1. Introduction

Uranyl selenite minerals represent a rather rare group of secondary U\(^{6+}\)-bearing natural phases that were described only in a few localities in the world. Those are, primarily, Musonoi and Shinkolobwe in DR Congo, Repete mine in Utah (USA), Zâlesí deposit in the Czech Republic, Liauzun in France, and La Creusaz U prospect in Switzerland, and Eureka mine in Spain (Lussier et al. 2016; Gurzhiy et al. 2019a). There are seven uranyl selenite minerals known up to date: guilleminite, Ba\((\text{UO}_2)_2\text{(SeO}_4)_2\text{(H}_2\text{O})\)\(_2\) (Pierrot et al. 1965), desmemaekerite, Pb\(\text{Cu}_4\((\text{UO}_2)_2\text{(SeO}_4)_2\text{(OH})_2\)\text{(H}_2\text{O})\)\(_2\) (Cesbron et al. 1965), marthozite, Cu\((\text{UO}_2)_4\text{(SeO}_4)_2\text{(OH}}_2\)\(_2\) (Cesbron et al. 1969), derriksite, Cu\((\text{UO}_2)_2\text{(SeO}_4)_2\text{(OH})_2\)\(_2\) (Cesbron et al. 1971), haynesite, [(\text{UO}_2)_2\text{(SeO}_4)_2\text{(OH})_2\text{(H}_2\text{O})\text{(OH}}_2\)\(_2\) (Deliens and Piret 1991), piretite, Ca\((\text{UO}_2)_2\text{(SeO}_4)_2\text{(OH})_2\text{4H}_2\text{O}\) (Vochten et al. 1996), and larisaita, Na\((\text{H}_2\text{O})\text{(UO}_2)_2\text{(SeO}_4)_2\text{O}_2\text{(H}_2\text{O})\text{2}\) (Chukanov et al. 2004), and their characterization is far from being complete. Thus, the crystal structures of only five minerals from this group have been reported to date, while those for piretite and haynesite are still not determined, but the vibrational spectroscopy data were obtained and studied for all seven species (Vochten et al. 1996; Chukanov et al. 2004; Frost et al. 2006, 2008a,b, 2009a,b, 2014). Thermal stability of guilleminite (Pierrot et al. 1965), marthozite (Cesbron et al. 1969), derriksite
2. Materials and methods

2.1. Samples and occurrence

The single crystals of secondary uranyl selenite minerals derriksite (DER) and demesmaekerite (DEM) studied in this work (Fig. 1) were taken from the private collection of the author of the current paper (from V.V.G., sample 6111). The sample originates from the Musonoi, DR Congo.

2.2. Chemical composition

Small pieces of the DER and DEM single crystals verified on the diffractometer were crushed, pelletized and carbon-coated. The elemental composition of the samples was determined using a Hitachi S-3400N scanning electron microscope equipped with an AzTec Energy X-Max 20 spectrometer, with an acquisition time of 60 s per point (acceleration voltage 20 kV, beam current 2 nA) and processed with Oxford AzTec software with TrueQ technique. The following analytical standards were used: chalcopyrite (CuKᵢ), Se (SeLᵢ), uranium containing glass (UM₄), PbTe (PbM₄). Analytical calculations for DER: atomic ratio from structural data Cu 4.00, U 1.00, Se 2.00; found by EDX: Cu 3.95, U 1.04, Se 2.01. Analytical calculations for DEM: atomic ratio from structural data Pb 2.00, Cu 5.00, U 2.00, Se 6.00; found by EDX: Pb 2.09, Cu 4.90, U 2.06, Se 5.95. Traces of Si up to 0.5 at. % were found by EDX that can be attributed to the micro inclusions of quartz.

2.3. Single-crystal X-ray diffraction study

Single crystals of DER and DEM were selected under an optical microscope, encased in epoxy resin, and mounted on cryoloops. Diffraction data were collected using a Rigaku Oxford Diffraction SuperNova diffractometer equipped with an Atlas CCD detector operated with monochromated microfocused MoKα radiation (λ = 0.71073 Å) at 50 kV and 0.8 mA. Diffraction data were collected at different temperatures without changing the crystal orientation in the range of −173 to +87 °C (Tab. 1) with frame widths of 1.0° in ω, and exposures of 22.5 s per frame. Data were integrated and corrected for background, Lorentz, and polarization effects. An analytical (numeric) absorption correction using a multifaceted crystal model based on expressions derived by Clark and Reid (1995) was applied in the CrysAlisPro (2018) program. The unit-cell parameters (Tab. 1) were refined using least-squares techniques. The structures were solved by a dual-space algorithm and refined using the SHELX programs (Sheldrick 2015a, b) incorporated in the OLEX2 program package (Dolomanov et al. 2009). The final models included coordinates and anisotropic displacement parameters for all non-H atoms. The H atoms of OH⁻ groups and H₂O molecules were localized from difference Fourier maps and were included in the refinement with Uiso(H) set to 1.5Ueq(O) and O–H restrained to 0.95 Å. Selected interatomic distances and angles are listed in the Tabs 2 and 3. Supplementary crystallographic data obtained in the
Thermal behavior of derriksite and demesmaekerite

3. Results and Discussion

3.1. Structure Descriptions

There is one symmetrically unique U atom in the structure of DER, forming an approximately linear UO$_2^{2-}$...
Tab. 3 Selected geometrical parameters (bond lengths, Å; and angles, °) in the structure of DEM

<table>
<thead>
<tr>
<th></th>
<th>173 °C</th>
<th>87 °C</th>
<th></th>
<th>173 °C</th>
<th>87 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1–O1</td>
<td>1.777(7)</td>
<td>1.772(8)</td>
<td>Cu3–O7</td>
<td>2.049(7)</td>
<td>2.060(8)</td>
</tr>
<tr>
<td>U1–O2</td>
<td>1.792(7)</td>
<td>1.780(8)</td>
<td>Cu3–O10</td>
<td>2.025(7)</td>
<td>2.041(8)</td>
</tr>
<tr>
<td><U1–O1></td>
<td>1.785</td>
<td>1.776</td>
<td>Cu3–HO12</td>
<td>2.366(6)</td>
<td>1.950(7)</td>
</tr>
<tr>
<td>U1–O3</td>
<td>2.393(6)</td>
<td>2.394(6)</td>
<td>Cu3–HO12</td>
<td>1.956(6)</td>
<td>2.372(7)</td>
</tr>
<tr>
<td>U1–O5</td>
<td>2.465(6)</td>
<td>2.477(6)</td>
<td>Cu3–HO13</td>
<td>1.958(6)</td>
<td>1.944(7)</td>
</tr>
<tr>
<td>U1–O6</td>
<td>2.355(6)</td>
<td>2.361(7)</td>
<td>Cu3–HO15</td>
<td>2.386(7)</td>
<td>2.407(9)</td>
</tr>
<tr>
<td>U1–O8</td>
<td>2.349(7)</td>
<td>2.363(7)</td>
<td><Cu3–O></td>
<td>2.123</td>
<td>2.129</td>
</tr>
<tr>
<td>U1–O9</td>
<td>2.374(6)</td>
<td>2.377(6)</td>
<td>U1–O3–Se1</td>
<td>119.6(4)</td>
<td>120.5(4)</td>
</tr>
<tr>
<td>Se1–O3</td>
<td>1.719(6)</td>
<td>1.710(7)</td>
<td>U1–O5–Se1</td>
<td>125.2(3)</td>
<td>125.7(3)</td>
</tr>
<tr>
<td>Se1–O4</td>
<td>1.699(6)</td>
<td>1.709(6)</td>
<td>U1–O6–Se2</td>
<td>139.1(4)</td>
<td>140.2(5)</td>
</tr>
<tr>
<td>Se1–O5</td>
<td>1.719(7)</td>
<td>1.716(7)</td>
<td>U1–O8–Se2</td>
<td>144.3(4)</td>
<td>143.5(5)</td>
</tr>
<tr>
<td><Se1–O></td>
<td>1.712</td>
<td>1.712</td>
<td>U1–O9–Se3</td>
<td>124.9(3)</td>
<td>126.5(4)</td>
</tr>
<tr>
<td>Se2–O6</td>
<td>1.710(6)</td>
<td>1.694(7)</td>
<td>Se1–O4–Pb1</td>
<td>125.0(3)</td>
<td>124.0(3)</td>
</tr>
<tr>
<td>Se2–O7</td>
<td>1.710(6)</td>
<td>1.703(6)</td>
<td>Se1–O4–Cu2</td>
<td>130.0(4)</td>
<td>130.3(4)</td>
</tr>
<tr>
<td>Se2–O8</td>
<td>1.691(7)</td>
<td>1.680(9)</td>
<td>Se1–O5–Pb1</td>
<td>121.6(3)</td>
<td>121.8(3)</td>
</tr>
<tr>
<td><Se2–O></td>
<td>1.704</td>
<td>1.692</td>
<td>Se2–O7–Cu1</td>
<td>129.8(4)</td>
<td>130.0(4)</td>
</tr>
<tr>
<td>Se3–O9</td>
<td>1.687(7)</td>
<td>1.673(8)</td>
<td>Se2–O7–Cu3</td>
<td>120.9(4)</td>
<td>121.1(5)</td>
</tr>
<tr>
<td>Se3–O10</td>
<td>1.708(6)</td>
<td>1.705(7)</td>
<td>Se3–O10–Cu1</td>
<td>138.3(3)</td>
<td>137.8(4)</td>
</tr>
<tr>
<td>Se3–O11</td>
<td>1.725(6)</td>
<td>1.712(6)</td>
<td>Se3–O10–Cu3</td>
<td>116.8(4)</td>
<td>116.6(4)</td>
</tr>
<tr>
<td><Se3–O></td>
<td>1.707</td>
<td>1.697</td>
<td>Se3–O11–Pb1</td>
<td>107.9(3)</td>
<td>108.4(3)</td>
</tr>
<tr>
<td>Pb1–O4</td>
<td>2.748(6)</td>
<td>2.754(7)</td>
<td>Se3–O11–Cu2</td>
<td>122.1(3)</td>
<td>123.0(3)</td>
</tr>
<tr>
<td>Pb1–O5</td>
<td>2.642(6)</td>
<td>2.644(7)</td>
<td>Se3–O11–Cu2</td>
<td>116.1(4)</td>
<td>116.0(4)</td>
</tr>
<tr>
<td>Pb1–O6</td>
<td>2.932(6)</td>
<td>2.924(7)</td>
<td>Cu2–O4–Pb1</td>
<td>99.1(2)</td>
<td>100.3(2)</td>
</tr>
<tr>
<td>Pb1–O7</td>
<td>3.068(7)</td>
<td>3.085(7)</td>
<td>Cu3–O7–Cu1</td>
<td>102.8(2)</td>
<td>102.2(2)</td>
</tr>
<tr>
<td>Pb1–O10</td>
<td>2.934(6)</td>
<td>2.949(7)</td>
<td>Cu3–O10–Cu1</td>
<td>95.2(2)</td>
<td>95.0(3)</td>
</tr>
<tr>
<td>Pb1–O11</td>
<td>2.536(6)</td>
<td>2.567(6)</td>
<td>Cu2–O11–Pb1</td>
<td>98.1(2)</td>
<td>97.4(2)</td>
</tr>
<tr>
<td>Pb1–HO13</td>
<td>2.376(6)</td>
<td>2.390(7)</td>
<td>Cu2–O11–Pb1</td>
<td>105.9(2)</td>
<td>105.4(2)</td>
</tr>
<tr>
<td>Pb1–HO14</td>
<td>2.484(6)</td>
<td>2.496(7)</td>
<td>Cu2–O11–Cu2</td>
<td>104.3(3)</td>
<td>103.9(3)</td>
</tr>
<tr>
<td>Pb1–H,O15</td>
<td>3.099(8)</td>
<td>3.111(10)</td>
<td>Cu1–HO12–Cu3</td>
<td>100.5(2)</td>
<td>101.7(2)</td>
</tr>
<tr>
<td><Pb1–O></td>
<td>2.758</td>
<td>2.769</td>
<td>Cu3–HO12–Cu3</td>
<td>107.5(3)</td>
<td>107.6(3)</td>
</tr>
<tr>
<td>Cu1–O7</td>
<td>×2</td>
<td>2.193(7)</td>
<td>Cu3–HO12–Cu3</td>
<td>93.5(3)</td>
<td>93.2(3)</td>
</tr>
<tr>
<td>Cu1–O10</td>
<td>×2</td>
<td>2.222(6)</td>
<td>Cu2–HO13–Pb1</td>
<td>92.3(2)</td>
<td>92.1(2)</td>
</tr>
<tr>
<td>Cu1–HO12</td>
<td>×2</td>
<td>1.935(7)</td>
<td>Cu3–HO13–Pb1</td>
<td>114.3(3)</td>
<td>115.3(3)</td>
</tr>
<tr>
<td><Cu1–O></td>
<td>2.117</td>
<td>2.127</td>
<td>Cu3–HO13–Cu2</td>
<td>130.3(4)</td>
<td>130.5(4)</td>
</tr>
<tr>
<td>Cu2–O4</td>
<td>1.984(6)</td>
<td>1.978(6)</td>
<td>Cu2–HO14–Pb1</td>
<td>112.1(3)</td>
<td>112.4(3)</td>
</tr>
<tr>
<td>Cu2–O11</td>
<td>2.380(6)</td>
<td>2.403(7)</td>
<td>Cu2–HO14–Pb1</td>
<td>101.8(2)</td>
<td>102.5(3)</td>
</tr>
<tr>
<td>Cu2–HO13</td>
<td>2.003(6)</td>
<td>2.026(7)</td>
<td>Cu2–HO14–Cu2</td>
<td>98.3(3)</td>
<td>98.3(3)</td>
</tr>
<tr>
<td>Cu2–HO14</td>
<td>2.426(7)</td>
<td>2.452(7)</td>
<td><Cu2–O></td>
<td>2.122</td>
<td>2.134</td>
</tr>
</tbody>
</table>

Uranyl ions (Ur) with two short U⁴⁺=O^{2−} bonds (Tab. 2). In the equatorial plane, Ur cation is coordinated by four O_{eq} atoms that belong to selenite groups to form a tetragonal bipyramid as a coordination polyhedron of Ur atoms. There are two crystallographically nonequivalent Se atoms (Se as tetravalent) in the structure of DER, which are arranged in the apical vertex of a trigonal pyramid, surrounded by three O atoms. Selenite ions possess classical coordination geometry with the lone-electron pair squeezes O ligands toward the other side of the Se⁴⁺ cation, while the pair itself arranges and behaves like the fourth vertex of the regular tetrahedron. All four O_{eq} atoms are shared with the [SeO₄]^{2−} groups, whereas each selenite group has only two O atoms shared with two neighbors Ur, which results in the formation of an infinite chain as the main structure building block (Fig. 2a). Chains pass along the [001] and the equatorial planes of Ur tetragonal bipyramids are arranged parallel to the (101). There are three crystallographically non-equivalent Cu atoms in the structure of DER, which possess distorted octahedral coordination with nearly equatorial plane of OH[−] groups and elongated apical contacts with O atoms due to the Jahn-Teller effect. Each Cu atom shares its equatorial hydroxyl groups with the neighbor Cu atoms, forming tri-octahedral layers (Fig. 2c) parallel to (010). Copper-oxygen layers are linked with uranyl selenite chains through the trans- arranged apical O atoms, which are the third vertices of selenite groups non-shared with Ur (Fig. 3). Additional linkage is made through the H-bonding system, which involves hydroxyl groups from the Cu–O layer and both O_{eq} and O_{in} from the U-bearing chains (OH[−]...O3, OH[−]...O1, OH[−]...O5, OH10...O5). Stereoinchemically active lone-electron pairs of the Se⁴⁺ cations are directed towards the neighbor uranyl selenite chains.
Thermal behavior of derriksite and demesmaekerite

There is one symmetrically unique U atom in the structure of DEM, forming Ur with two short U≡O bonds and another five O atoms that belong to selenite groups, to form a pentagonal bipyramid as a coordination polyhedron of U atoms (Tab. 3). There are three crystallographically non-equivalent Se atoms in the structure of DER arranged in the apical vertices of trigonal pyramids, surrounded by three O atoms. Se1- and Se2-centered groups have two O atoms shared with two neighboring Ur, while the third Se3-centered group has only one O atom shared with Ur, which results in the formation of infinite uranyl selenite 1D unit (Fig. 2d). The Ur shares four O_eq atoms with 2-connected selenite groups, and the fifth vertex is occupied by another 1-connected [SeO_3]^{2-} pyramid. Uranyl selenite 1D units are arranged along the [101], having the equatorial planes of Ur pentagonal bipyramids being parallel to (101). Chains are stacked one above the other, forming blocks parallel to (010) (Fig. 4). These blocks, in turn, are separated by the sheets of edge-shared Cu- and Pb-centered coordination polyhedra (Fig. 2f). There are three crystallographically non-equivalent Cu atoms in the structure of DEM, which possess three different coordination geometries [Cu^{2+}O_4(OH)_2]^{8–}, [Cu^{2+}O_3(OH)_3]^{7–} and [Cu^{2+}O_2(OH)_4(H_2O)]^{6–}, and one non-equivalent Pb^{2+} cation is arranged in the center of ninefold [PbO_6(OH)_2(H_2O)]^{12–} complex. Cu1 atoms possess (2+4) distorted geometry, while Cu2 and Cu3 atoms have (4+2) coordination, which is considered to be more stable. Hathaway (1984) have shown that Cu^{2+}-bearing polyhedra with the (2+4) geometry may be the case of the dynamic Jahn-Teller effect of a series of (4+2) complexes that are rapidly interchanging at various temperatures. However, we did not find such an effect within current data. Cu-centered polyhedra form two types of chains directed along the

Fig. 2 a – Uranyl selenite chain in the structure of DER. b – its graphical representation. c – trioctahedral layer in the structure of DER built by Cu-centered [CuO_2(OH)] complexes. d – uranyl selenite chain in the structure of DEM, and e – its graphical representation. f – interstitial layer built by Cu-centered octahedra and Pb-centered nine-fold polyhedra in the structure of DEM. Color scheme: U polyhedra = yellow; Cu polyhedra = dark blue; Se, Pb and O atoms are grey, dark grey and red, respectively; hydrogen atoms are small white circles; Pb–O bonds = dark grey stippled cones; black nodes = U atoms, white nodes = Se atoms.
and linked together via Pb-centered complexes and a common O13H group. The first type is formed by the alternating ...–one Cu1–two Cu3–one Cu1–two Cu3–... octahedra with an edge-sharing linkage. There, the Cu1 octahedron shares four of its edges with four Cu3 polyhedra, and Cu3 shares two edges with two Cu1 octahedra, one edge with neighboring Cu3. This type of connection is a short-cutting of the trioctahedral layer in DER. The second type is a narrow, one octahedron wide chain built by Cu2-centered polyhedra that are connected only through the two common edges.

The topology of the U–Se chain in the structure of DEM belongs to the cc1–1:3–2 type (Krivovichev 2008) and has some similarities with that for DER (vertex-sharing infinite chain of 4-membered rings), but also has a very distinct difference in the additional 1-connected selenite group to each Ur (Fig. 2e), which makes this topology relatively rare. It has been observed in a few structures of exclusively synthetic U-bearing compounds, e.g. (C$_2$H$_5$N)$_3$[(UO$_2$)(SeO$_4$)$_2$(HSeO$_4$)] (Gurzhiy et al. 2017).

It should be noted that derriksite and demesmaekerite are the only uranyl selenite minerals, which structures are built upon infinite 1D U-bearing units. Crystal structures of guilleminite, marthozite, haynesite, piretite, and larisiare are based on dense uranyl selenite layers of the phosphuranylite topology (Demartin et al. 1991; Gurzhiy et al. 2019a).

3.2. Thermal Behavior

There is a behavior of the unit-cell parameters of DER versus temperature shown in Figure 5. All parameters are gradually increasing with temperature. However, a unit cell parameter grows very slowly and b, on the contrary, rises sharply. Equations describing the temperature dependence of the unit cell parameters of DER within the

![Fig. 3 The crystal structure of DER. a – projected along the b axis. b – projected along the c axis (b). c, d – the arrangement of figures of thermal expansion/contraction coefficients (TEC) relative to the structure projections. Color scheme same as in Fig. 2; TEC figures: expansion = green, contraction = red.](image)
Thermal behavior of derriksite and demesmaekerite

The thermal behavior of derriksite and demesmaekerite within the range of -173 to $87^\circ C$ are: $a = 5.972 + 8.278 \times 10^{-5} \times T + 3.399 \times 10^{-7} \times T^2$; $b = 5.569 + 2.276 \times 10^{-4} \times T + 6.486 \times 10^{-7} \times T^2$; $c = 19.084 + 5.154 \times 10^{-4} \times T + 2.158 \times 10^{-6} \times T^2$; and $V = 634.7 + 52.8 \times 10^{-3} \times T + 1.9 \times 10^{-4} \times T^2$.

The Fig. 6 shows the behavior of the unit-cell parameters of DEM as a function of temperature. The dependence here is not so regular and more complicated than it was observed for DER. The largest increase is observed for the a unit-cell parameter, while the c decreases with temperature increase, although slightly. There are also different characters of functions are observed for various parameters. Thus, b and β are described by nearly exponential growth; a, α and γ functions flatten out with temperature increase, while the c is described by decreasing almost linear function. Equations describing the temperature dependence of the unit-cell parameters of DEM within the range of -173 to $87^\circ C$ are: $a = 5.661 + 1.139 \times 10^{-4} \times T - 3.204 \times 10^{-7} \times T^2$; $b = 10.069 + 2.140 \times 10^{-4} \times T + 2.689 \times 10^{-7} \times T^2$; $c = 11.976 - 3.657 \times 10^{-5} \times T + 4.328 \times 10^{-8} \times T^2$; $\alpha = 88.66 + 1.506 \times 10^{-4} \times T - 4.415 \times 10^{-7} \times T^2$; $\beta = 79.63 + 9.491 \times 10^{-4} \times T + 2.983 \times 10^{-6} \times T^2$; $\gamma = 89.88 + 8.353 \times 10^{-4} \times T - 1.120 \times 10^{-6} \times T^2$; and $V = 671.3 + 27.9 \times 10^{-3} \times T - 1.3 \times 10^{-5} \times T^2$.

The thermal behavior of DER and DEM has a substantially anisotropic character (Tab. 4). The general theory of thermal behavior (Filatov 1990, 2011; Hazen and Downs 2001) of crystalline compounds points out that the maximal thermal expansion should be along the weakest bonding direction.

Two types of solid constructions can be distinguished in the crystal structures of derriksite and demesmaekerite. Those are uranyl selenite chains and interstitial layers built by Cu- and Pb-centered polyhedra. Thus, one could expect the directions of these units’ arrangement to be the least prone to expansion. This is actually observed in the structure of DER. The lowest expansion occurs

Fig. 4 The crystal structure of DEM. a – projected along the b axis. b – projected along the c axis (b). c, d – the arrangement of figures of thermal expansion/contraction coefficients (TEC) relative to the structure projections. Color scheme same as in Figs. 2 and 3.
along the [100], which coincides with the uranyl selenite chain elongation. Uranyl tetragonal bipyramids, selenite groups, and Cu octahedra undergo relatively the same expansion, which can be seen from Tab. 2. Hence, the Cu-bearing layer contributes equally to the rigidity along the [001] and [010]. Linkage of uranyl selenite chains with the deficiency of strong bonds, the contraction of the structure and rotation of the figure of the TEC should be mainly attributed to the orthogonalization of the oblique triclinic angles of the unit cell. This effect was described by Filatov (2008) and recently observed in (Izatulina et al. 2018, 2019). Along the [010], the linkage between the U-bearing chains and interlayer Cu–Pb complex occurs via sharing O atoms of the selenite groups, which explains the insignificant expansion of the structure in this direction. Thermal expansion of U, Se, Cu and Pb coordination polyhedra is equivalent, which can be seen from the dynamics of bond lengths and angles with heating (Tab. 3). The maximal expansion of DER is observed approximately along the [100], which matches the direction of the thin chain of Cu-centered octahedra and gaps between Cu chains occupied by the Pb cations.

4. Conclusions

As the result for derriksite,

\[
\text{Cu}_{2}\text{[(UO}_{3}\text{)(SeO}_{3})_{2}(\text{OH})_{4}]\text{,(H}_{2}\text{O})_{2}
\]

crystal structures refinement in the temperature range of –173 to +87 °C, thermal behavior of their structures was analyzed. In general, the lowest expansion is observed along the direction of uranyl selenite chains, while the largest expansion occurs in the direction normal or inclined to chains, with the low covalent bond distribution density. The crystal structure of demesmaekerite undergoes a contraction of the
Thermal behavior of derrksite and demesmaekerite

structure during heating, which can be attributed to the orthogonalization of the oblique angles of the triclinic unit cell.

The results of current study allow to expand the common crystal chemical borders of the U^{6+}-bearing minerals and to estimate rather rarely studied parameters such as the strength characteristics of crystal structures. By the current study, it has been documented that uranyl complexes are one of the most stable and rigid blocks in the structural architecture of natural and synthetic uranyl compounds, and they govern the thermal behavior of the whole structure, which is in agreement with the results of recent studies (Gurzhii et al. 2018, 2020; Kornyakov et al. 2019). These conclusions are valid, regardless of:
1) the dimensionality of U^{6+}-bearing substructural units,
2) both the arrangement and the chemical composition of an interlayer structure.

These observations reasonably justifies an assignment of U^{6+}-bearing units as the fundamental building blocks (FBB) of the entire crystal structures of U^{6+}-compounds and justifies the structural hierarchies based on these FBB (Burns 1999, 2005; Lussier et al. 2016).

Acknowledgments. This research was funded by the Russian Science Foundation (grant 18-17-00018). The XRD and EDX measurements have been performed at the X-ray Diffraction Centre and “Geomodel” Research Centre of the St. Petersburg State University. We are grateful to two anonymous reviewers for useful comments.

Electronic supplementary material. Supplementary crystallographic data are available online at the Journal website (http://dx.doi.org/10.3190/jgeosci.315).

References

Csbrón F, Pierrot R, Verbeek T (1971) La derriksite,

\[\text{Cu}_2(\text{UO}_2)(\text{SeO}_3)_2(\text{OH})_2\cdot\text{H}_2\text{O}, \]

Demartin F, Diella V, Donzelli S, Gramaccioli CM, Pelati T (1991) The importance of accurate crystal structure determination of uranium minerals. I. Phosphuranylethy K\text{Ca}(\text{H}_2\text{O})_2(\text{PO}_4)\text{O}_2\cdot8\text{H}_2\text{O}. Acta Crystallogr B47: 439–446

Filatov SK (1990) Visokotemperaturnaja Kristallohimija (High-Temperature Crystal Chemistry, in Russian). Ne-dra, Leningrad, Russia, pp 1–288

Frost RL, Čejka J, Kefee EC, Dickf\-os MJ (2008a) Ra-\man spectroscopic study of the uranyl selenite mineral marthozite \(\text{Cu}_2(\text{UO}_2)(\text{SeO}_3)_2(\text{OH})_2\cdot8\text{H}_2\text{O}. \) J Raman Spec, 39: 1413–1418

Frost RL, Čejka J, Dickf\-os MJ (2009a) Raman spectroscopic study of the mineral guilleminite Ba(\text{UO}_2)_2(\text{SeO}_3)_2(\text{OH})_2\cdot3\text{H}_2\text{O}. J Raman Spectrosc 40: 355–359

Frost RL, Čejka J, Dickf\-os MJ (2009b) Raman spectroscopic study of the uranyl selenite mineral demes-\-maekerite \(\text{Pb}_2\text{Cu}_2(\text{UO}_2)_2(\text{SeO}_3)_2(\text{OH})_6\cdot2\text{H}_2\text{O}. \) J Raman Spectrosc 40: 476–480

Ginderow D, Csberton F (1983a) Structure de la demesmaekerite, \(\text{Pb}_2\text{Cu}_2(\text{SeO}_3)_2(\text{UO}_2)_2(\text{OH})_6\cdot2\text{H}_2\text{O}. \) Acta Crystallogr C39: 824–827

Ginderow D, Csberton F (1983b) Structure de la derriksite, \(\text{Cu}_2(\text{UO}_2)(\text{SeO}_3)_2(\text{OH})_6\cdot2\text{H}_2\text{O}. \) Acta Crystallogr C39: 1605–1607

Gurzh\-iy VV, Krzhizhanovskyka MG, Izatulina AR, Sig\-\-mon GE, Krivovichev SV, Burns PC (2018) Structure refinement and thermal stability studies of the uranyl carbonate mineral andersonite, \(\text{Na}_2\text{Ca}(\text{UO}_2)(\text{CO}_3)_4(5+x)\text{H}_2\text{O}. \) Minerals 8: 586

Gurzh\-iy VV, Tyum\-\-n\-\-tseva OS, Izatulina AR, Krivovich\-\-\-\-\-ev SV, Tananaev IG (2019b) Chemically induced polytypic phase transitions in the \(\text{Mg}[(\text{UO}_2)(\text{TO}_3)_2(\text{H}_2\text{O})_2(T=\text{S}, \text{Se})]\cdot2\text{H}_2\text{O}. \) Inorg Chem 58: 14760–14768

Gurzh\-iy VV, Korn\-\-nyakov IV, Szymanowski JES, Felton D, Tyum\-\-n\-\-tseva OS, Krzhizhanovskyka MG, Krivovichev SV, Burns PC (2020) Chemically-induced structural variations of a family of \(\text{Cs}_2[(\text{An}_2\text{TO}_3)_2(\text{TO}_3)_2]_{(An=U,\text{Np}; T=\text{S, Se, Cr, Mo})} \) compounds: thermal behavior, calorimetry studies and spectroscopy characterization of Cs uranyl sulfate and selenate. J Solid State Chem 282: 121077

Hazen RM, Downs RT (2001) Reviews in Mineralogy and Geochemistry, Volume 41: High-Temperature and High-Pressure Crystal Chemistry. Mineralogical Society of America, Washington, DC, USA. pp 1–596
Thermal behavior of derriksite and demesmaekerite

Izatulina AR, Gurzhiy VV, Krzhizhanovskaya MG, Chukanov NV, Panikorovskii TL (2019) Thermal behavior and phase transition of uric acid and its dihydrate form, the common biominerals uricite and tinnunculite. Minerals 9: 373

Kampf AR, Sejkora J, Witzke T, Plášil J, Čejka J, Nash BP, Marty J (2017) Rietveldite, Fe(UO$_2$)(SO$_4$)$_2$(H$_2$O)$_5$, a new uranyl sulfate mineral from Giveaway-Simplot mine (Utah, USA), Willi Agatz mine (Saxony, Germany) and Jáchymov (Czech Republic). J Geosci 62: 107–120

Langreiter T, Kahlenberg V (2015) TEV – a program for the determination and visualization of the thermal expansion tensor from diffraction data. Crystals 5: 143–153

