Original paper

Perryite, (Ni,Fe)$_{16}$PSi$_{5}$, from the Mount Egerton aubrite: the first natural P–Si-ordered phosphide-silicide

Sergey N. BRITVIN1,2,*, Sergey V. KRIVOVICEV2,1, Oleg S. VERESHCHAGIN1, Natalia S. VLASENKO1, Vladimir V. SHILOVSKIKH1, Maria G. KRZHIZHANOFSKAYA1, Maksim S. LOZHKIN1, Edita V. OBOLONSKAYA3, Yulia O. KOPYLOVA1

1 Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, St. Petersburg, Russia; sergei.britvin@spbu.ru
2 Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, 184209, Apatity, Russia
3 The Mining Museum, Saint Petersburg Mining University, 21a Line 2, 199106, St. Petersburg, Russia
* Corresponding author

Perryite, natural Ni-silicide, is a minor but regular constituent of the metal phase in enstatite chondrite (aubrite) and enstatite chondrite meteorites. Its synthetic analog was shown to have promising catalytic properties. The first-time solution of the crystal structure of natural perryite was completed on the material from the Mount Egerton aubrite. The mineral is trigonal, $R3c$, $a = 6.6525(5)$, $c = 37.998(5)$ Å, $V = 1456.3(3)$ and $Z = 6$. The structure was refined to $R_f = 0.0137$ based on 457 independent observed reflections. The chemical formula obtained from the structure refinement, (Ni$_{11}$Fe$_{16}$)$_{23}$PSi$_3$, agrees with that derived from the electron microprobe data, (Ni$_{11.6}$Fe$_{16}$)$_{22.2}$Co$_{0.0}$Mo$_{0.0}$P$_{1.8}$Si$_{3.4}$. This research showed that P and Si in perryite are ordered, resulting in the simplified formula (Ni$_{11.6}$Fe$_{16}$)$_{23}$PSi$_3$, in contrast to the currently accepted variant (Ni,Fe)$_{16}$(Si,P)$_3$. The detailed results of EBSD study reveal previously unknown relationships between perryite, associated α-(Fe,Ni) metal (also known as kamacite) and schreibersite, (Fe,Ni)$_3$P. Since enstatite meteorites represent the early stages of nebular accretion, our results demonstrate that the crystal-chemical factor could affect the differentiation of chemical elements upon the onset of the Solar System formation.

Keywords: silicide, phosphide, aubrite, enstatite chondrite, meteorite, crystal structure

Received: 7 July 2021; accepted: 10 November 2021; handling editor: F. Laufek

The online version of this article (doi: 10.3190/jgeosci.331) contains supplementary electronic material.

1. Introduction

Perryite is the first metal silicide discovered in nature. Originally reported in the anomalous iron of the Horse Creek meteorite (Fredriksson and Henderson 1965), it was shortly afterward described from enstatite chondrites Kota-Kota and South Oman (Reed 1968), followed by the identification in the aubrites (enstatite achondrites) Mount Egerton and Norton County (Wai 1970). The mineral is now recognized as a common, albeit subordinate, constituent of the metal phase in aubrites and in type 3–4 enstatite chondrites (Tab. 1). Silicon-rich α-(Fe,Ni) metal in these meteorites is considered a primary phase crystallized on the initial stages of protoplanetary nebula condensation. Perryite, being always confined to Si-rich kamacite, was a subject of studies devoted to the formation of asteroidal bodies (Wasson and Wai 1970; Casanova et al.1993; Kimura and Lin 1999).

Synthetic (Ni,Fe)$_{16}$(Si,P)$_3$, having a stoichiometry close to that of perryite, was structurally characterized by Okada et al. (1991). The authors show topological similarity between (Ni,Fe)$_{16}$(Si,P)$_3$ and Ni$_{11}$Si$_3$ (Frank and Schubert 1971). The absence of Ni$_3$Si$_3$ in the Ni–Si phase diagram (Ellner et al. 1979) evidences that Ni/Fe and Si/P substitu-
tions may play an essential role in stabilizing the crystal structure of (Ni,Fe)$_{16}$(Si,P)$_3$ (Okada et al. 1991). Marsh (1994) re-examined the data by Okada et al. (1991) and noticed that there are strong indications that P can be selectively incorporated into the Si(3) site. Yang et al. (2015) reported on the results of the high-pressure study of synthetic perryite analog. Recently, Zhang et al. (2021) conducted the research of electrocatalytic properties of synthetic perryite analog and its Ge-substituted counterparts. However, as far as we know, crystallographic studies on natural perryite have never been performed. The lack of crystallographic information and the ambiguity of chemical data on natural perryite inspired us to study this mineral, using the material from the Mount Egerton meteorite. We herein present crystal-structure evidence for the P–Si ordering in natural perryite and describe its crystallographic relationships with associated minerals – α-(Fe,Ni) metal and schreibersite.

2. The Mount Egerton aubrite

A few fragments of this meteorite were collected in 1941 along the headstream of the Gascoine River,
ca. 12 miles to the north of Mount Egerton, 24°46'01.2"S 117°42'00.0"E, Victoria, Australia (McCall 1965). The larger pieces of the meteorite (up to 77 g) were predominantly composed of centimeter-sized enstatite crystals, whereas the smaller ones comprised Fe–Ni metal enriched in silicon (McCall 1965). Later efforts of meteorite collectors have brought thousands of Mount Egerton enstatite specimens available worldwide, but nothing of the metal fragments, which seem to have been entirely harvested during the first findings. The Mount Egerton meteorite is now classified as an anomalous aubrite (enstatite chondrite) (Meteoritical Bulletin Database). Its inclusion of enstatite, was generously provided for this study by the curators of the Mining Museum, St. Petersburg Mining University (a part of the specimen MM280). The piece was cut into two halves, which were polished, gently etched with nital, coated with carbon film and subjected to electron microprobe investigation. The latter was carried out employing a Hitachi S-3400N SEM equipped with an INCA WAVE 500 WDX spectrometer operated at 20 kV and 15 nA. Elemental Ni, Co, Fe and Si, along with natural schreibersite (for P), were used as analytical standards (Kα series lines). Electron back-scatter diffraction (EBSD) study was performed on the section preliminary etched with Ar-ion beam using an Oxford Instruments IonFab-300 system (500 V, 2.4 mA cm⁻², 20 min treatment time). EBSD phase identification and mapping were carried out with an Oxford Instruments Nordlys-HKL EBSD detector operated at 30 kV and 1.5 nA, both in spot and mapping modes. The sample was coated with ~2 nm carbon film and glued with carbon tape onto a 70° tilted stage. For identification, averaging of 20 patterns with no binning was performed; averaging of 2 patterns and 2 × 2 binning were utilized during mapping. The original authors’ crystallographic data on perryite, schreibersite and kamacite were used for the tabulation of 2 patterns and 2 × 2 binning were utilized during mapping. The sample was coated with ~2 nm carbon film and glued with carbon tape onto a 70° tilted stage. For identification, averaging of 20 patterns with no binning was performed; averaging of 2 patterns and 2 × 2 binning were utilized during mapping. The original authors’ crystallographic data on perryite, schreibersite and kamacite were used for the mapping. The original authors’ crystallographic data on perryite, schreibersite and kamacite were used for the

3. Samples and methods

All analytical procedures were carried out using the equipment and software provided by the Scientific Park of St. Petersburg State University. A ca. 0.5 × 1 cm² fragment of the Mount Egerton aubrite, consisting of an intergrowth of α-(Fe,Ni) metal and schreibersite with inclusion of enstatite, was generously provided for this study by the curators of the Mining Museum, St. Petersburg Mining University (a part of the specimen MM280). The piece was cut into two halves, which were polished, gently etched with nital, coated with carbon film and subjected to electron microprobe investigation. The latter was carried out employing a Hitachi S-3400N SEM equipped with an INCA WAVE 500 WDX spectrometer operated at 20 kV and 15 nA. Elemental Ni, Co, Fe and Si, along with natural schreibersite (for P), were used as analytical standards (Kα series lines). Electron back-scatter diffraction (EBSD) study was performed on the section preliminary etched with Ar-ion beam using an Oxford Instruments IonFab-300 system (500 V, 2.4 mA cm⁻², 20 min treatment time). EBSD phase identification and mapping were carried out with an Oxford Instruments Nordlys-HKL EBSD detector operated at 30 kV and 1.5 nA, both in spot and mapping modes. The sample was coated with ~2 nm carbon film and glued with carbon tape onto a 70° tilted stage. For identification, averaging of 20 patterns with no binning was performed; averaging of 2 patterns and 2 × 2 binning were utilized during mapping. The original authors’ crystallographic data on perryite, schreibersite and kamacite were used for the
EBSD matching. The smaller slice of kamacite was dissolved in a warm 10% HCl. After complete removal of α-(Fe,Ni) metal, rinsing the residue with methanol and air-drying on the clock glass, a shiny layer composed of platy perryite lamellae was obtained. Powder X-ray diffraction pattern was recorded from a few lamellae randomly glued onto a glass fiber. A Rigaku RAXIS Rapid II diffractometer was used in the following setup: Co Kα radiation (rotating anode, 40 kV, 15 mA), micro-focus mirror monochromator, semi-cylindrical imaging plate (r = 127.4 mm, 2θ max = 140°), Debye-Scherrer geometry, Gandolfi-type sample rotation, exposure 30 min. The raw data were converted into XY profile using osc2xrd program (Britvin et al. 2017). Pattern indexing and unit-cell refinement were performed with Bruker TOPAS 5.0 software (Bruker Inc., Massachusetts, USA). A single-crystal study was carried out on the non-twinned crystal by means of a Bruker Kappa APEX DUO diffractometer (Mo Kα, 50 kV, 0.6 mA, microfocus tube with a mirror monochromator, 1024K CCD detector). The collected data were processed using Bruker APEX2 software (Bruker Inc., Massachusetts, USA). The crystal structure was solved and refined to R1 = 0.0128 using SHELX-2018 program suite (Sheldrick 2015) incorporated into Olex2 GUI shell (Dolomanov et al. 2009). Further details on single-crystal data acquisition, integration and structure refinement can be retrieved from the CIF file included in Supplementary material.

4. Results

4.1. Appearance, general crystallography and chemical composition

Perryite appears as a rectangular grid of thin lamellae penetrating α-(Fe,Ni) metal matrix (Fig. 1a, b). The mineral has a yellowish-creamy color in reflected light, possesses a distinct pleochroism in creamy hues and is weakly anisotropic. Individual perryite lamella can reach 10 μm in width, whereas interlamellar grid spacing varies from 30 to 100 μm. EBSD mapping reveals that the host α-(Fe,Ni) metal forms an entire single crystal, whereas perryite lamella are composed of platy sub-domains filling up octahedral cleavage interstices in the metal (Fig. 1c, 2). The difference between the rectangular perryite-metal pattern shown in Fig. 1 and a pseudo-Widmanstätten octahedral structure described by Wai (1970) is likely caused by the different orientation of α-(Fe,Ni) metal cuts. In our case, the {111} plane of the host metal crystal is inclined by ~13° relative to the cut plane (Fig. 2d). An X-ray single-crystal study shows that perryite lamellae are flattened on {001}. EBSD orientation mapping documented that the metal cleavage planes are filled with three-component interpenetration twins (trillings) of perryite, formed by rotation of twin domains by 120° around the c axis (Fig. 2). The interphase orientation at the perryite-metal interface can be described as {001} perryite = {111} metal. A ~2 × 1 mm
long, single-crystal schreibersite grain is cut approximately on {001} on the contact with the metal (Fig. 3). At every point where perryite lamellae abut schreibersite,
one can observe peculiar delta-shaped dilation joints (Figs 3, 4). They are filled entirely with perryite and partially sink into schreibersite matrix, reminiscent of liquid droplets (Fig. 4). EBSD mapping of 6 different joints revealed that perryite is polycrystalline, with domain orientations not always coincident with the adjacent lamella.

All three mineral phases constituting the inspected section of Mount Egerton are chemically homogeneous across the entire cut surface (Tabs 2, 3). It is noteworthy that perryite forming a lamellar grid and the mineral filling up dilation joints have precisely the same composition (Tab. 2). Diffusion zones – Ni-rich areas (bands) in the α-(Fe,Ni) metal surrounding perryite (Wai 1970) were not observed in our section of Mount Egerton. The Ni/Fe gradient around perryite was neither detected by EMPA mapping or profiling (Fig. 1c, 2b, 4c) nor by nital etching – the latter would rise to a higher relief of the Ni-rich areas, which was not observed (Fig. 1b, 3, 4a). In this respect, the metal-perryite structures in our specimen are much more similar to the structures of Horse Creek and Norton County than to the previously described sections of Mount Egerton (Wai 1970).

4.2. X-ray powder diffraction and structure refinement

The refinement of unit-cell parameters based on the X-ray powder diffraction pattern (Tab. 4) gave the values of $a = 6.672(2)$, $c = 38.055(15)$ and $V = 1467.2(9)$ Å, consistent with the single-crystal data (Tab. 5) and with previously reported parameters for synthetic perryite analog: $a = 6.640(2)$, $c = 37.982(7)$ and $V = 1450.3(7)$ Å (Okada et al. 1991). The latter

<table>
<thead>
<tr>
<th>Tab. 2 Chemical composition of perryite in the inspected section of Mount Egerton.</th>
<th>Lamella cross-sections ($N = 11$)</th>
<th>Dilation joints ($N = 22$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt. %</td>
<td>range</td>
</tr>
<tr>
<td>Ni</td>
<td>70.89</td>
<td>69.13–72.20</td>
</tr>
<tr>
<td>Fe</td>
<td>13.34</td>
<td>11.62–15.03</td>
</tr>
<tr>
<td>Co</td>
<td>0.04</td>
<td>0.00–0.21</td>
</tr>
<tr>
<td>Si</td>
<td>12.01</td>
<td>11.58–12.47</td>
</tr>
<tr>
<td>P</td>
<td>3.40</td>
<td>3.10–3.85</td>
</tr>
<tr>
<td>Total</td>
<td>99.68</td>
<td>99.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formula coefficients calculated on 22 atoms per formula unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Co</td>
</tr>
<tr>
<td>Si</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Σ</td>
</tr>
</tbody>
</table>

SD – standard deviation

shows that natural perryite from Mount Egerton and synthetic (Ni,Fe)$_4$(P,Si)$_3$ represent the same material. Okada et al. (1991) refined the crystal structure of (Ni,Fe)$_4$(Si,P)$_3$.

| Tab. 3 Chemical composition of α-(Fe,Ni) metal and schreibersite. |
| --- | --- |
| α-(Fe,Ni) ($N = 8$) | Schreibersite ($N = 6$) |
| wt. % | range | SD | wt. % | range | SD |
| Fe | 93.49 | 92.31–94.33 | 0.68 | 66.82 | 65.52–68.09 | 0.99 |
| Ni | 3.35 | 2.56–4.59 | 0.61 | 17.36 | 16.07–18.58 | 1.08 |
| Co | 0.45 | 0.37–0.52 | 0.05 | 0.17 | 0.15–0.19 | 0.01 |
| Si | 2.17 | 2.02–2.29 | 0.10 | 0.23 | 0.18–0.28 | 0.04 |
| P | 0.10 | 0.10–0.20 | 0.01 | 0.19 | 0.18–0.20 | 0.03 |
| Total | 99.46 | 99.46 |
| 100.07 |

SD – standard deviation

| Tab. 4 X-ray powder diffraction data for perryite from the Mount Egerton aubrite (d in Å). |
| --- | --- | --- | --- | --- | --- | --- |
| I_{max} | d_{min} | I_{calc} | d_{calc} | hkl | I_{max} | d_{min} | I_{calc} | d_{calc} | hkl |
| 3 | 3.346 | >1 | 3.336 | 110 | 10 | 1.702 | 15 | 1.703 | 12.14 |
| 1 | 3.176 | 1 | 3.178 | 1.010 | 3 | 1.656 | 2 | 1.657 | 10.22 |
| 1 | 3.171 | 0.012 | 2 | 1.586 | 2 | 1.586 | 0.024 |
| 2 | 2.952 | 6 | 2.953 | 116 | 2 | 1.423 | 3 | 1.424 | 0.38 |
| 1 | 2.766 | 5 | 2.764 | 024 | 3 | 1.424 | 3 | 1.424 | 100 |
| 14 | 2.620 | 11 | 2.619 | 119 | 4 | 1.393 | 8 | 1.394 | 2.15 |
| 11 | 2.465 | 7 | 2.469 | 208 | 2 | 1.309 | 4 | 1.310 | 2.18 |
| 13 | 2.300 | 10 | 2.301 | 0.210 | 4 | 1.268 | 5 | 1.268 | 0.30 |
| 11 | 2.180 | 23 | 2.180 | 211 | 1 | 1.251 | 3 | 1.252 | 3.10 |
| 11 | 2.127 | 12 | 2.129 | 214 | 2 | 1.248 | 3 | 1.249 | 2.15 |
| 11 | 2.115 | 7 | 2.114 | 0.018 | 3 | 1.191 | 9 | 1.191 | 2.14 |
| 8 | 2.100 | 10 | 2.099 | 125 | 1 | 1.186 | 3 | 1.186 | 1.30 |
| 100 | 2.019 | 100 | 2.019 | 1.115 | 2 | 1.128 | 3 | 1.129 | 14.15 |
| 1 | 1.980 | 10 | 1.985 | 128 | 3 | 1.129 | 4 | 1.129 | 4.15 |
| 21 | 1.980 | 20.15 | 3 | 1.082 | 8 | 1.081 | 8 | 1.081 | 4.18 |
| 62 | 1.925 | 84 | 1.926 | 300 | 8 | 1.081 | 8 | 1.081 | 4.18 |
| 1 | 1.893 | 5 | 1.894 | 2.110 | 3 | 1.059 | 2 | 1.059 | 3.03 |
| 1 | 1.845 | 5 | 1.847 | 1.211 | 2 | 1.044 | 5 | 1.044 | 1.32 |
| 1 | 1.786 | 14 | 1.786 | 1.118 | 2 | 1.044 | 5 | 1.044 | 1.32 |
the reliable refinement of their populations a challenging task. However, it was recently shown that such refinements succeed upon compliance with the following conditions: (1) High brightness of reflections dataset; (2) High redundancy and (3) 20 limit allowing the achievement of data-to-parameter ratio > 8 (Britvin et al. 2021). The refinement of the perryite structure resulted in a successful determination of site populations (expressed as structural occupational factor, s.o.f.). We found that M1, M2 and M4 sites are Ni-dominant, whereas M3 site is completely occupied by Ni. The free refinements of non-metal sites evidence with high fidelity (e.s.d.s. ≤ 0.005 s.o.f.) that X1 and X2 positions are occupied solely by Si, whereas X3 site is populated by P (Tab. 6). Consequently, the final refinement was carried out with the occupancies of M3 and non-metal sites fixed at unity. The chemical formula obtained from the structure refinement (Ni$_{15.89}$Fe$_{5.09}$Co$_{0.09}$P$_{1.22}$Si$_{4.74}$) agrees well with the empirical formula derived from the electron microprobe data, (Ni$_{14.39}$Fe$_{2.65}$Co$_{0.09}$P$_{1.69}$Si$_{3.21}$) and phosphide α-Ni$_2$P$_3$ (R3c) (Frank and Schubert 1971; Il’nitskaya et al. 1987; Okada et al. 1991). As it is quite common among phosphides and silicides, coordination polyhedra of (Ni,Fe) in perryite are non-convex and very complex. The metal atoms are cross-coordinated by themselves, by each other and by phosphorus atoms (Tab. 7). In contrast, P and Si are coordinated by metal atoms only and form simpler polyhedra (Fig. 5). Therefore, we herein describe the structure.

4.3. Crystal structure

Perryite has a layered crystal structure similar to the structures of synthetic silicide Ni$_5$Si$_3$ (space group P321) and phosphide α-Ni$_2$P$_3$ (R3c) (Frank and Schubert 1971; Il’nitskaya et al. 1987; Okada et al. 1991). As it is quite common among phosphides and silicides, coordination polyhedra of (Ni,Fe) in perryite are non-convex and very complex.

The metal atoms are cross-coordinated by themselves, by each other and by phosphorus atoms (Tab. 7). In contrast, P and Si are coordinated by metal atoms only and form simpler polyhedra (Fig. 5). Therefore, we herein describe the structure.
Phosphorus-silicon ordering in meteoritic silicide

Mz = 2.4491(3)

Mz = 2.4184(6)

Mz = 2.4102(6)

Mz = 2.4447(4)

Mz = 2.5266(3)

Mz = 2.5419(4)

Mz = 2.3254(4)

Mz = 2.5454(3)

Fig. 5 Phosphorus- and silicon-centered polyhedra in the perryite structure. a – Distorted cube [PNi]3. b – Polyhedra [SiNi] and [SiNi]3, respectively. Displacement ellipsoids are shown at a 50% probability level. Drawn with CCDC Mercury 3.8 (Macrae et al. 2006).

Phosphorus-silicon ordering in meteoritic silicide

5. Discussion

Although Marsh (1994) suggested the possible P-Si ordering in synthetic analogue of perryite, later studies of synthetic material could not resolve this question because of the problems with the proximity of P and Si scattering factors (Zhang et al. 2021). The confirmed Si-P ordering in natural perryite seems to shed light on the absence of “purely silicidic” NiSi3 in the Ni-Si phase diagram, contrary to the existing silicide Ni11Si12. Here the main structural unit is the [PM]4 cube which is an essential part of perryite structure but is absent in the structure of Ni11Si12 (Frank and Schubert 1971). Since electron microprobe analyses of perryite from aubrites show the comparable P contents (Tab. 1), one can assume that the structural data obtained on the mineral from Mount Egerton can be reasonably extrapolated on perryite from other enstatite achondrites (Tab. 1). However, the same is not so apparent for enstatite chondrites. Ramdohr (1963) described optically isotropic Ni silicide from enstatite chondrite St. Mark’s, which was subsequently ascribed to perryite (Keil 1968). It may appear that the material described from St. Mark’s and some other enstatite chondrites (Tab. 1) is a cubic phase similar or identical to a recently described carletonmooreite, NiSi (Barbaro et al. 2021; Garvie et al. 2021). Therefore, further studies are required in order to clarify the nature of Ni-silicide in enstatite chondrites. The results of the present study,
clearly indicating the ordering between P and Si, lead to the new chemical formula of perryite, \((\text{Ni,Fe})_{16}^\text{PSi}_5\) \((Z = 6)\), which is different from the currently accepted definition, \((\text{Ni,Fe})_8^\text{(Si,P)}_3\) \((Z = 12)\).

6. Conclusions

We herein demonstrated on the material from enstatite achondrites (aubrites) that crystal-chemical factors could contribute to the differentiation of elements at the earliest stages of Solar System formation. The present research continues the series of works devoted to the ordered solid solutions among natural phosphide minerals (e.g., Skála and Čisařová 2005; Drábek 2006; Britvin et al. 2020, 2021) and stimulates further studies in this direction.

Acknowledgments. The authors are indebted to the curators of the St. Petersburg Mining Museum for the specimen of the Mount Egerton aubrite provided for this study. We are grateful to Associate Editor František Laufek for editorial handling of the manuscript. Roman Skála and an anonymous referee made valuable comments and suggestions that substantially improved the quality of the article. This research was completed under the financial support of the Russian Science Foundation, grant 18-17-00079. We thank the resource Centre for X-ray Diffraction Studies, Interdisciplinary Center for Nanomaterials Research, Geomodel and Nanophotonics Resource Centers of SPSU for instrumental and computational support.

Electronic supplementary material. Supplementary crystallographic data for this paper are

Fig. 6 Crystal structure of perryite: an alternation of layers of two different types along the c-axis. \(a,b\) – Layers of edge- and face-sharing polyhedra \([\text{SiNi}_{12}]\); projections onto (110) and (001) plane, respectively. \(c,d\) – Layers composed of polyhedra \([\text{SiNi}_{10}]\) (yellow) sharing common edges with distorted cubes \([\text{PNi}_{8}]\) (red); the same projections as in \(a,b\). Drawn using Atoms v.6 (Dowty 2013).
Phosphorus-silicon ordering in meteoritic silicide

References

BRITVIN SN, DOLIVO-DOBROVOLSKY DV, KRZHIZHANOVSKAYA MG (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zap Ross Mineral Obsh 146: 104–107 (in Russian)

DOWTY E (2013) ATOMS v.6. A computer program for displaying atomic structures. Shape software, Kingsport, TN

FREDRIKSSON K, HENDERSON EP (1965) The Horse Creek, Baca County, Colorado, iron meteorite. Trans Amer Geophys Un 46: 121

available online at the Journal web site (http://dx.doi.org/10.3190/jgeosci.331).
YANG J, WU X, QIN S (2015) p-V equation of state of (Fe$_{0.03}$Ni$_{0.97}$)$_8$(Si$_{0.79}$P$_{0.21}$)$_3$. Chin J High Press Phys 25: 275–280