porphyritic medium-grained granite, documenting a possible origin for red K-feldspar-rich granites by a later K-feldspar growth.

4.2. Textural variants in the contact zone between the upper and lower suite

The textural variants in the transition zone at a depth of c. 725 m between the zinnwaldite and lithian annite granites, i.e. between the upper and lower suites, have been examined regarding their modal composition and mineral chemistry. Microgranites and medium-grained granites form a zone c. 25 m thick which consists of an alternation of variously sized bodies of microgranites and medium-grained granites. Contact between the uppermost microgranite and the overlying predominant medium-grained granite (Fig. 7a–b) is sharp and marked by single grains or aggregates of K-feldspar and quartz grains up to 5 mm surrounded by an albite-rich groundmass of c. 3 mm grain size, which produces an irregular border line with the microgranite. Two variants examined chemically are as follows:

4.2.1. Weakly porphyritic microgranite

The earlier microgranite is a dark grey fine-grained rock with rare phenocrysts of K-feldspar and quartz. It consists of perthitic K-feldspar (~26 vol. %), albite (~30 %), quartz (~40 %), and lithian annite (~4 vol. %) in a texture resembling a two-phase granitic one (Fig. 8a). Quartz phenocrysts (< 5 mm) consist of a single or several aggregated grains, with additional quartz crystals (0.1–0.5 mm) attached at the margins in optical continuity with the large quartz grain. K-feldspar is strongly perthitic (Fig. 8b), occasionally with

<table>
<thead>
<tr>
<th>granite type</th>
<th>microgranite</th>
<th>medium-grained</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample</td>
<td>321/1</td>
<td>321/2</td>
</tr>
<tr>
<td>Li</td>
<td>377.67</td>
<td>479.47</td>
</tr>
<tr>
<td>Be</td>
<td>11.46</td>
<td>11.34</td>
</tr>
<tr>
<td>Sc</td>
<td>7.10</td>
<td>7.28</td>
</tr>
<tr>
<td>V</td>
<td>3.42</td>
<td>2.90</td>
</tr>
<tr>
<td>Cr</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Co</td>
<td>0.27</td>
<td>0.11</td>
</tr>
<tr>
<td>Ni</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Cu</td>
<td>1.91</td>
<td>2.73</td>
</tr>
<tr>
<td>Zn</td>
<td>16.78</td>
<td>17.91</td>
</tr>
<tr>
<td>Ga</td>
<td>28.22</td>
<td>32.63</td>
</tr>
<tr>
<td>Rb</td>
<td>1193.85</td>
<td>1092.85</td>
</tr>
<tr>
<td>Sr</td>
<td>5.81</td>
<td>3.75</td>
</tr>
<tr>
<td>Y</td>
<td>153.84</td>
<td>80.68</td>
</tr>
<tr>
<td>Zr</td>
<td>114.16</td>
<td>89.33</td>
</tr>
<tr>
<td>Nb</td>
<td>68.63</td>
<td>88.22</td>
</tr>
<tr>
<td>Sb</td>
<td>0.11</td>
<td>0.25</td>
</tr>
<tr>
<td>Cs</td>
<td>28.47</td>
<td>43.17</td>
</tr>
<tr>
<td>Ba</td>
<td>27.89</td>
<td>18.72</td>
</tr>
<tr>
<td>Hf</td>
<td>9.94</td>
<td>8.99</td>
</tr>
<tr>
<td>Ta</td>
<td>7.69</td>
<td>11.03</td>
</tr>
<tr>
<td>Tl</td>
<td>5.48</td>
<td>5.07</td>
</tr>
<tr>
<td>Sn</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>Mo</td>
<td><1</td>
<td>3</td>
</tr>
<tr>
<td>Pb</td>
<td>46.19</td>
<td>46.62</td>
</tr>
<tr>
<td>As</td>
<td>3.96</td>
<td>13.63</td>
</tr>
<tr>
<td>Bi</td>
<td>0.25</td>
<td>0.83</td>
</tr>
<tr>
<td>Th</td>
<td>39.89</td>
<td>29.66</td>
</tr>
<tr>
<td>U</td>
<td>31.66</td>
<td>60.59</td>
</tr>
<tr>
<td>La</td>
<td>40.01</td>
<td>31.33</td>
</tr>
<tr>
<td>Ce</td>
<td>107.14</td>
<td>86.21</td>
</tr>
<tr>
<td>Pr</td>
<td>12.71</td>
<td>10.34</td>
</tr>
<tr>
<td>Nd</td>
<td>42.07</td>
<td>32.74</td>
</tr>
<tr>
<td>Sm</td>
<td>12.88</td>
<td>10.11</td>
</tr>
<tr>
<td>Eu</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Gd</td>
<td>13.65</td>
<td>9.88</td>
</tr>
<tr>
<td>Tb</td>
<td>3.02</td>
<td>2.23</td>
</tr>
<tr>
<td>Dy</td>
<td>22.4</td>
<td>16.27</td>
</tr>
<tr>
<td>Ho</td>
<td>4.82</td>
<td>3.21</td>
</tr>
<tr>
<td>Er</td>
<td>17.13</td>
<td>11.45</td>
</tr>
<tr>
<td>Tm</td>
<td>3.14</td>
<td>2.08</td>
</tr>
<tr>
<td>Yb</td>
<td>24.61</td>
<td>16.65</td>
</tr>
<tr>
<td>Lu</td>
<td>3.67</td>
<td>2.39</td>
</tr>
</tbody>
</table>
~1 mm thick zones of micropegmatitic intergrowths and quartz inclusions (Fig. 8c). The groundmass of the granite consists of the grains of two main grain sizes: c. 0.1–0.5 mm and c. 0.01–0.1 mm. The fine-grained groundmass occurs in interstices of the larger grains and strongly resembles the granites from the Karlovy Vary Pluton (Stemprok et al. 2008). K-feldspar in larger grains contains intergrowths of secondary albite, as irregular patches around grain margins or irregular inner zones. Albite forms anhedral grains with a dense polysynthetic twinning. Lithian annite occurs mostly in skeletal crystals (Fig. 8d) which enclose rounded quartz and feldspar grains from the groundmass. Lithian annite is pleochroic (α and β – colorless or very pale green, γ – light greenish brown) with numerous darker pleochroic haloes along cleavage planes or at grain margins. A significant petrogenetic feature is the replacement of K-feldspar along cleavage by fine Li–Fe mica growths suggesting that this mica crystalized after the K-feldspar was formed. Mutual contacts of quartz grains are characterized by highly irregular locked boundaries. The lithian annite granite contains accessory fluorite, topaz, zircon, xenotime, columbite, REE fluorides and uraninite as shown by electron-microprobe analyses.

4.2.2. Seriate medium-grained granite

This younger white-grey equigranular rock consists of perthitic K-feldspar (~24 vol. %), albite (~35%), quartz (~37 %) and lithian annite (~4 %), together with accessory topaz, fluorite, zircon, REE fluorides, columbite and bastnäsite. Quartz is anhedral, occurring in single grains (1–5 mm) or aggregates of several grains, in places with very weak undulose extinction; inclusions of feldspar of 0.05 mm sizes are rare. Many mica crystals are skeletal and enclose vicinal quartz or feldspar crystals and penetrate into K-feldspar grains along cleavage planes (Fig. 8e). Albite (An < 5, Fig. 8f) in thick tabular crystals (0.5–2 mm) is densely twinned and forms single grains or aggregates which fill the interstices between quartz and K-feldspar crystals. The Li–Fe mica also forms thick tabular crystals 0.5 to 1 mm across (Fig. 8f) which are weakly pleochroic (α and β – colorless or very pale greenish brown, γ – light greenish brown) and contain common pleochroic haloes around inclusions or cleavage planes. K-feldspar is anhedral (1–5 mm) and perthitic in most grains, occurring as single or twinned crystals or in aggregates. Larger K-feldspar grains (Fig. 8g) include randomly orientated albite crystals. Some grain boundaries between K-feldspar grains are lined by marginal albite or by quartz crystals (Fig. 8h). Rare topaz is irregularly distributed as anhedral single grains or small aggregates of up to 0.5 mm size with characteristic fractures. Phyllic alterations are practically absent, but very faint secondary hematitisation has been noted in some fractured feldspar grains.
5. Major and trace elements in rock-forming minerals in the CS-1 drill core

5.1. Quartz and feldspars

Quartz contains up to c. 85 ppm Ti and to c. 400 ppm Al in zinnwaldite granites and these amounts drop in greisens to < 10 ppm Ti and < 100 ppm Al (Breiter et al. 2015a). Microprobe analyses by Johan et al. (2012) found that plagioclase contains 91.1–99.6 mol. % Ab, 0–8.0 mol. % An and 0–2.3 mol. % Or. Analyses of albite from two textural variants at 725 m depth gave 97.9–98.4 mol. % Ab, 0.61–1.2 mol. % An and 0.96–1.0 mol. % Or. Orthoclase in lithian annite granites contains 0.24–0.48 wt. % and in zinnwaldite granites 0.62–0.83 wt. % Rb2O (Johan et al. 2012).

5.2. Trioctahedral micas

The composition and physical properties of Li–Fe micas from the Krušné hory/Erzgebirge have been examined in detail by Rieder et al. (1970), who found trioctahedral micas from the CS-1 drill core to have 3.18–3.80 wt. % Li2O (at 609.0–609.8 m and 262.0–264.4 m, respectively) and 1.25 wt. % Li2O (from 778.5 m downwards). Trioctahedral micas from the upper granite suite of the CS-1 drill core have been classified as lepidolite and zinnwaldite, and from the lower granite suite as protolithionite (Rub et al. 1983, 1998). In the new IMA nomenclature of micas (Rieder et al. 1998) it was recommended that the name of protolithionite should be changed to zinnwaldite, lithian annite or lithian siderophyllite. Based on microprobe studies, Johan et al. (2012) concluded that the “protolithionite” mica in the CS-1 drill core should be referred to as lithian annite and this classification is used in the present paper.

The CS-1 zinnwaldite accommodates 0.2 to 0.5 wt. % TiO2 and lithian annite 0.3–1.3 wt. % TiO2 (Rub et al. 1983; Johan et al. 2012). Breiter et al. (2015a) observed that the SiO2 concentrations in Li–Fe micas change from 39 wt. % in the lower suite to 48 wt. % in the upper suite granites. Both micas show similar K2O concentrations of c. 9.5 wt. % (Fig. 9; Tab. 5). The Li2O contents in zinnwaldite vary from 3 to 4 wt. %, in lithian annite are c. 1 wt. % (Rub et al. 1983). The transition from zinnwaldite to lithian annite granites is also documented by zoned micas with cores of “lithian annite” and rims of zinnwaldite (Rub et al. 1983). Similar mica zoning was observed between lepidolite and zinnwaldite granites, where the inner zone of mica crystals is formed by zinnwaldite and the outer zone by lepidolite (Rub et al. 1998). Typical is also drop in fluorine concentrations, from c. 7.5 wt. %

Fig. 8 Photomicrographs of microgranite and medium-grained granites in contact at 724.6–8 m depth: a – weakly porphyritic lithian annite microgranite with the groundmass consisting of larger irregular grains with finer grains in interstices (ab – albite, lia – lithian annite, qz – quartz, or – orthoclase); b – detail of a two-phase granite texture in lithian annite microgranite; c – orthoclase phenocryst in the porphyritic lithian annite microgranite enclosing quartz crystals as rounded grains or rods; d – skeletal crystal of lithian annite enclosing quartz and feldspar crystals from the groundmass in porphyritic lithian annite microgranite; e – seriate medium-grained lithian annite granite with lithian annite flakes replacing orthoclase along cleavage planes; f – a slightly fractured albite crystal in seriate medium-grained lithian annite granite; g – perthitic orthoclase crystal in seriate medium-grained lithian annite granite embedding variously oriented albite crystals; h – orthoclase and lithian annite crystals in seriate medium-grained lithian annite granite surrounded by finer grains of albite and quartz.

Fig. 9 Distribution of K, Li and F in Li–Fe micas from the analyses of mica concentrates in Rub et al. (1983) and electron-microprobe analyses by Johan et al. (2012).

Fig. 10 Distribution of Sn, W, Nb and Ta in Li–Fe micas from the analyses of mica concentrates in Rub et al. (1983) and electron-microprobe analyses by Johan et al. (2012).
Miroslav Štemprok

5.3. Accessory and ore minerals

The studied Cínovec granites are characterized by an absence of apatite or tourmaline, which are otherwise typical accessory minerals in granites of the Western Pluton of the KHEB (Lange et al. 1972). Topaz and fluorite are the main accessory minerals at Cínovec (Fig. 3) contributing, together with lithium micas, to the high F concentration in zinnwaldite granites (up to 0.75 wt. %) and lithian annite granites (up to ~0.5 wt. %).

The amount of zircon is also relatively low if compared to biotite granites from elsewhere in the KHEB (Lange et al. 1972). Breiter and Škoda (2012) determined ThO₂ concentrations in zircons of 1–5 wt. % in the upper but only 0.5 wt. % in the lower suite granites. The Y₂O₃ concentrations are elevated, mostly in the range of 0.3–5 wt. %. High F concentrations were determined in zircons from the upper granites (Johan and Johan 2005). Uranium contents range mostly 0–2 wt. % UO₂, but they may occasionally reach as much as 6 wt. % (Breiter and Škoda 2012).

Apart from zircon, uranium in the granites is hosted by the REE minerals of the bastnäsite group. Thorite is abundant in lithian annite granites, but occurs abundantly in the lower suite granites, which are Th enriched (Cocherie et al. 1991; Johan and Johan 2005). Yttrium is predominantly hosted by xenotime (Breiter and Škoda 2012), common in lithian annite granites but practically absent in zinnwaldite granites (Johan and Johan 2005).

The ore mineralization is represented by cassiterite and wolframite, with minor scheelite in ore veins and greisens. Tin concentrations are associated with cassiterite, which occurs in two different rock suites: in greisens and quartz veins. It forms dark brown grains (up to 0.2 mm) and, more often, light brown grains (up to ~0.3 mm). Tungsten is hosted in wolframite and scheelite.

F in zinnwaldite to c. 3.5 wt. % F in lithian annite. In lithian annite, Rb₂O concentrations vary around 0.93 wt. % (Štemprok and Šulcek 1969) and in zinnwaldite, from 0.92 to 1.20 wt. % (Johan et al. 2012). Breiter et al. (2015a) found Rb₂O concentrations 0.5 wt. % in lithian annite and 1.7 wt. % in zinnwaldite.

The trace-element composition (Fig. 10) is marked by a significant increase of Sn, Nb and Ta in lithian annite if compared with zinnwaldite (Rub et al. 1983; Johan et al. 2012). In contrast, W concentrations are about the same in both mica types (Fig. 10). The new data for triotahedral micas of the upper and lower suites indicate that Sc varies between 60 and 100 ppm and Cs between 400 and 600 ppm (Breiter et al. 2015b).

Tab. 5 Li–Fe mica chemical composition of the porphyritic microgranite (pG) and medium-grained granite (mgG) determined by electron microprobe (in wt. %)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>texture</td>
<td>pG</td>
<td>pG</td>
<td>mgG</td>
<td>mgG</td>
<td>mgG</td>
<td>mgG</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>39.05</td>
<td>39.84</td>
<td>40.42</td>
<td>39.89</td>
<td>40.07</td>
<td>40.49</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.51</td>
<td>0.42</td>
<td>0.38</td>
<td>0.39</td>
<td>0.48</td>
<td>0.31</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>20.84</td>
<td>20.89</td>
<td>21.37</td>
<td>20.92</td>
<td>20.79</td>
<td>21.10</td>
</tr>
<tr>
<td>FeO</td>
<td>19.45</td>
<td>17.61</td>
<td>17.38</td>
<td>18.29</td>
<td>17.9</td>
<td>17.33</td>
</tr>
<tr>
<td>MnO</td>
<td>0.75</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.73</td>
<td>0.74</td>
</tr>
<tr>
<td>MgO</td>
<td>0.14</td>
<td>0.13</td>
<td>0.13</td>
<td>0.15</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.28</td>
<td>0.31</td>
<td>0.33</td>
<td>0.24</td>
<td>0.27</td>
<td>0.34</td>
</tr>
<tr>
<td>Rb₂O*</td>
<td>1.26</td>
<td>1.32</td>
<td>1.40</td>
<td>1.32</td>
<td>1.32</td>
<td>1.39</td>
</tr>
<tr>
<td>F</td>
<td>6.71</td>
<td>7.03</td>
<td>7.61</td>
<td>7.10</td>
<td>7.10</td>
<td>7.46</td>
</tr>
<tr>
<td>-f₂o</td>
<td>2.82</td>
<td>2.95</td>
<td>3.15</td>
<td>2.98</td>
<td>2.98</td>
<td>3.13</td>
</tr>
<tr>
<td>Li₂O**</td>
<td>1.63</td>
<td>1.86</td>
<td>2.03</td>
<td>1.88</td>
<td>1.93</td>
<td>2.05</td>
</tr>
<tr>
<td>H₂O***</td>
<td>0.70</td>
<td>0.56</td>
<td>0.35</td>
<td>0.55</td>
<td>0.55</td>
<td>0.41</td>
</tr>
<tr>
<td>Total</td>
<td>97.88</td>
<td>97.05</td>
<td>98.38</td>
<td>98.00</td>
<td>97.65</td>
<td>97.99</td>
</tr>
<tr>
<td>iv Al</td>
<td>1.884</td>
<td>1.881</td>
<td>1.885</td>
<td>1.907</td>
<td>1.878</td>
<td>1.861</td>
</tr>
<tr>
<td>v₁Al</td>
<td>1.800</td>
<td>1.902</td>
<td>1.925</td>
<td>1.859</td>
<td>1.867</td>
<td>1.921</td>
</tr>
<tr>
<td>Ti</td>
<td>0.059</td>
<td>0.049</td>
<td>0.043</td>
<td>0.045</td>
<td>0.055</td>
<td>0.035</td>
</tr>
<tr>
<td>Fe</td>
<td>2.506</td>
<td>2.262</td>
<td>2.199</td>
<td>2.336</td>
<td>2.287</td>
<td>2.198</td>
</tr>
<tr>
<td>Mn</td>
<td>0.098</td>
<td>0.096</td>
<td>0.095</td>
<td>0.096</td>
<td>0.094</td>
<td>0.095</td>
</tr>
<tr>
<td>Mg</td>
<td>0.032</td>
<td>0.030</td>
<td>0.029</td>
<td>0.034</td>
<td>0.027</td>
<td>0.032</td>
</tr>
<tr>
<td>Li</td>
<td>1.026</td>
<td>1.163</td>
<td>1.246</td>
<td>1.165</td>
<td>1.197</td>
<td>1.262</td>
</tr>
<tr>
<td>K</td>
<td>1.843</td>
<td>1.820</td>
<td>1.812</td>
<td>1.853</td>
<td>1.832</td>
<td>1.810</td>
</tr>
<tr>
<td>Na</td>
<td>0.084</td>
<td>0.092</td>
<td>0.097</td>
<td>0.071</td>
<td>0.080</td>
<td>0.100</td>
</tr>
<tr>
<td>Rb</td>
<td>0.125</td>
<td>0.130</td>
<td>0.136</td>
<td>0.130</td>
<td>0.130</td>
<td>0.135</td>
</tr>
<tr>
<td>F</td>
<td>3.269</td>
<td>3.415</td>
<td>3.641</td>
<td>3.430</td>
<td>3.431</td>
<td>3.577</td>
</tr>
<tr>
<td>OH</td>
<td>0.720</td>
<td>0.577</td>
<td>0.354</td>
<td>0.560</td>
<td>0.561</td>
<td>0.417</td>
</tr>
<tr>
<td>Y total</td>
<td>5.520</td>
<td>5.501</td>
<td>5.538</td>
<td>5.535</td>
<td>5.528</td>
<td>5.542</td>
</tr>
<tr>
<td>X total</td>
<td>2.053</td>
<td>2.043</td>
<td>2.045</td>
<td>2.053</td>
<td>2.042</td>
<td>2.046</td>
</tr>
<tr>
<td>Al total</td>
<td>3.784</td>
<td>3.782</td>
<td>3.810</td>
<td>3.776</td>
<td>3.744</td>
<td>3.782</td>
</tr>
<tr>
<td>Fe(Fe + Mg)</td>
<td>0.987</td>
<td>0.987</td>
<td>0.987</td>
<td>0.986</td>
<td>0.988</td>
<td>0.986</td>
</tr>
<tr>
<td>Mn/(Mn + Fe)</td>
<td>0.038</td>
<td>0.041</td>
<td>0.041</td>
<td>0.039</td>
<td>0.040</td>
<td>0.041</td>
</tr>
</tbody>
</table>

* The Rb₂O concentrations estimated from F concentrations in Rub et al. (1983) and Johan et al. (2012) using the regression line equation Rb₂O = 0.149 + 0.166 F
** Li₂O concentrations calculated after Tischendorf et al. (1997)
*** H₂O amounts after Tindle and Webb (1990)

The biotite formula calculation has been carried out by the program of Tindle (2001).
which occur both in the ore veins and greisens. Breiter et al. (2015a) noted hübnerite in greisens and in strongly hydrothermally altered parts of the granite. Molybdenite is scarce or absent in the greisens or the ore veins. In medium-grained lithian annite granites it was found as individual crystals associated with mica (at 733.3 m) and or in intergrowths with K-feldspar (at 1547.2 m). In the CS-1 drill core, the maximum depth of the Sn–W ore zone related to flat fissures was shown to be 220 m, but several Li, Sn and F anomalies were found deeper, down to c. 1200 m.

6. Distribution of major and trace elements with depth

6.1. Major-element oxides

Silica contents are highly variable in upper granites (from 68 up to 79 wt. %). Low values of SiO₂ are typical of some lepidolite granites (Fig. 11). Zinnwaldite and lithian annite granites are predominantly siliceous (75 and 76 wt. %) and may contain a local accumulation of quartz grains causing an increase in the silica concentrations. TiO₂ is very low, ranging from 0.01 to 0.2 wt. % in all the granite types. Al₂O₃ amounts change slightly in both suites (c. 12 wt. %), but are distinctly elevated in lepidolite granites (up to 19 wt. %, Fig. 11). Fe₂O₃ varies

![Fig. 11 Distribution of the SiO₂, Al₂O₃, Fe₂O₃ and CaO concentrations with depth from published and new silicate analyses. The legend of the geological profile as in Fig. 2.](image)

![Fig. 12 Distribution of Li₂O, Na₂O and K₂O concentrations with depth from published and new silicate analyses. The legend of the geological profile as in Fig. 2.](image)
mostly from 0.2 to 0.6 wt. %, but may exceed 1 wt. % in zones of hydrothermal alteration. CaO abundances (Fig. 11) vary c. 0.2–0.4 wt. % in the upper granites, but are continuously increased to c. 0.7 wt. % in the lower granites. The peaks on the curve reflect the presence of fluorite mineralization in fissures (Štemprok 1965). The lithium curve (Fig. 12) shows peaks in zones of greisenization, in lepidolite and zinnwaldite granites, where Li₂O concentrations are increased to c. 0.3 wt. %. Zinnwaldite granites contain c. 0.15 wt. % Li₂O and lithian annite granites c. 0.05 wt. % Li₂O. The Li₂O peak at a depth of 650 m coincides with a zone of strong phyllic alteration. The increased Na₂O concentrations in lepidolite granites (up to 6 wt. %; Fig. 12), mirror an increased albite amount. Zinnwaldite granites have the maximum Na₂O concentrations at c. 4.0 wt. %; Na₂O in the lower granites is variable but mostly ~3.8 wt. %. Sodium is depleted in zones of sericitization and the presence of this alteration in all the granite varieties explains the irregular shape of the Na₂O curve (Štemprok and Sulcek 1969; this study). The curve of K₂O contents shows a typical depletion in the albite-rich zone of the lepidolite granite, to c. 2 wt %.

In the upper granites, K₂O varies around 4.0 wt. % and in the lower granites it reaches 5 wt. % (Fig. 12).

There is no correlation of Na₂O or K₂O with Li₂O (Fig. 13); a weak negative correlation exists between Na₂O and CaO, which can be explained by albition of plagioclase, the main calcium host. Negative correlation between K₂O and Na₂O suggests that many of changes in major-element compositions occurred between albite and K-feldspar, presumably in course of variable alteration (alkali exchange reactions and phyllic alterations; Fig. 13). The P₂O₅ concentrations in all the granites are very low, mostly from 0.01 to 0.06 wt. %. Fluorine concentrations in the upper granites have an average of 0.7 wt. %, and in the lower granites ~0.4 wt. % F (Rub et al. 1983).

6.2. Fe₉, Ti, and trace elements

The distributions of Fe₉ and Ti from XRF analyses indicate a notable increase in Fe and Ti, from the upper to the lower granite suite (Fig. 14). The Rb abundances reach maximum in the upper granites (up to 0.3 wt.) but are systematically lowered in lithian annite granites, down to
c. 0.07 wt. % (Štemprok and Šulcek 1969). There is also a weak decrease in Ba concentrations from the upper to the lower granite suites.

Niobium concentrations determined by XRF vary around 50 ppm, with an increase to 80 ppm below the ore zone at 310 m (Fig. 15). According to new analyses (Breiter et al. 2015b), Nb concentrations differ systematically between the upper (c. 80–100 ppm) and lower granite suites (c. 50 ppm) and are raised in the upmost granites to c. 150 ppm. Tantalum concentrations are slightly increased in zinnwaldite granites (~40 ppm), but in the uppermost lepidolite granites they may reach 212 ppm (Rub et al. 1998). Zirconium is generally low in the whole profile (Fig. 15). In the uppermost granites, to a depth of 300 m, Zr concentrations are ~80 ppm and they progressively rise from there. Lithian annite granites contain c. 100 ppm Zr. Yttrium curve shows a trend parallel to Zr, with lower Y concentrations (c. 80 ppm) in the depth range of 100–300 m. From there downwards, the Y concentrations increase to 120–140 ppm in the lower suite granites.

Tungsten concentrations in the CS-1 drill core are 0.11 wt. % in the flat vein zone, and 0.12 wt. % in a zone of strong argillitic alteration with quartz veinlets at a depth of 835–840 m (Štemprok and Šulcek 1969). The curve of W concentrations in Fig. 16 shows a minor elevation to ~25 ppm in the upper granite suite and systematic decrease in the lower suite granites. The curve of Mo shows practically no difference between the upper and the lower granite suites with a single peak around 1200 m depth, where minor greisen mineralization was observed (Štemprok 1964). Increased amounts of Bi and As in the upper suite granites are well documented by the corresponding distribution curves with a maximum in the greisenization zone (Fig. 16).

The analyses of 169 samples show a distinct association of elevated Sn concentrations (in order of several hundreds of ppm; Fig. 17) with greisens and ore veins at the top of the cupola, down to a depth of 167 m (Electronic Supplementary Material 1). Deeper, the Sn concentrations of 100 ppm are exceeded in narrow core sections at 250–260 m and 308–309 m depth. Noteworthy are increased Sn concentrations at 610–670 m, i.e. near the bottom of the upper suite. In the lower suite granites, increased Sn concentrations at c. 900 m depth coincide with zones of argillic alteration (Štemprok and Šulcek 1969), and at 1210–1220 m (120 ppm) and 1250–1260 m (90 ppm) in the vicinity of thin zones of minor greisenization accompanied by sulphide mineralization (Štemprok 1964). All these values may indicate the effect of greisenization and phyllic alteration in the Cínovec granites, caused by epigenetic hydrothermal processes rather than reflecting changes in primary concentration of Sn-bearing minerals from a magmatic stage.

The beryllium contents are slightly variable in the upper granites (4–20 ppm; Fig. 17). In the lower granites Be distribution is relatively irregular with several peaks exceeding 60 ppm and with a single maximum of 180 ppm.
at a depth of 740–750 m. The latter peak suggests a possible heterogeneous admixture of a Be-bearing phase not yet identified. The granites examined in the CS-1 drill core differ from some apogranites in Transbaikalian regions described by Beus et al. (1962), enriched in beryllium.

The results of gamma-ray spectrometric analyses of U and Th are shown in Fig. 18. Uranium concentrations vary from 5 to 55 ppm; increased concentrations are mainly below a 400 m depth with narrow peaks considered to be related to fractured granites. The same element determined by XRF shows a similar concentration range of 12–41 ppm with no preference for a particular petrographic unit (Tab. 1). Chlupáčová (2015) gave different averaged U concentrations, 15.5 ppm in strongly altered and greisenized albite granites and 22.0 ppm in medium- and coarse-grained albite granites. Thorium concentrations are systematically increased from ~20 ppm in upper zinnwaldite granites to c. 70 ppm in lithium annite granites. The data are slightly higher than the average value of 49.9 ppm (n = 49) determined in lithium annite granites by Chlupáčová (2015). Hence the Th/U ratio varies between 0.3 and 5.7, with no distinct control by the textural variants of granites (Fig. 18).

Both granite suites give rather flat chondrite-normalized patterns with deep negative Eu anomalies (0.002 < Eu/Eu* < 0.03) (Štemprok 1989; Cocherie et al. 1991) and substantial tetrad effect (Dolejš and Štemprok 2001). In the lower suite granites, total REE concentrations remain relatively constant at ~220 ppm whereas in the upper suite granites they decrease to 30–60 ppm (Štemprok 1989; Cocherie et al. 1991). The chemical data show a major decrease in the amount of elements associated with zircon and monazite (e.g. Zr, Y, REE and Th) above the ~400 m depth (Dolejš and Štemprok 2001). This boundary may be linked with the dissolution of accessory minerals by circulating shallow hydrothermal fluids, but does not coincide with the boundary between the zinnwaldite and lithian annite granites based on mica compositions.

7. Geochemical differences between the textural variants in the CS-1 drill core

7.1. Variation of compositional curves

Two continuous microgranite zones – one in the upper granite suite and the other in the lower suite – are
surrounded by zones of interchange between medium-grained and microgranite variants. The well logs (Figs 11–12) highlight the microgranite variants and their effect on the course of the compositional curves. It is negligible in upper granite suite suggesting a similar effect of post-magmatic hydrothermal overprint on the original granite lithology. The curves show notable changes in CaO and Fe₂O₃ over the lower microgranite body, suggesting the effect of dispersed hematite, fluorite and calcite, also observed as filling fractures in the microgranite (Fig. 11). The peaks on the Ba curve may reflect the presence of barite as a common associate of fluorite in some fracture fillings (Fig. 14).

7.2. Geochemical differences between textural varieties

Geochemical differences between the textural varieties in the mica transition zone are presented in Tabs 3–4. The major-element analyses show decrease in SiO₂ from 76.46 wt. % in microgranite to 75.32 wt. % in medium-grained granite. The Al₂O₃ concentration increases from 12.98 wt. % in microgranite to 14.16 wt. % in medium-grained granite. Alkalies show opposite trends; Na₂O increases from 3.46 to 4.03 wt. %, whereas K₂O decreases from 4.20 w % to 3.89 wt. %. The Li₂O concentration in microgranite is 0.08 wt. % (Tab. 4) and it is enriched compared to the average lithian annite granite (~0.05 wt. % Li₂O). The medium-grained granite has Li₂O contents of 0.10 wt. %, i.e. lower than most of zinnwaldite granites (average 0.15 wt. %). Rubidium concentrations decrease from 1194 ppm in microgranite to 1093 ppm in medium-grained granite. Despite a remarkable change in the Na₂O contents between both granite variants, the CaO concentrations are relatively stable (from 0.47 to 0.41 wt. %) similarly to F concentrations which are ~0.6 wt. % in both granite types.

The elements associated with accessory minerals (such as Zr, Y, Th) are constantly slightly enriched in microgranite compared to the medium-grained granite, U is increased to ~60 ppm in medium-grained granite from ~30 ppm in microgranite. Niobium and Ta concentrations are not significantly changed (Nb 68.6/88.2 ppm and Ta 7.7/11.0 ppm). The Rb/Sr ratio is very high in both granite variants: 205.5 in microgranite and 291.4 in medium-grained granite. Both rocks contain high modal quartz and whole-rock SiO₂ concentrations and are therefore likely to be least affected by local differences in accessory-phase distribution. Thus, the linear isocon diagram (Fig. 19) with Si-immobile isocon (approximate-
ly 1) is used to quantify these data in a graphical form as previously proposed by Dolejš and Štemprok (2001).

The normalized REE patterns are flat and show deep Eu anomalies (Fig. 20). The curves for both granites have a parallel course but the microgranite is slightly enriched in REE compared to the medium-grained granite. The two new REE curves plot close to the field of lithian annite (protolithionite) granites but significantly above that of the zinnwaldite granites recorded in the literature (Štemprok 1989; Dolejš and Štemprok 2001). The earlier data of lepidolite granites are characterized by the lowest ΣREE. Figure 20 shows the symmetrical tetrad effect with a vertical line of Gd serving as the axis of symmetry. It has been documented as a general feature of rare-metal granites by Zhao et al. (1993). Data by Cocherie et al. (1991) and Monecke et al. (2007) revealed at least two tetrads in normalized whole-rock REE patterns of the Cínovec/Zinnwald granites, which document the participation of hydrothermal solutions in the granite origin.

8. Discussion

8.1. Regional position

The Cínovec/Zinnwald granite cupola is part of a composite volcano-plutonic unit termed the Eastern Volcano-Plutonic Complex (EVPC). It is spatially associated with Sn–W mineralization in, or in the vicinity of, the YIC granites (such as Sadisdorf, Altenberg, Hegelshöhe, Schenckenshöhe, Preiselberk, and Knött). The Cínovec–Krupka Pluton is located south of the outcropping Schellerhau (YIC) granite massif in Saxony (Fig. 1). The pluton remains hidden in its predominant
part, but its upper surface between Cínovec and Krupka has been revealed by numerous drillings at Cínovec/Zinnwald, Loupežný, Preiselberk and Knötl (Štemprok et al. 1994). The Li–F granites are always the youngest granitic rocks in this plutonic complex and are directly in contact with the country rock (e.g., at Cínovec/Zinnwald or Knötl) but they can be emplaced into marginal earlier biotite granites, classified as the earliest members of the YIC (Altenberg, Preiselberk; Štemprok et al. 1994). In granite cusps, albite-rich granites are often rimmed at the top by a pegmatitic body (called in German Stockscheider). The multiphase nature of the granite cupolas was first recognized as early as in 1950’s, reflecting the concept of the so-called outer and inner granites (Oelsner 1952). In Altenberg, a body of albite granite, c. 100 m wide, is located below the ore zone inside the granite cupola and it is rimmed on the top by a pycnite-rich greisen, considered as a greisenized stockscheider (Hösel et al. 1997).

8.2. Possible crustal and mantle sources

The Variscan magmatic activity in the Eastern Krušné hory/Erzgebirge started at around 327–324 Ma (Dolejš et al. 2016) and it was followed by the emplacement of a porphyritic microgranite at 319±2 Ma intersecting the Teplice rhyolite (Písečný vrch: Romer et al. 2010a). This represents an upper age limit for the intrusion of the YIC granites.

Neoproterozoic and Lower Paleozoic metagneous and metasedimentary units of the Saxothuringian Domain are the potential sources of the Krušné hory/Erzgebirge Batholith. The classification of the Cínovec granites as Li–F granites of the low-P2O5 subtype (< 0.1 wt. % P2O5, Al2O3 < 14.5 wt. % an SiO2 > 73 wt. %) points to a metagneous protolith (Taylor and Fallick 1997). Variable P2O5 contents of the Eastern Krušné hory/Erzgebirge microgranites may be indicative whether all the granitic pulses were derived from the same source. The marginal biotite microgranite was observed in the upper contact zone of the Krupa (Preiselberk) granite cupola (Štemprok et al. 2003; Fig. 1). It differs in P2O5 and TiO2 concentrations (0.26–0.33 and 0.19–0.24 wt. %, respectively) from the enclosing medium-grained porphyritic biotite granite (0.03–0.09 wt. % P2O5 and 0.09–0.12 wt. % TiO2). This indicates that the YIC granite intrusions in the EVPC, such as Cínovec/Zinnwald and Krupka (Preiselberk), may have had contrasting sources, even varying between metagneous and metasedimentary lithologies on a local scale.

Based on the evidence provided by lamprophyres with rare-metal mineralization that occur in the district, Seifert (2009) with Štemprok and Seifert (2011) proposed that there was a mantle component contributing to the granitic magmatism. The Late Variscan lamprophyre dykes preceded the YIC granites in the Krupka district (Štemprok et al. 2014) and early members of the lamprophyre suite are greisenized in the districts with Sn–W mineralization. This resembles the situation in the Transbaikalian granite districts, where Li–F granites coincided spatially and temporally with lamprophyre and dolerite injections, bearing a witness of the mantle contribution to the granitic magmatism, substantiated also by isotopic data (Syritso 2002; Abushkevich and Syritso 2007). A possible upper mantle signature in the Cínovec granites was demonstrated by Dolejš and Štemprok (2001), who showed that the bulk δ18O values of the uppermost zinnwaldite and lepidolite granites are very low (5.2–5.8 ‰ SMOW) and thus marginally overlap with the average mantle values of ~5.7 ‰ SMOW (Hoefs 1997). In contrast, mantle contribution was considered negligible by Breiter (2012) and metaluminous to slightly peraluminous A-type granites were interpreted as a product of low-degree melting of quartz–feldspathic rocks.

8.3. Microgranites in YIC granites

Microgranites or fine-grained porphyritic granites have been recognized in the deeply eroded Western Pluton of the KHEB as marginal bodies occurring in the apical parts of the YIC granite intrusions (Škvor 1974). Some of these microgranites were named as “Zwischengranit” and assigned to the earliest members of the YIC (Lange et al. 1972). Their textures were examined in detail in the Karlovy Vary Pluton near Dubí (Štemprok et al. 2008). Microscopic studies by many investigators confirmed the microgranites (granite porphyries) stage in the YIC granites of the Western Pluton, preserved in the groundmass (Fiala 1968). Seltmann and Štemprok (1994) reported two-phase textures in the microgranites of the YIC granites in the EVPC (such as Sadisdorf, Cínovec/Zinnwald and Preiselberk).

The two-phase granitic textures were originally described from the South East Asian tin belt of Malaysia. They represent transitions from porphyritic granites, with a high proportion of phenocrysts, and thin films of equigranular aplite matrix evolving towards sparsely porphyritic granites. These latter show a clear spatial separation of phenocrysts and their fragments and a high proportion of invasive equigranular matrix (Cobbing et al. 1992). The two-phase granites in the Karlovy Vary Pluton (Štemprok et al. 2008) are interpreted to represent products of rapid decompression, devolatilization and thermal disequilibrium crystallization in a closed system. This agrees with the interpretation that apical parts of intrusive bodies are potential sites of rapid, and often abrupt, cooling due to devolatilization and/or external fluid percolation and have frequently produced character-
istic disequilibrium textures such as marginal pegmatitic, or quench carapaces.

8.4. Changes in modal and normative composition with depth

Cínovec granites exposed by the borehole CS-1 are characterized by a quartz/feldspar ratio ranging from 0.3 to 1.2, which reflects both magmatic and post-magmatic processes (Fig. 2). The amount of quartz is typically lowered in albitites and K-feldspar-enriched rocks (metasomatic syenites) found in the Cínovec mine (Štemprok 1965).

The modal compositions do not show any significant depth-related variations between the medium- and fine-grained variants (Fig. 2). Higher modal albite (30–35 vol. %) in the upper zinnwaldite granites is explained by pervasive albitionization that also increases the amount of albite in lepidolite granites. The K-feldspar content is relatively constant, in accord with a restricted range of K₂O in the whole profile. Zinnwaldite and lithian aninite are also homogenously distributed over the vertical profile, except for the mica-low zone and the uppermost, greisenized granites.

The CIPW-normative compositions (Hollocher 2016; Fig. 21) show a relatively stable amount of normative quartz (around 35 wt. %) in the whole drill core. Normative plagioclase (Ab + An) is increased up to ~37 wt. % in the upper granites and normative orthoclase up to 35 wt. % in the lower granites.

8.5. How significant was the fractional crystallization?

The results from the CS-1 drilling do not indicate any distinct separation of rock-forming minerals, not even between the textural variants. This observation is confirmed by planimetric analyses and normative compositions calculated from chemical analyses. The major-element composition was in principle preserved despite the significant later alteration. Also the textures resemble the primary magmatic ones, and the distribution of rock-forming minerals mirrors the feldspars–quartz equilibrium with the melt.

The lack of systematic vertical changes expected during settling of the rock-forming and accessory minerals is in line with the recent notion that fractional crystallization is not capable of explaining the enrichment in Rb, Cs, Sn, W, U, Li, B and F and depletion in Sr and Ba observed in most rare-metal granites (Dostal et al. 2015). Moreover, fractional crystallization model alone is not sufficient to explain the Nb–Ta distribution in most peraluminous granites (Ballouard et al. 2016). In our case, this observation is supported by low Nb/Ta ratios in the upper suite granites (c. 2–2.5), possibly providing an additional evidence of a later hydrothermal overprint on the chemical composition of the granites.

8.6. Postmagmatic processes

Rock–fluid interaction has been recognized as a dominant hydrothermal overprint of granites in the anorogenic columbite-bearing province of Northern Nigeria (Jacobson et al. 1958; Martin and Bowden 1981; Bowden et al. 1984). Evidence for the same processes has been found in a number of post-collisional rare-metal granite provinces of the former USSR, like Kazakhstan, Eastern Siberia and the Urals (Beus et al. 1962). This type of alterations has been identified also in the Cínovec granites (Štemprok 1965). The postmagmatic processes may have affected not only the original mineralogical composition formed by magmatic crystallization, but also some textural and structural features. Beus et al. (1962) called these granites “apogranites” stressing their association with normal granites, but having a different origin due to postmagmatic metasomatism. The main feature of these granites is their occurrence in the apical portions of cupolas or apophyses of the granite massifs controlled by
the intensity of fracturing. Beus et al. (1962) and Beus and Zalashkova (1964) distinguished among apogranites: a) muscovite–albite apogranites with Be minerals, b) lithionite–amazonite albite apogranites with Ta and Nb minerals and c) riebeckite–albite apogranites with Nb, Zr and REE minerals.

Central European apogranites do not carry amazonite in any of their varieties, are not enriched in Be and also do not contain alkaline amphiboles or pyroxenes. Cinovec granites can be linked with the group of apogranites containing Li–Fe micas and tantalite mineralization (Štemprok and Šulek 1969; Rub et al. 1983, 1998).

The vertical sequence of alteration types in rare-metal granites was identified as early as in 1960’s by Sheherba (1960) and Shcherba et al. (1964) in Kazakhstan greisen deposits and also referred to by Taylor (1979). The observations show that the granite cupolas are characterized by upward vertical sequences of postmagmatic alterations, from microclinization, through albitization to greisenization. Many apogranites are separated from one another, or from the country rock, by pegmatitic rims referred to as “stockscheider” in the Erzgebirge.

Similar sequence is documented by the drill core CS-1. The K-feldspar stringers and phenocrysts in lithian annite granites of the Cinovec/Zinnwald granite cupola resemble microclinization I in the Mesozoic provinces of Transbaikalia. There is also a massive albitization down to a depth of 730 m in the center of the cupola and K-feldspar enrichment below the ore zone (355–370 m) seems equivalent to microclinization II. Main greisen bodies are restricted to the top of the cupola and are accompanied by flat or steeply-dipping quartz veins.

The origin of both zinnwaldite and lithian annite in the upper and lower granite suites, respectively, was partly fracture-controlled. There is an especially common evidence of the fracture-controlled infilling of albite-rich zinnwaldite granite by zinnwaldite in the Cinovec/Zinnwald mine area. Microscopic evidence shows that the Li–Fe micas in the granite replace orthoclase along cleavage (Fig. 8e), presumably at subsolidus conditions. Such microtextures are commonly seen in granites below the mica transition zone. Numerous mica inhomogeneities include brown micas bleached to colorless or very light green varieties, which agree with the optical properties observed on zinnwaldite or “protolithionite” by Gottesmann and Tischendorf (1978). The fact that upper granites were originally lithian annite-bearing was well documented by Johan et al. (2012) by finding lithian annite crystals enclosed in a quartz crystal from a depth of 97 m; the mica composition was verified by electron-microprobe analysis.

The development of Li–Fe micas in albite granites of the Afu Complex in Nigeria (Bowden et al. 1984) carries many similarities with the Cinovec granites. It is characterized by changes from lepidolite–albite–quartz–amazonite granites to dominant zinnwaldite types. Relict cores of more annitic and sideophyllitic micas can be overgrown by, or replaced by, zinnwaldite. The complex composition of Li–Fe micas plotted in the diagram devised by Rieder et al. (1970) shows transition from annite through zinnwaldite to “trilithionite”.

Greisenization is a significant metasomatic process, which was related to fracturing in solid granite. In Cinovec it led to the origin of mainly quartz–zinnwaldite or quartz–topaz–zinnwaldite greisens bordering veins or forming massive lens-like bodies (Štemprok 1965; Seltmann et al. 1998).

A 15 cm long section across the contact between the zinnwaldite–albite granite and Teplice rhyolite was geochemically studied in the Zinnwald part of the deposit (Bühnau Stollen) by Tischendorf et al. (1988). The contact between the rock units is separated by a 6 cm thick stockscheider. Even though the studied zinnwaldite granite is strongly enriched in Li, Sn, Rb, Cs, Ta, Nb and Be, resembling the present data from the Cinovec part of the granite cupola, its geochemical effect on the country rock Teplice rhyolite is very small (compare the values for the rhyolite/albite-rich granite: Li 116/1 180 ppm, Rb 462/2,149 ppm, Cs 16/49 ppm, Nb 23/172 ppm, Ta 0.9/39.9, Sn 17/90 ppm, Th 26/19 ppm, U 13/13 ppm).

8.7 Petrological and geochemical classifications of granites

The Cinovec/Zinnwald granites are alkali feldspar granites in IUGS classification (Le Bas and Streckeisen 1991), as any Ca-bearing plagioclase is absent and sodium feldspars are represented by albite with a very low An content. These Cinovec/Zinnwald granites are commonly termed “fractionated” and classified as A-type granites of the YIC (Seltmann et al. 1998; Breiter 2012). This idea is supported by the fact the upper suite granites are strongly enriched in HFSE and some LILE but are poor in trace elements compatible in mafic silicates (Co, Sc, Cr and Ni) and feldspars (Ba, Sr, Eu). High Fe/Mg ratios and increased F agree with the original definition of the A-type granites (see review by Bonin 2007).

Such compositions can be ascribed to mantle fluids as envisaged by the model of Martin (2006). A-type granitic magmas do arise by various mechanisms recently reviewed by Magna et al. (2010). These include remelting of a granulitic residue, anatexis of metagneous crust, generation from mixed OIB and crustal sources, extensive fractional crystallization of a mantle-derived basaltic magma, melting of depleted mantle with imprint of subduction or anatexis of lower crust modified by mantle fluids. Thus several of these mechanisms require the participation of a mantle component to explain the specific
chemical composition of the A-type granites which is also postulated as a condition for the origin of rare-metal mineralization in the Erzgebirge (Seifert 2009).

The lower suite granites texturally strongly resemble medium-grained porphyritic YIC granites of the Western Pluton of the KHEB (Stemprok 1965; Seltmann et al. 1998). The granites are peraluminous, mostly corundum-normative (CIPW), with average A/CNK of 1.12 for lithian annite granites and 1.15 for zinnwaldite granites. They correspond to pluasitic granites after Tauson (1977). The upper suite granites fulfil the criteria of apogranites (Beus et al. 1962) or Li–F granites and belong to their zinnwaldite–topaz–albite subtype (Syristo 2002).

The Cínovec/Zinnwald granites show the highest SiO₂ contents (75–78 wt. %) of all the YIC granites in the Eastern Krušné hory/Erzgebirge with the Li–Fe micas as the only dark mineral. The differentiation index D.I. (wt. %), in the granites ranges between 91.2 and 98.4 (Fig. 21). The Li–Fe nature of the micas makes the whole-rock MgO concentration extremely low, ranging from mean 0.14 wt. % in zinnwaldite granite to 0.17 wt. % in lithian annite granite. The FeO concentration varies between 0.71 wt. % in zinnwaldite granites and 0.54 wt. % in lithian annite granites. The upper and lower suite granites are distinct in their trace-element compositions. The Li, Rb, Cs, F, Sn, Ta and Nb concentrations are significantly elevated in the upper granite suite, while the Zr, Y, Th concentrations are lower than in the lower suite granites. The Cínovec granites are rich in U and Th and fulfil the criteria for high-heat production granites. The concept of progressive evolution of a Sn-bearing granite melt was elaborated by Groves and McCarthy (1978), who postulated that the melts from the pluton’s interior are forced to its top. For the development of the albite-rich granite cupolas, a more complex model has been developed (e.g., Syristo et al. 2001; Syristo 2002).

Štemprok (1991) examined ongonites for possible deuteric effects and described phyllic alterations corresponding to a hydrothermal overprint, but failed to observe the effect of deuteric processes on the origin of albite and Li–Fe micas. Recent petrographic and SEM–EDS work by Dostal et al. (2015) showed that ongonites underwent considerable reaction with deuteric fluids, and thus their primary magmatic signature has been modified, including the plagioclase and trioctahedral mica compositions. This emphasizes the similarity between the effects of processes observed in upper suite granites of the CS-1 drill core and felsic dykes related to rare-metal mineralization observed in Mongolia.

9. Models of magmatic–hydrothermal transition

Most models of the granite origin presume that the earliest emplaced magma pulses formed a solid carapace, which was fractured by the later pulses and penetrated by fluids from the underlying hot magma (Burnham 1997). The concept of progressive evolution of a Sn-bearing granite melt was elaborated by Groves and McCarthy (1978), who postulated that the melts from the pluton’s interior are forced to its top. For the development of the albite-rich granite cupolas, a more complex model has been developed (e.g., Syristo et al. 2001; Syristo 2002).

Johan et al. (2012) explained the enrichment in the apical part of the Cínovec/Zinnwald cupola by fluids rich in Sn, Nb, Ta and W released from the octahedral sites of lithian annite during its transformation to zinnwaldite, before the final crystallization of the granites. The concept does not explain sufficiently the hydrothermal enrichment of tungsten, an element unchanged in the micas of both suites (Fig. 10) even though Sn and W are jointly enriched in ore veins and greisens (Čabla and Tichý 1965; Seltmann et al. 1998).

The model by Breiter et al. (2015b) proposed that the mica-free granites zone and the K-feldspar enriched zone
at a depth 359–368 m are restites formed after separation of fluids causing greisenization and silicification in the upper part. Late to postmagmatic unmixed fluids thus affected Cínovec cupola only to a depth of c. 370 m below the present surface. The explanation supposes a close temporal association between the solidification of the top of the granite cupola and the development of a fissure system. However, the gap between these two events remains unconstrained, and the flat veins are not dependent on the cupola structure but extend into the vicinal rhyolite.

Štemprok (1965) with Štemprok and Šulcek (1969) explained the association of Sn–W mineralization with the upper part of the granite cupola by the presence of the upper, slightly inclined upper granite contact that acted as a channel-way for ascending external solutions. No granitic variety encountered at Cínovec was identified as a source of the ore-bearing solutions. Tin–tungsten mineralization was a component of multiply ascending postmagmatic solutions, which transformed the upper part of the cupola and originated at depth. Epigenetic nature of this mineralization is indicated by association of increased Sn and W concentrations in the core samples in very dm scale sections, recorded in our study and with an epigenetically fractured granite at a depth of 1200 m (Štemprok 1964).

Taken together, the Cínovec/Zinnwald mineralization did not occur as consequence of fractional crystallization leading to residual fluids from any granite varieties found in the CS-1 drill core. The petrographic study could not identify any products of emplacement or crystallization from halogen-enriched melts, whose presence has been recorded by melt-inclusion studies of the Zinnwald granites (e.g. Webster et al. 2004). In this paper microgranitic variants are identified as the earliest granite formations emplaced during a primary magmatic stage of the KHEB two-phase granites. A model presented in Fig. 23 shows that the origin of microgranite was followed by the emplacement of medium-grained granite, identified as a new magmatic pulse replacing the microgranite along sub-horizontal structures. Hydrothermal albitization, possibly accompanied by transformation of lithian annite to zinnwaldite, occurred after the whole upper section was solidified and it influenced the known granite section down to a 730 m depth. Greisenization acted after fissuring of the granite occurred mainly to a depth of c. 200 m. Effects of significant fracture-controlled alteration, such as phyllic mineral precipitation or fluorite and hematite growth, have been observed in the deepest known sections of the drill core and can be linked with numerous Late Variscan and post-Variscan hydrothermal events in the EVPC region.

10. Conclusions

The textural and geochemical studies of the Cínovec/Zinnwald granite cupola revealed by the drill core CS-1 testifies a complex magmatic history of a multiply emplaced Late Variscan granite body in microgranitic and seriate medium-grained variants. The concentrations of Li, Na, F, Ta, Rb and Cs depend on the degree of hydrothermal overprint increasing from the bottom to the top of the cupola. The effect of textural variants on the changes in trace-element concentrations is insignificant, and suggests a joint hydrothermal overprint of microgranites and medium-grained granites in the upper granite suite. Greisenization enriched mainly the uppermost part of the cupola – subjected to fracturing – in Sn, W, Bi and As. The cupola served as a structural trap focusing the fluids of deep origin into upper crustal levels at the contact of the granite with the Teplice rhyolite. The concept thus contributes to solving the enigma how are the very viscous granitic magmas capable of concentrating large
amounts of hydrothermal fluids in rapidly cooling, high-level intrusive structures.

Acknowledgements. The first version of the paper was presented at the Workshop of the Grant Agency of the Czech Republic project P210/14/13600S held on Oct. 6, 2015 in Prague and organized by Karel Breiter. I am indebted to V. Vonášková for silicate analyses, O. Šebek for ICP-MS trace-element data, J. Bartošek for the radiometric analyses and M. Racek for the electron-microprobe analyses. I thank P. Bowden for substantial improving of the original version of the manuscript and numerous suggestions and comments. Critical readings of J.-L. Vigneresse and P. Bravo Silva with numerous proposals for improvements are gratefully acknowledged. I appreciate with thanks the help of handling editor V. Rapprich who carefully edited the text and improved figures and linguistic corrections. Thanks are due to Z. Procházka and O. Kryza for technical help with the manuscript preparation.

Electronic supplementary material. Concentrations of Sn and Be in the CS-1 drill core obtained by OES are available online at the Journal web site (http://dx.doi.org/10.3190/jgeosci.226).

References

ŠTEMPROK M (1964) Traces of sulphide and greisen mineralization in the deep parts of the Cínovec (Zinnwald) granite massif. Věst ÚÜG 39: 211–213

Štěmprok M, Šulcěk Z (1969) Geochemical profile through an ore-bearing lithium granite. Econ Geol 64: 392–404