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Dobšináite, ideally Ca2Ca(AsO4)2·2H2O, is a new supergene mineral from the Dobšiná deposit, Slovak Republic, associ-
ated with phaunouxite, picropharmacolite, erythrite-hörnesite, gypsum and aragonite. It forms white to pink clusters or 
polycrystalline aggregates up to 1–4 mm in size consisting of densely intergrown, slightly rounded thin tabular to platy 
crystals up to 0.1 mm in size. Dobšináite has a white streak, vitreous luster, does not fluoresce under either short- or 
long-wave ultraviolet light. Cleavage on {010} is good, the Mohs hardness is ~3, and dobšináite is brittle with an uneven 
fracture. The calculated density is 3.395 g/cm3. Dobšináite is optically biaxial negative, the indices of refraction are  
α´ = 1.601(2) and γ´ = 1.629(2) and 2Vmeas. is 60° (+/– 20°). Dobšináite is monoclinic, space group P21/c, a = 5.990(2),  
b = 13.013(4), c = 5.726(2) Å, β = 108.47(3)°, V = 423.3(3) Å3, Z = 2. The seven strongest lines in the X-ray powder di-
ffraction pattern are as follows: d (Å)/I(hkl): 5.197/37(110); 3.443/38(130); 3.385/66(031); 3.249/77(040); 3.201/42(13–1); 
3.026/100(121) and 2.822/60(10–2). The chemical analyses by electron microprobe yielded (in wt. %) CaO 36.74, MgO 
0.89, NiO 0.37, CoO 0.51, P2O5 0.03, As2O5 52.75, SO3 0.18, H2Ocalc. 8.31, total 99.78. The resulting empirical formula 
on the basis of 10 O atoms per formula unit is Ca2(Ca0.84Mg0.10Co0.03Ni0.02)Σ0.99[(AsO4)1.99(SO4)0.01]Σ2.00·2H2O. Dobšináite is 
the Ca-dominant member of the roselite group as confirmed by stoichiometry, X-ray powder diffraction data and Raman 
spectroscopy. It is named after its type locality Dobšiná, Slovak Republic. Dobšináite was formed during weathering 
of primary Co and As-bearing ore minerals (safflorite, arsenopyrite) in a Ca enriched environment under relatively dry 
conditions.
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and in the past, it was a significant producer of the high-
grade Ni and Co ores in Europe.

The new mineral and its name have been approved by 
the Commission on New Minerals, Nomenclature and 
Classification of the International Mineralogical Associa-
tion (IMA 2020-81). The holotype sample of dobšináite 
is deposited in the collections of the Moravian Museum 
in Brno, Department of Mineralogy and Petrography, 
Zelný trh 6, Brno, Czech Republic, under the catalog 
number B12257.

2. Occurrence

Dobšináite was found in several specimens collected 
in the short abandoned adit at the Dionýz mining field, 
Zemberg-Terézia vein system, which is located 2.2 km 
NE of the Dobšiná town, Spišsko-gemerské rudohorie 

1. Introduction

During our long-term systematic mineralogical research 
focused on supergene arsenate minerals from various 
occurrences (Sejkora et al. 1999, 2009, 2018; Plumhoff 
et al. 2020; Steciuk et al. 2021), dobšináite, a new Ca 
dominant member of the roselite group, was discovered; 
in this paper, we report its description. Arsenate mem-
bers of the roselite group comprise monoclinic minerals 
of generalized composition Ca2M(AsO4)2·2H2O. The 
octahedral M site is occupied mainly by Mn2+ (brandtite, 
Herwig and Hawthorne 2006), Co2+ (roselite, Hawthorne 
and Ferguson 1977), Cu2+ (rruffite, Yang et al. 2011), 
Mg2+ (wendwilsonite, Kolitsch and Fleck 2006) and Zn2+ 
(zincroselite, Keller et al. 2004).

Dobšináite is named after its type locality Dobšiná, 
which represents the most important accumulation of Ni 
arsenides and sulfarsenides in the Western Carpathians 
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Mts., Rožňava Co., Košice Region, Slovak Republic 
(48.837977°N, 20.383550°E). 

The Zemberg-Terézia vein system is represented by 
siderite-ankerite hydrothermal carbonate–quartz veins 
with Ni–Fe–Co–Cu ore mineralization hosted in the Early 
Paleozoic gneiss-amphibolite complex of the Klátov 
group belonging to the Gemeric tectonic unit (Rozložník 
1959, 1965; Halahyjová-Andrusovová 1964a; Grecula 
et al. 1995). The vertical extent of the veins exceeds 1.5 
km, generally with the SW-NE orientation and moderate 
to steep dip (40° to 70°) to the S or SE. The veins are 
usually 0.7 to 1.5 m thick. The two different ore miner-
alization types were distinguished: carbonate (siderite, 
ankerite–dolomite)–quartz vein filling with baryte and 
abundant chalcopyrite and tetrahedrite is typical for the 
upper parts of the veins. In contrast, Ni–Co–As miner-
als are prevailing ore minerals in the deeper parts of the 
veins (Halahyjová-Andrusovová 1959, 1964b; Grecula et 
al. 1995). The dominant gangue minerals are carbonates, 
mainly Fe-rich dolomite to ankerite and siderite with 
quartz and minor tourmaline. Gersdorffite and arsenopy-
rite are the most frequent ore minerals, accompanied by 
minor pyrite, cobaltite, nickelskutterudite–skutterudite, 
nickeline, millerite, rammelsbergite, safflorite, ullman-
nite, löllingite, chalcopyrite, tetrahedrite group minerals, 
Bi sulfosalts and hematite (Halahyjová-Andrusovová 
1959; Kiefer et al. 2017, 2020; Števko and Sejkora 2020). 
The two adits in the Dionýz mining field (Dionýz adit and 
the short adit above, where the samples with dobšináite 
were collected) explored one of the short hydrother-
mal ore veins developed at the southern margin of the 
Zemberg-Terézia vein system.  

Dobšináite was found in a relatively dry area of the 
mine in assemblage with other Ca and Co phases. This 
supergene post-mining assemblage was found growing on 
the surface of loose fragments of vein filling containing 

calcite–dolomite–quartz matrix with rich impregnations 
of safflorite and Co-rich arsenopyrite. Dobšináite is 
closely associated with phaunouxite, picropharmacolite, 
erythrite–hörnesite, gypsum and aragonite. Rauenthalite 
is also present in this assemblage but never in direct 
association with dobšináite. The supergene assemblage 
with dobšináite was formed by oxidation of primary Co 
and As-bearing ore minerals (safflorite, arsenopyrite) 
in a Ca enriched environment (abundant calcite in the 
matrix) under the relatively dry conditions (Števko et al. 
unpublished data). 

3. Appearance and physical properties

Dobšináite occurs as clusters or polycrystalline ag-
gregates up to 1–4 mm in size consisting of densely 
intergrown, slightly rounded thin platy crystals up to 
0.1 mm in size (Figs 1 and 2), usually the thickness of 
individual crystals does not exceed 10 µm. It has a white 
to pink color depending on the Co content; the holotype 
is white, locally with a light pink/violet tint. The pink 
variety seems to be more coarse crystalline than the 
white variety. Its aggregates are opaque to translucent; 
individual crystals or tiny fragments are translucent to 
transparent. It has a white streak and a vitreous luster. 
It does not fluoresce under either short- or long-wave 
ultraviolet light. Cleavage on {010} is good, the Mohs 
hardness is ~3 (scratch tests), and the mineral is brittle 
with an uneven fracture. The density Dcalc = 3.395 g/cm3 

was calculated on the basis of the empirical formula and 
unit-cell volume refined from powder data; for the ideal 
formula, we obtained 3.405 g·cm–3. 

Dobšináite is optically biaxial negative, with  
α´ = 1.601(2) and γ´ = 1.629(2) (measured at 589 nm), 

Fig. 1 Aggregates of dobšináite consisting of densely intergrown, sli-
ghtly rounded thin tabular to platy crystals; holotype sample, the field 
of view is 1.6 mm.

Fig. 2 White (with pink tint) dobšináite aggregates consisting of densely 
intergrown thin tabular to platy crystals associated with hemispherical 
aggregates of minerals from erythrite-hörnesite solid-solution; holotype 
sample, the field of view is 1.8 mm.
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2Vmeas. = 60° (+/– 20°). Crystals and aggregates are 
formed of parallel intergrowths and bent fine elongated 
domains. Extinction has an undulatory character and is 
parallel to the elongation or with a minimum angle. The 
character of the sample hampers a more precise char-
acterization. Dispersion is weak (r > v), and dobšináite 
exhibits no noticeable pleochroism. The Gladstone-Dale 
compatibility index 1–(KP/KC) calculated from incom-
plete optical data is 0.003 for the empirical formula 
and unit-cell parameters from X-ray powder diffraction 
pattern, indicating superior compatibility (Mandarino 
1981).

4. Chemical composition

Initial chemical analyses of dobšináite were col-
lected utilizing Cameca SX-100 electron micro-
probe (Masaryk University, Brno) during a routine 
investigation of the secondary arsenate mineral as-
semblage from Dobšiná. Subsequently, a more sys-
tematic chemical characterization of dobšináite 
was performed by a Cameca SX-100 electron mi-
croprobe (National Museum, Prague) operating 
in the wavelength-dispersion mode with an ac-
celerating voltage of 15 kV, a specimen current of  
4 nA, and a beam diameter of 20 μm. The follow-
ing lines and standards were 
used: Kα: diopside (Mg), flu-
orapatite (P), rhodonite (Mn), 
wollastonite (Ca), Co (Co), 
Ni (Ni), celestine (S), and Lα: 
clinoclase (As). Peak counting 
times (CT) were 20 s, CT for 
each background was one-half 
of the peak time. The raw in-
tensities were converted to the 
concentrations automatically 
using PAP (Pouchou and Pi-
choir 1985) matrix-correction 
software. Other elements, such 
as Al, Cu, Fe, Si, V and Zn 
were found to be below the 
detection limits (0.03–0.08 wt. 
%). Water content could not be 
analyzed directly because of 
the minute amount of material 
available and was calculated 

on the basis of 2 H2O (from the ideal composition of 
roselite group minerals).

Table 1 gives the chemical composition of the holo-
type sample of dobšináite (mean of nineteen determi-
nations). The empirical formula of dobšináite based on  
1 0  O  a t o m s  p e r  f o r m u l a  u n i t  i s  C a 2( C a 0 . 8 4 
Mg0.10Co0.03Ni0.02)Σ0.99[(AsO4)1.99(SO4)0.01]Σ2.00·2H2O. The 
simplified formula is Ca2(Ca,Mg)(AsO4)2·2H2O, and 
the ideal end-member formula is Ca2Ca(AsO4)2·2H2O, 
which requires CaO 38.75, As2O5 52.94. H2O 8.30, 
total 100.00 wt. %.

In other samples, besides white ones, pink ag-
gregates with increased Co (up to 3.66 wt. % CoO, 

Tab. 1 Chemical data (in wt. %) for holotype sample of dobšináite

constituent mean range stand. dev. (σ) 
CaO 36.74 35.88–37.81 0.65
MgO 0.89 0.58–1.65 0.26
CoO 0.51 0.10–0.84 0.24
NiO 0.37 0.08–0.70 0.23
As2O5 52.75 51.96–53.58 0.41
P2O5 0.03 0.00–0.16 0.05
SO3 0.18 0.06–0.28 0.05
H2O* 8.31
total 99.78
H2O* – content calculated on the basis of 2 H2O from the ideal com-
position of roselite group minerals
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Fig. 3 Ternary graph of occupation of 
Co+Ni vs. Ca vs. Mg (atom. unit) in 
the octahedral M position of dobšináite 
from Dobšiná; data for holotype sample 
are compared with white and pink dob-
šináite aggregates from other samples.  
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0.21 apfu) and Ni contents (up to 0.79 wt. % NiO, 
0.05 apfu) were observed; this composition also cor-
responds very well to dobšináite (Fig. 3). The repre-
sentative analyses for all dobšináite samples are given 
in Tab. 2. 

5. Crystallography

Attempts to obtain single-crystal X-ray data (Rigaku 
SuperNova single-crystal diffractometer with Atlas S2 
CCD detector) were unsuccessful due to the nature of the 
studied material; it is formed by multiple intergrowths of 
sub-microscopic domains.

X-ray powder diffraction data of dobšináite (Tab. 3) 
were recorded at room temperature using a Bruker D8 

Advance diffractometer equipped with a solid-state Lynx-
Eye detector and secondary monochromator producing 
CuKα radiation housed at the Department of Mineralogy 
and Petrology, National Museum, Prague. The instrument 
was operated at 40 kV and 40 mA. To minimize the back-
ground, the powdered samples were placed (without any 
liquid) on the surface of a flat silicon wafer. The powder 
pattern was collected in the Bragg–Brentano geometry 
in the range 3–70° 2θ, step 0.01°, and a counting time of 
20 s per step (total duration of the experiment was ca. 30 
hours). The positions and intensities of diffractions were 
found and refined using the Pearson VII profile-shape 
function of the ZDS program package (Ondruš 1993). 
The unit-cell parameters were refined by the least-squares 
program of Burnham (1962) for monoclinic space group 
P21/c (#14) as follows: a = 5.990(2), b = 13.013(4), c = 

Tab. 2 Representative analyses (wt. %) of dobšináite

holotype white pink
CaO 35.88 36.07 36.83 37.38 34.53 34.72 35.23 36.21 33.91 34.56 35.88 36.47 36.76 37.26
MgO 1.65 0.75 0.64 0.90 0.67 1.14 1.01 0.41 0.00 0.25 0.00 0.00 0.00 0.00
CoO 0.26 0.84 0.84 0.27 1.46 0.42 0.51 0.19 3.66 3.04 2.58 2.37 1.81 0.59
NiO 0.09 0.70 0.63 0.10 0.38 0.17 0.26 0.16 0.79 0.64 0.39 0.46 0.42 0.35
MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.17 0.22 0.00
As2O5 51.96 53.02 52.79 52.54 52.65 52.75 51.35 51.54 53.59 52.17 52.72 52.98 53.30 52.50
P2O5 0.03 0.00 0.08 0.00 0.41 0.45 0.53 0.45 0.00 0.00 0.14 0.00 0.19 0.08
SO3 0.23 0.13 0.14 0.15 0.30 0.18 0.20 0.12 0.20 0.20 0.22 0.15 0.19 0.08
H2O* 8.20 8.34 8.33 8.27 8.43 8.42 8.23 8.22 8.45 8.22 8.35 8.34 8.45 8.27
total 98.29 99.85 100.28 99.61 98.83 98.25 97.32 97.30 100.60 99.08 100.48 100.94 101.34 99.13
Ca 2.810 2.778 2.842 2.904 2.633 2.648 2.751 2.830 2.580 2.700 2.761 2.810 2.796 2.895
Mg 0.180 0.080 0.069 0.097 0.071 0.121 0.110 0.045 0.000 0.027 0.000 0.000 0.000 0.000
Co 0.015 0.048 0.049 0.016 0.083 0.024 0.030 0.011 0.208 0.178 0.149 0.137 0.103 0.034
Ni 0.005 0.040 0.036 0.006 0.022 0.010 0.015 0.009 0.045 0.038 0.023 0.027 0.024 0.020
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.010 0.013 0.000
As 1.986 1.993 1.988 1.992 1.959 1.963 1.956 1.966 1.989 1.989 1.980 1.992 1.978 1.991
P 0.002 0.000 0.005 0.000 0.025 0.027 0.033 0.028 0.000 0.000 0.009 0.000 0.011 0.005
S 0.013 0.007 0.008 0.008 0.016 0.010 0.011 0.007 0.011 0.011 0.012 0.008 0.010 0.004
H2O 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
H2O* – content calculated on the basis of 2 H2O from the ideal composition of roselite group minerals
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Fig. 4 Correlations of average ionic radii of octahedral M cation [Å] (Tab. 3) and unit-cell parameters (a [Å] and V [Å3]) in the crystal structure 
of the roselite group members.
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6. Raman spectroscopy

The Raman spectrum of dobšináite (Fig. 5) was obtained 
employing a Horiba Labram HR Evolution spectrometer 
(Masaryk University, Brno). This dispersive, edge-filter-
based system is equipped with an Olympus BX 41 optical 
microscope, a diffraction grating with 600 grooves per 
millimeter, and a Peltier-cooled, Si-based charge-coupled 
device (CCD) detector. The 633 nm He-Ne laser with the 
beam power of 5 mW at the sample surface was selected 
for spectra acquisition to minimize analytical artifacts. 
Raman signal was collected in the range of 50–4000 cm–1 
with a 100× objective (NA 0.9) and the system being op-
erated in the confocal mode; beam diameter was ~1 µm 
and the depth resolution ~2 µm. No visual damage to the 
analyzed surface was observed at these conditions after 
the excitation. For wavenumber calibration, the Rayleigh 
line and low-pressure Ne-discharge lamp emissions were 
used. The wavenumber accuracy was ~0.5 cm–1, and the 
spectral resolution was ~2 cm–1. Band fitting was done 
after appropriate background correction, assuming com-
bined Lorentzian-Gaussian band shapes using the Voigt 
function (PeakFit; Jandel Scientific Software).

The main bands observed are (in wavenumbers): 3358, 
3170, 2960, 863, 828, 724, 474, 447, 416, 366, 333, 295, 
196, 171, 125, 106, 81 and 53 cm–1. Weak broad Raman 
bands with maxima at 3358, 3170 and 2960 cm–1 are as-
signed to the ν OH stretching vibrations of structurally 
distinct differently hydrogen-bonded water molecules. 
The most prominent very strong Raman band at 828 cm–1 
with a shoulder at 863 cm–1 is attributed to overlapping 
ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3– antisym-
metric stretching vibrations. A weak shoulder band at 724 
cm–1 can be connected to the libration of H2O molecules. 
Raman bands 474, 447 and 416 cm–1 are attributed with 
the ν4 (AsO4)3– bending vibrations. Raman bands at 366, 
333 and 295 cm–1 are related to the ν2 (AsO4)3– bend-
ing vibrations and those below 200 cm–1 to the lattice 
modes (Vansant et al. 1973; Yang et al. 2011; Sejkora 
et al. 2020). In the area of ν1 and ν3 (AsO4)3– vibrations 
(1000–700 cm–1), the Raman spectrum of dobšináite is 
close to other As-dominant members of the roselite group 
and distinctly differs from those of As-dominant members 
of the fairfieldite group (Fig. 6). 

7. Comparison with related minerals

Dobšináite is a Ca- and As-dominant member of the 
roselite group, Strunz class 8.CG.10, Dana class 40.2.3. 
A comparison of selected data for As-dominant members 
of this group is given in Tab. 4. An unambiguous deter-
mination of dobšináite as a member of the roselite group 

5.726(2) Å, β = 108.47(3)°, V = 423.3(3) Å3 and Z = 2. 
The a:b:c ratio calculated from unit-cell parameters is 
0.4603:1:0.4400.

The well-known crystal structure of As-dominant 
members of the roselite group (Ca2M2+(AsO4)2·2H2O) 
is characterized by isolated MO4(H2O)2 octahedra that 
are linked by corner-sharing with AsO4 tetrahedra to 
form the kröhnkite-type chains parallel to the c axis. 
These chains are linked together by the large Ca cat-
ions and hydrogen bonding (Hawthorne and Ferguson 
1977; Keller et al. 2004; Herwig and Hawthorne 2006; 
Kolitsch and Fleck 2006; Yang et al. 2011). The values 
of unit-cell parameters (especially a and V) positively 
correlate with the octahedral M cation´s average ionic 
radii (Fig. 4).

Tab. 3 Powder diffraction data (d in Å) of dobšináite; the strongest 
diffractions are given in bold

Iobs. dobs. dcalc. Icalc.* h k l
24 6.484 6.506 18 0 2 0
37 5.197 5.207 40 1 1 0
33 5.002 5.012 21 0 1 1
22 4.458 4.461 14 1 1 –1
25 3.831 3.836 22 1 2 –1
38 3.443 3.448 33 1 3 0
66 3.385 3.389 53 0 3 1
33 3.309 3.309 18 1 1 1
77 3.249 3.253 40 0 4 0
42 3.201 3.203 35 1 3 –1

100 3.026 3.028 100 1 2 1
28 2.854 2.855 36 2 1 –1
60 2.822 2.823 41 1 0 –2

8 2.713 2.716 8 0 0 2
30 2.665 2.669 34 2 2 –1

3 2.3781 2.3764 6 2 3 0
5 2.3456 2.3470 5 0 5 1

19 2.2819 2.2823 19 1 5 –1
33 2.1327 2.1320 31 1 4 –2

6 2.0804 2.0794 6 1 2 2
6 2.0263 2.0262 4 1 6 0
4 1.9584 1.9582 5 1 3 2
7 1.9461 1.9448 5 2 5 –1
8 1.9186 1.9178 9 2 4 –2

11 1.9097 1.9077 8 3 2 –1
6 1.8798 1.8790 6 0 5 2
4 1.8721 1.8740 9 3 1 0

18 1.8317 1.8318 25 1 6 1
27 1.7443 1.7442 23 0 2 3

6 1.7428 1.7425 14 2 6 –1
10 1.7364 1.7355 14 3 3 0

6 1.6963
1.6962 3 2 1 2
1.6947 3 0 6 2

Icalc.* – intensities were calculated using the software PowderCell 2.3 
(Kraus and Nolze 1996) on the basis of the structural model (brandtite 
– Herwig and Hawthorne 2006 – with Ca replacing for Mg).
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is based on its chemical composition (stoichiometry), 
X-ray powder diffraction data and Raman spectroscopy.

A mineral phase corresponding to dobšináite was de-
scribed in 1953 by Evgeniy I. Nefedov from Tuvinskaya 
deposit, Tuva Autonomous Republic, Russia. Nefedov 
provided an empirical formula Ca2(Ca,Mg)(AsO4)2·2H2O, 
some structural, optical and physical data; however, a 
chemical analysis is missing. Nefedov (1953) named 

this mineral belovite and assigned it to the roselite group 
mainly based on similarities of general formula and in-
accurate structural information. Borodin and Kazakova 
(1954) described a Sr, REE, Na-bearing member of the 
apatite supergroup and named it belovite, too. To reduce 
the confusion, belovite of Nefedov was then used to be 
call arsenate-belovite. Subsequent reinvestigation of 
belovite original material of Nefedov (Yakhontova and 
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Fig. 5 Raman spectrum of dobšináite (full-range).

Tab. 4 Comparison of the properties for As-dominant members of the roselite group

dobšináite brandtite wendwilsonite roselite zincroselite rruffite
Mideal Ca Mn Mg Co Zn Cu
Mmeas Ca0.84Mg0.10Co0.03Ni0.02 Mn0.88Mg0.10Fe0.01 Mg0.90Co0.10 Co0.52Mg0.49 Zn0.90Mg0.05Mn0.05 Cu1.01

SG P21/c P21/c P21/c P21/c P21/c P21/c
a (Å) 5.990(2) 5.877(1) 5.806(1) 5.801(1) 5.827(1) 5.8618(2)
b (Å) 13.013(4) 12.957(2) 12.923(3) 12.898(3) 12.899(3) 12.7854(5)
c (Å) 5.726(2) 5.675(1) 5.628(1) 5.617(1) 5.646(1) 5.7025(2)
β (°) 108.47(3) 108.00(3) 107.49(3) 107.42(2) 107.69(3) 109.425(2)
V (Å3) 423.3(3) 411.0 402.75(14) 401.0 404.3 403.05(3)
Z 2 2 2 2 2 2
AIR (Å) 0.948 0.802 0.723 0.740 0.743 0.730
optical biaxial – biaxial + biaxial – biaxial + biaxial + biaxial –
α α´ 1.658 1.707–1.709 1.694(3) 1.694–1.725 1.703(3) 1.725(1)
β 1.711 1.703(3) 1.704–1.703 1.710(4) 1.734(1)
γ γ´ 1.670 1.722-1.727 1.713(3) 1.719–1.735 1.720(3) 1.740(1)

[1] [2] [3] [4] [5] [6]
SG – space group; AIR – average ionic radii of octahedral M cation (Shannon 1976); optical data are taken from Anthony et al. (2000) and Yang 
et al. (2011); [1] this proposal; [2] Herwig and Hawthorne (2006); [3] Kolitsch and Fleck (2006); [4] Hawthorne and Ferguson (1977); [5] Keller 
et al. (2004); [6] Yang et al. (2011)
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Sidorenko 1956; Pierrot 1964) revealed that its chemi-
cal composition is richer in Mg and corresponds to 
Ca2Mg(AsO4)2·2H2O, and it is a triclinic member of a 
beta-roselite group. Hence, this material corresponds to 
mineral talmessite, described in 1960 by Bariand and 
Herpin (1960) from the Talmessi deposit, Iran.

Synthetic Ca3(AsO4)2·2H2O has been prepared 
experimentally by Nelson and Haring (1937). The au-
thors determined its relatively narrow stability field in 
the CaO–As2O5–H2O system and performed an X-ray 
study; however, it is difficult to acquire more structural 
details from the photograph 
of the diffraction pattern they 
provided in the publication. A 
synthetic analog of dobšináite 
was synthesized by Guérin 
(Pierrot 1964). The X-ray pow-
der diffraction data of this ma-
terial,  published by Pierrot 
(1964), are similar to those 
of dobšináite form Dobšiná, 
but also contain reflections at 
11.7 Å and 6.1 Å, which were 
probably caused by the pres-
ence of impurities in Guérin´s 
phase, e.g., a synthetic analog 
of phaunouxite. The solubility 
of Ca3(AsO4)2·2H2O in water 
was studied by Chukhlantsev 
(1956) and Mahapatra et al. 
(1984). Unfortunately, both 
studies lack any structural in-
formation. There are many 
experimental works focused on 
the system CaO–As2O5–H2O at 
various T-X conditions (Pearce 
and Avens 1937; Nishimura 
and Robins 1998; Bothe and 
Brown 1999; Zhu et al. 2006; 
Raičević et al. 2007; Hernan-
dez-Barcenas et al. 2017, etc.), 
however Ca3(AsO4)2·2H2O is 
usually missing among the 
precipitated solid phases which 
indicates specific conditions 
are necessary for dobšináite 
formation.
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Fig. 6 Raman spectra of dobšináite 
and those of As-dominant members of 
roselite (monoclinic) and fairfieldite 
(triclinic) group from the RRUFF pro-
ject for comparison. The spectra of the 
figure are shown with a vertical offset 
for more clarity.
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