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The Plio–Quaternary post-collisional volcanism in the Karapınar area is represented by two occurrences: (1) Karacadağ 
Volcanic Complex (KCVC) and (2) Karapınar Volcanic Field (KPVF). The investigated volcanic units are the southwes-
tern part of the Neogene to Quaternary Cappadocia Volcanic Province (CVP) in Central Anatolia. The CVP generally 
displays calc–alkaline affinity in the Late Miocene to Pliocene rocks, but both calc-alkaline and sodic alkaline affinity in 
the Plio–Quaternary rocks, all of which have an orogenic geochemical signature. Such a volcanic activity contradicts the 
Western and Eastern Anatolian volcanism characterized by anorogenic OIB-like sodic alkaline volcanic rocks postdating 
early orogenic calc–alkaline ones. We hypothesize that such temporal and geochemical variations in the investigated rocks 
result from crustal contamination and present major and trace element chemistry and Sr–Nd–Pb–O isotope geochemistry, 
coupled with 40Ar/39Ar geochronology data to restrict the genesis and evolution of the rocks. The Neogene Karacadağ 
volcanic rocks are represented by lava flows, domes and their pyroclastic equivalents constituting a stratovolcano, and 
dated by new 40Ar/39Ar ages of 5.65 to 5.43 Ma. They are mainly composed of andesitic, rarely basaltic, dacitic and 
trachytic rocks and have a calc–alkaline character. Constituting a monogenetic volcanic field, the Quaternary Karapınar 
volcanic rocks are typically formed by cinder cones, maars and associated lavas, including xenoliths and xenocrysts 
plucked from the Karacadağ rocks. They comprise basaltic to andesitic rocks with a transitional affinity, from sodic 
alkaline to calc–alkaline. Both the Karacadağ and Karapınar volcanic rocks display incompatible trace element patterns 
rather characteristic for orogenic volcanic rocks. The Sr, Nd and Pb isotopic systematics of both units show a relatively 
narrow range, but their δ18O values are markedly different. The Karacadag volcanic rocks have δ18O values ranging 
from 7.5 to 8.9 ‰, resembling those of subduction-related basalts, but the Karapınar volcanics have δ18O ratios between 
5.7 and 6.5 ‰ corresponding to OIB-like rocks. Additionally, δ18O values and 87Sr/86Sr ratios correlate positively with 
SiO2 in the rocks, indicating that contamination played an important role during differentiation processes. All the data 
obtained suggest that the Karacadağ basaltic rocks stemmed from a subduction-modified lithospheric mantle source. 
On the other hand, the origin of the Karapınar basaltic rocks can be explained in terms of OIB-like melts contaminated 
with the Karacadağ volcanic rocks to gain orogenic geochemical signature, which may be an alternative model for the 
origin of the CVP sodic alkali basalts.

Keywords: contamination, geochronology, isotope geochemistry, post-collisional, OIB
Received: 13 January 2021; accepted: 5 April 2022; handling editor: V. Rapprich
The online version of this article (doi: 10.3190/jgeosci.343) contains supplementary electronic material.

enrichment in large ion lithophile elements – LILE; K, 
Rb, Ba, Pb, Sr, and Th) accompanied by depletion in 
high field strength elements – HFSE (Nb, Ta, Ti) similar 
to “volcanic arc basalts” in post-collisional volcanic 
rocks can be related to the derivation from lithospheric 
mantle source metasomatically enriched by previous 
subduction or the effect of crustal assimilation of mantle-
derived magmas during the ascent of the magma toward 
the surface (Pearce 1983; Pearce and Peate 1995). In an 
orogenic setting, the crustal component can be added by 

1.	Introduction

Two successive and contrasting volcanic suites in post-
collisional geological settings are orogenic and anoro-
genic types. Orogenic volcanic suites are characterized 
by various rock types such as tholeiitic, calc–alkaline, 
shoshonitic and ultrapotassic rocks ranging from basaltic 
to felsic compositions, while anorogenic ones include 
mainly sodic alkali basaltic rocks and their differentiates 
(Bonin 2004). Orogenic geochemical signature (e.g., 
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two processes via “source contamination” in the mantle 
or “crustal contamination” during magma evolution. 
Although distinguishing the role of these two processes 
is difficult when true primary mantle-derived melts are 
absent, crustal contamination can be simply recognized 
by (1) the presence of crustal xenocrysts and xenoliths, 
(2) correlations between indices of differentiation and 
isotopic compositions and (3) significant variations in 
oxygen isotope ratios (Gertisser and Keller 2000; Pec-
cerillo et al. 2004; Davidson and Wilson 2011; Jung et 
al. 2011). Conversely, anorogenic geochemical signature 
(e.g., peak at Nb–Ta with a trough at Pb and K on spider 
diagrams, similar to “OIB – oceanic island basalts”) is 
a typical for magmas those derived from mantle source 
not influenced by subduction-related processes (Hofmann 
1986, 1988, 1997; Hofmann et al. 1986).

Orogenic and anorogenic volcanic rock associations 
are characteristics of the Alpine–Mediterranean region 
(e.g., Betic–Alboran–Rif province, Central Mediterra-
nean, Alps, Carpathian–Pannonian region, Dinarides and 
Rhodopes, Aegean sea and Anatolia) as a result of the 
Late Cretaceous–Cenozoic convergence of Afro–Arabian 
with Eurasian plates, and there is general agreement on 
the temporal sequence from early orogenic to late anoro-
genic volcanic activity in this region, except for some 
occurrences (Wilson and Bianchini 1999; Harangi et al. 
2006; Lustrino and Wilson 2007). As a part of the Al-

pine–Mediterranean region, the Anatolian Late Cenozoic 
volcanism is traditionally reviewed in three sub-regions 
(e.g., Western, Central and Eastern Anatolian volcanism). 
Despite some overlap or opposite situations, there is 
a gradual transition from early orogenic calc–alkaline to 
potassic volcanic activity to late anorogenic sodic alka-
line activity in the Western and Eastern Anatolia (Pearce 
et al. 1990; Güleç 1991; Aldanmaz et al. 2000; Aldanmaz 
2002; Innocenti et al. 2005; Ersoy et al. 2012; Di Gi-
useppe et al. 2018a) as in the other Alpine–Mediterranean 
sectors. In contrast to the Western and Eastern Anatolia, 
the sodic alkali basaltic volcanic activity postdating or 
coeval with the orogenic calc–alkaline one is interest-
ingly characterized by orogenic geochemical signature 
in Central Anatolia (Ercan et al. 1990; Reid et al. 2017; 
Di Giuseppe et al. 2018b; Dogan-Kulahci et al. 2018). 
Such a distinct signature in the Cappadocia Volcanic 
Province of Central Anatolia has recently been explained 
by mixing between subduction-related calc–alkaline and 
within-plate OIB-like magmas during their rise to the sur-
face (Di Giuseppe et al. 2018b). In this scenario, crustal 
contamination was thought to have a negligible effect on 
the evolution of less evolved (basaltic) magmas. How-
ever, we hypothesize here, based on the petrography (e.g., 
presence of crustal xenoliths and xenocrysts, disequilib-
rium textures etc.) and geochemistry (e.g., crust-like trace 
element and isotopic signature; high LILE contents and 
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high Sr, Pb, O isotope ratios, low HFSE contents and low 
Nd isotope ratios) of the studied volcanic rocks, that the 
crustal contamination is a crucial magmatic process and 
could be an alternative model for explaining the orogenic 
signature of sodic alkaline basalts from the Cappadocia 
Volcanic Province (CVP).

Here, we report new Ar–Ar geochronology, whole-
rock major-trace element, and Sr–Nd–Pb–O isotope 

data from the Plio–Quaternary post-collisional vol-
canic rocks from the Karapınar–Karacadağ area, 
southwestern part of the Cappadocia Volcanic Prov-
ince (Central Anatolia, Turkey). The data used in this 
paper is based on the results of the unpublished PhD 
thesis of the first author, complemented with some 
previously published data to strengthen the presented 
model.
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Fig. 2. a – Simplified geological map of the investigated volcanic units modified from Ulu (2009), b – generalized stratigraphy of the Karacadağ 
Volcanic Complex, and c – Karapınar Volcanic Field. Ages for the Karapınar volcanic rocks are from Reid et al. (2017).
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2.	Geological Setting and Volcanism in the 
CVP

As a part of the Cenozoic Alpine–Himalayan orogenic belt, 
Anatolia was formed by the combination of several tectonic 
blocks, and its geology was mainly shaped by the con-
vergence system between the Afro–Arabian and Eurasian 
Plates. The tectonic units separated by the Neotethys sutures 
are “the Pontides” along the north, “the Kırşehir Block” in 
the middle, “the Anatolide–Tauride Block” along the south 
and “the Arabian Platform” in the southeast (Fig. 1). These 
sutures are the result of the closure of the different branches 
of the Neotethys Ocean by northward subduction after 
the Late Cretaceous (Okay and Tüysüz 1999; Okay 2008; 
Şengör et al. 2019). The İzmir–Ankara–Erzincan and Inner 
Tauride Sutures were formed by the complete closure of the 
Northern branch of the Neotethys following the Eocene col-
lision of the Tauride-Anatolide block with the Pontides and 
the Kırşehir Block. On the other hand, the Southern branch 
of the Neotethys has indicated diachronous closing (Şengör 
et al. 2003). This branch was subducted entirely in the east, 
and the Arabian Platform collided with the Anatolides–Tau-
ride Block along to the Bitlis Suture Zone at the end of the 
Middle Miocene. However, it is still subducting under the 
Anatolide–Tauride Block along to the contemporary Cyprus 
subduction zone in the Mediterranean.

The Cappadocia Volcanic Province (CVP) straddles 
the Inner Tauride Suture separating the Kırşehir and 
Anatolide–Tauride blocks in the Central Anatolia and is 
characterized by a number of monogenetic (i.e., maars, 
domes and cinder cones) and polygenetic volcanoes (such 
as Hasandağı, Karacadağ, Melendiz, Keçiboyduran and 
Erciyes stratovolcanoes, etc.), containing widespread  ig-
nimbrite  areas of Neogene to Quaternary age (Toprak 
1998). Inferred from the published radiometric data and 
their stratigraphy, the oldest volcanic units can be dated 
back to 14–13 Ma. Yet the youngest ages taken mainly 
from monogenetic volcanoes suggest that volcanic activ-
ity continued to the historical times in the CVP (Innocenti 
et al. 1975; Besang et al. 1977; Batum 1978; Ercan et al. 
1992; Bigazzi et al. 1993; Notsu et al. 1995; Platzman et al. 
1998; Temel et al. 1998; Le Pennec et al. 2005; Aydar et al. 
2012; Lepetit et al. 2014; Reid et al. 2017; Di Giuseppe et 
al. 2018b; Dogan-Kulahci et al. 2018). Several geochemi-
cal and petrological studies suggest that the CVP rocks 
range from basaltic to rhyolitic composition and display 
both calc–alkaline and sodic alkaline affinity with orogenic 
geochemical signature. The CVP volcanism is explained by 
several competitive geodynamic processes such as active 
subduction along the Cyprus arc, decompression melting in 
lithospheric mantle metasomatized by the previous subduc-
tion under extensional or transtensional tectonic regime, 
rollback and/or foundering of the Cyprus slab (Faccenna 
et al. 2001; Govers and Wortel 2005; Faccenna et al. 2006; 

Biryol et al. 2011; Cosentino et al. 2012; Schildgen et al. 
2012; Schleiffarth et al. 2018; Aydar et al. 2013; Reid et 
al. 2017; Di Giuseppe et al. 2018b; Dogan-Kulahci et al. 
2018; Rabayrol et al. 2019). Taken as a whole, the CVP 
volcanism was mainly calc–alkaline in Neogene, yet both 
calc-alkaline and sodic alkaline in Quaternary based on the 
published geochronological and geochemical data.

The Karacadağ Volcanic Complex (KCVC) and 
Karapınar Volcanic Field (KPVF) are located on the south-
western edge of the CVP. The Karacadağ volcanic complex 
was previously named from the Karacadağ stratovolcano 
(Keller 1974) and is represented by intermediate to felsic 
lava flows, domes and their pyroclastic equivalents in 
Mio–Pliocene age (4.7–5.98 Ma) (Platzman et al. 1998). 
The pioneering study of Keller (1974) has suggested that 
the Karacadağ volcanic samples range from andesite to da-
cite with calc-alkaline affinity. Cinder cones, maar craters 
and associated lava flows in the study area were previously 
named as “the Recent Quaternary volcanoes of Karapınar” 
by Keller (1974), but recently termed as “Hasan Monoge-
netic Cluster (Reid et al. 2017)” or “Karapınar Monoge-
netic Field (Uslular and Gençalioğlu-Kuşcu 2019)”. Here, 
we collected these volcanic formations under the name of 
“the Karapınar volcanic field” for simplification. Cinder 
cones overlie the Karacadağ volcanic complex on the 
northeast near Kutören (Fig. 2) and include ejected dacitic 
blocks of the Karacadağ volcano. The Karapınar basaltic 
to andesitic lava flows appear to have fed from fissures 
and contain xenoliths and xenocrysts plucked from the 
Karacadağ volcanic complex, which was first identified 
as evidence of contamination by Keller (1974). Four well-
known maar craters are present in the study area, one of 
which has a central cinder cone in maar lake (Mekegölü). 
These explosion craters are characterized by base surge 
deposits exposed in the surrounding pyroclastic rings. 
Phreatomagmatic tuff-rings and cones are other common 
volcanic forms of the Karapınar volcanic field. Based on 
the published geochronology data, cinder cones and as-
sociated basaltic flows from the Karapınar monogenetic 
field have ages < 0.6 Ma, but they can be dated back to 
2.5 Ma in the whole CVP (Notsu et al. 1995; Reid et al. 
2017; Dogan-Kulahci et al. 2018). The composition of the 
Karapınar volcanic rocks range from basalt to andesite, and 
they show both (sodic) alkaline and calc–alkaline character 
(Keller 1974; Ercan et al. 1992; Notsu et al. 1995; Olanca 
1999; Reid et al. 2017; Di Giuseppe et al. 2018b; Dogan-
Kulahci et al. 2018).

3.	Material and methods

Around 700 samples were collected from the lava flows, 
sills, domes, and pyroclastic deposits in the study area for 
petrographic, geochemical and geochronological investi-
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would be further powdered and prepared for analytical 
work. About 180 thin sections were made in the Ankara 
University, Earth Sciences Application and Research 

gations. Firstly, weathering rinds were extracted from all 
samples, and each was separated and carefully checked 
to make sure that only the freshest material possible 
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Center (YEBIM) for mineralogical and petrographical 
investigations. Detailed petrographical investigations 
were executed under a petrographic microscope and 
microphotographed at the Konya Technical University.

The most representative and freshest samples whose 
mineralogical and petrographic properties were deter-
mined were powdered in an agate ball-mill in the Ankara 
University YEBİM. And then, eighteen representative 
samples were sent to ACME laboratory (Canada) for 
whole-rock major, trace, and rare earth element analyses 
with the code of LF202. Firstly, whole-rock major ele-
ment analyses were performed by the Inductively Coupled 
Plasma Atomic Emission Spectrometer (ICP-AES). After 
dissolving the samples, trace and rare earth elements were 
detected by Inductively Coupled Plasma Mass Spectrome-
try (ICP-MS). In-house standards (e.g., Reference Materi-
als STD SO-19, STD OREAS45EA, and STD DS11) were 
analyzed together with the samples, and they were used 
for the calibration of the dataset. Whole-rock major and 
trace element results of the samples and Quality Control 
(QC) data, including the analyzed standard materials, are 
given in Supplementary files (ESM1). Based on replicate 
analyses on the reference materials, precision was evalu-
ated to be better than 1 % for major elements except for 
P2O5 (2.5 %) and 5 % for trace and rare earth elements.

40Ar/39Ar geochronology analyses of two samples were 
executed at the WiscAr Geochronology Laboratory at the 

University of Wisconsin–Madison (USA). To determine 
the cooling ages of the rocks, the freshest samples were 
selected from the Karacadağ volcanic complex at differ-
ent locations. Ar–Ar geochronology analyses were ex-
ecuted on a basaltic whole-rock sample and an amphibole 
separation from a dacitic sample. The 40Ar/39Ar variant 
of conventional 40K–40Ar dating depends on producing 
some 39Ar in each sample by bombarding in a nuclear 
reactor. After the samples are returned from the reac-
tor, the isotopic composition of the argon is measured. 
When analyzing, a 25 Watt CO2 laser can focus on spots 
between 10 and 400 µm in diameter. These analyses yield 
a plateau age at the 95% confidence level.

Isotopic ratios of Sr, Nd and Pb from four repre-
sentative samples selected upon results of bulk rock 
geochemistry were analyzed using a Finnigan MAT262 
RPQ2+ Thermal Ionization Mass Spectrometer (TIMS) at 
GEOMAR Helmholtz Centre for Ocean Research in Kiel 
(Germany). For this purpose, powder samples were pre-
pared at Ankara University YEBİM. The powder samples 
were digested in a solution concentrated ultra-pure HF 
and HNO3 at 150 °C for 60 h. Following the procedures 
of Geldmacher et al. (2006) and Hoernle et al. (1991), ion 
chromatography was executed. Sr and Nd isotope ratios 
were normalized to 86Sr/88Sr =0.1194, and 146Nd/144Nd = 
0.7219, respectively. Moreover, all Pb isotope ratios were 
normalized to the reference ratios for USGS NBS 981 

Table 1 Mineralogical compositions and the textural properties of the investigated samples from the Karapınar Volcanic Field and Karacadağ 
Volcanic Complex.

Volcanic 
Rocks

Rock Type/
Symbol Age Mineral composition Texture Enclave Types

Karacadağ 
Volcanic 
Complex

Basalt-1/B1 Neogene Pl + Cpx + Ol + ox Pilotaxitic, cellular and sieve (Pl) –

Andesite-1/A1 Neogene Pl + Cpx + Amp + ox ± Bt 
 ± Qz ± Ap ± Zrn

Hypocrystalline porphyric,  
glomeroporphyritic texture, cellular 
and sieve texture (Pl)

1. Magma Segregation Enclaves  
  (Cognate xenolith)
2. Magma mixing enclaves 

Andesite-2/A2 Neogene Pl + Cpx + Opx + Amp + Bt 
 + Ol xe + ox ± Ap ± Zrn

Hypocrystalline porphyric, spongy  
cellular and sieve texture (Pl)

1. Magma Segregation Enclaves  
  (Cognate xenolith)
2. Magma mixing enclaves

Andesite-3/A3 Neogene Pl + Cpx + Opx + ox ± Ap 
 ± Zrn

Hypocrystalline porphyric,  
glomeroporphyritic texture, cellular 
and sieve texture (Pl)

1. Magma Segregation Enclaves  
  (Cognate xenolith)

Andesite-4/A4 Neogene Pl + Cpx + ox Hyalopilitic  porphyric,  
cellular and sieve texture (Pl) –

Dacite/D Neogene Qz + Pl + Cpx + Amp + Bt + ox Hypocrystalline porphyric, spongy 
cellular and sieve texture (Pl) –

Trachyte/T Neogene Pl + Sa + Cpx + Ol Vitroporphyritic –

Karapınar  
Volcanic 
Field

Basalt-2/B2 Quaternary Ol + Cpx + Pl + ox (± Qz xe)

Holocrystalline porphyric, texture – 
hypocrystalline porphyric,  
glomero-porphyritic, vesicular, 
cellular and sieve (Pl), ocellar (Qz)

1. Magma Segregation Enclaves  
  (Cognate xenolith)
2. Xenocrysts and xenoliths  
  (quartzite fragments)

Basalt-3/B3 Quaternary
Cpx + Pl + Ol + ox

(Amp ± Bt ± Qz ± Pl xe)

Hypocrystalline porphyric,  
glomeroporphyritic, vesicular, 
amygdaloidal, cellular and sieve 
(Pl), ocellar (Qz)

1. Magma Segregation Enclaves  
  (Cognate xenolith)
2. Magma mixing enclaves 
3. Xenocrysts (Qz, Pl, Bt, Amp)

Amp – amphibole; Ap – apatite; Bt – biotite; Cpx – clinopyroxene; Ol – olivine; Opx – orthopyroxene; ox – Fe-Ti oxides; Pl – Plagioclase;  
Sa – sanidine; Qz – quartz; Zrn – zircon; xe – xenocryst (Mineral abbreviations after Warr 2020).
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of Baker et al. (2004). External precisions are 2σ for all 
radiogenic isotopes.

Oxygen isotope (18O/16O) analyses of three whole-rock 
samples and five olivine separates were provided at the 
Queen's University Queen’s Facility for Isotope Research 
(QFIR). Oxygen was extruded from 5 mg samples at 
550–600 °C according to the conventional BrF5 method 
of Clayton and Mayeda (1963) and measured by a dual 
inlet on a Thermo-Finnigan Delta Plus XP Isotope-Ratio 
Mass Spectrometer (IRMS). δ18O ratios are presented 
utilizing the delta (δ) notation in units of permil (‰) 
relative to the Vienna Standard Mean Ocean Water (VS-
MOW) international standard, with a precision of 0.5 ‰. 
Results of both radiogenic and stable isotope analyses of 
the samples are available in Supplementary files (ESM2).

4.	Results

4.1.	Petrography 

Based on the petrography 
(Tab.  1 and Fig. 3) and geo-
chemistry (Fig. 4), the studied 
rocks can be separated into sev-
eral units. Karacadağ volcanic 
complex comprises basaltic an-
desites (B1), four andesite units 
(A1 to A4), dacites (D) and tra-
chytes (T), whereas Karapınar 
volcanic field comprise two 
groups of basalts to basaltic 
andesites (B2 and B3).

The Karacadağ basaltic an-
desites (B1) exhibit hypocrys-
talline porphyritic texture with 
phenocrysts of plagioclase, 
clinopyroxene, and rare Fe–Ti 
oxides. Those are enclosed 
in a fine-grained groundmass 
composed of the same min-

eral assemblages complemented with iddingsite pseudo-
morphs after olivine and rare glass (Fig. 3a). However, 
the Karacadağ andesitic rocks show textures ranging 
from holocrystalline porphyritic to vitrophyric porphy-
ritic textures, and display disequilibrium textures as 
cellular-sieve textured plagioclases, amphiboles, and 
clinopyroxenes. Andesite-1 (A1) group rocks generally 
contain phenocrysts of mainly clinopyroxene, amphi-
bole, and plagioclase, rare or no biotite, quartz xeno-
crysts, and Fe–Ti oxides enclosed in isotropic glass (Fig. 
3b). Andesite-2 (A2) group rocks differ in the common 
presence of biotite, with otherwise mineral assemblage 
similar to A1 group. This unit also includes rare quartz 
and olivine xenocrysts (Fig. 3c). Andesite-3 (A3) group 
rocks are classified as two-pyroxene andesites composed 
of dominantly ortho and clinopyroxene, plagioclase, 
and Fe–Ti oxides and minor quantities of glass. While 
disequilibrium and/or decompression reaction textures 
are present in (A3) (resorbed and sieved plagioclase, 
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plagioclase ± clinopyroxene ± Fe–Ti oxide clots), they 
are much less abundant than in A1 and A2 (ESM3). An-
desite-4 (A4) group rocks display pilotaxitic texture and 
consist mainly of plagioclase and Fe–Ti oxide minerals, 
rarely clinopyroxene, and have microlithic groundmass 
(ESM3). Dacites (D) have hypocrystalline porphyritic 
texture, dominated by amphibole, and less frequent bio-
tite, plagioclase, and rarely quartz and Fe–Ti oxides in 
a glass-rich groundmass (Fig.  3d). Trachytes (T) ex-
hibit vitrophyric porphyritic texture and are composed 
mostly of plagioclase, rare clinopyroxene, sanidine, and 
Fe–Ti oxide minerals embedded in a glassy groundmass 
(ESM3). Some of the andesites from the Karacadağ 
rocks contain gabbroic cognate xenoliths and enclaves 
displaying magma mixing between basaltic and andesitic 
melt.

The Karapınar basalt to basaltic andesite lavas are 
characterized by porphyritic texture. Basalt-2 group 
rocks (B2) contain mainly olivine, clinopyroxene, 
plagioclase, and rare Fe–Ti oxides (Fig. 3e). Quartz 
xenocrysts occur scarcely as well. Basalt-3 group rocks 

(B3) differ from B2 rocks in a lower amount of olivine 
and a higher proportion of clinopyroxene phenocrysts 
accompanied by plagioclase (sieve-textured, up to 20 
vol. %) and Fe–Ti oxides (ESM3). In addition, they 
contain common quartz xenocrysts (up to 10 %), rare 
biotite, and amphibole xenocrysts (Fig. 3f and ESM3). 
Quartz xenocrysts with corrosive embayments and 
also ocellar texture surrounded by clinopyroxenes. 
Also, amphibole and biotite minerals are completely 
opacitized. 

4.2	 Major and Trace Element Composition

The Karacadağ volcanic rocks were classified as basal-
tic andesite (B1), andesites (A1 to A4), dacite (D) and 
trachyte (T; q < 20 %), whereas the Karapınar volcanic 
rocks as basalt, basaltic andesite and andesite (B2 and 
B3) (Figs. 4a, b). The Karapınar volcanic rocks have a 
transitional geochemical character (calc–alkaline; CA to 
mildly alkaline; MA), while the Karacadağ volcanic rocks 
are subalkaline (Fig. 4a). In the AFM diagram (Fig. 4c), 

DyLa Ce Pr Nd Sm Eu Gd Tb Ho Er Tm Yb Lu

1

10

100

Rb Th Ta K Ce Pr Sr Hf Ti Dy Yb

Ba U Nb La Pb Nd Sm Zr Eu Y Lu

R
o
c
k
 /
 N

M
O

R
B

Rb Th Ta K Ce Pr Sr Hf Ti Dy Yb

Ba U Nb La Pb Nd Sm Zr Eu Y Lu

R
o
c
k
 /
 C

h
o
n
d
ri
te

DyLa Ce Pr Nd Sm Eu Gd Tb Ho Er Tm Yb Lu

1

10

100

B1

A1

A2

A3

A4

D

T

B3

B2-MA

B2-CA

a) b)

c) d)

Fig. 5. a, b – MORB-normalized (Hofmann 1988) and c, d – Chondrite-normalized (Sun and McDonough 1989) diagrams of the most representative 
Karapınar-Karacadağ volcanic rocks. The symbols are the same as in Fig. 4.
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all subalkaline samples plot in the calc–alkaline field. 
Consistently with their chemical character, mildly alka-
line samples from the Karapınar rocks have normative 
nepheline plus olivine, but calc–alkaline samples have 
normative hypersthene plus quartz or olivine.

The SiO2 vs. major and trace elements show varia-
tions characterized by straight linear, curved, or inflected 
trends with progressive differentiation for the Karapınar 
and Karacadağ volcanic rocks. MgO, Fe2O3, CaO, TiO2, 
Sc, Co, Cr and V linearly decrease with increasing SiO2, 
but K2O, Rb, Ba, Zr, Th and La have a good positive cor-
relation with SiO2 (ESM4). On the other hand, Al2O3 and 
Sr variations show complex patterns when plotted against 
SiO2. Al2O3 increases until SiO2 reaches ~55 wt. %, then 
it decreases, but Sr linearly decreases for the Karapınar 
samples. Conversely, Sr increases until SiO2 reaches ~55 
wt. %, then it decreases, but Al2O3 linearly decreases 
for the Karacadağ samples. Although the Karapınar and 
Karacadağ samples generally display similar major and 

trace element variations, they plot on the different parallel 
trends in some diagrams (ESM4).

Basaltic rocks from the investigated suites exhibit en-
richments in large ion lithophile elements (LILE; K, Ba, 
Rb, Sr, Pb, and Th) and light rare earth elements (LREE; 
La, Ce) with distinct Nb–Ta–Ti trough on the N-MORB-
normalized spider diagrams (Figs 5a, b). However, the 
studied intermediate and felsic units exhibit patterns that 
are largely comparable with those of the basaltic rocks, 
but they are more enriched in incompatible trace elements 
than basaltic ones. On the chondrite-normalized rare earth 
element (REE) plots (Figs 5c, d), the studied rocks exhibit 
moderately fractionated LREE patterns (Karacadağ volca-
nics LaN/YbN =6.2–13.8, and Karapınar volcanics LaN/YbN 
= 7.54–14), and they also show flat heavy-REE (HREE) 
distributions. As in the spider diagrams, the intermediate 
and felsic rocks show more enrichment in all REEs rela-
tive to the basaltic samples. Spider and REE diagrams 
of the Karapınar and Karacadağ volcanic rocks resemble 
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each other, except for distinct depletion in Ba and slight 
negative Eu anomaly of the Karacadağ samples. Spider 
diagrams also indicate that the Karapınar calc–alkaline 
basalts were seemed more enriched in LREE and LILE 
relative to the Karapınar mildly alkaline basalts.

4.3.	Geochronology 
40Ar–39Ar age data of the basalt from the Karacadağ 
volcanic complex is shown as apparent age in Figs 6a 
and 6b. Whole-rock fragments from the basalt yielded 
meaningful plateau age of 5.65 ± 0.06 Ma. An amphibole 
separate from dacites yielded 40Ar–39Ar plateau age of 
5.379 ± 0.028 Ma and an isochron age of 5.45 ± 0.09 Ma 
(Figs 6c–d).

4.4.	Sr-Nd-Pb-O Isotope systematics

The Karacadağ (B1) and Karapınar (B2) basalts have 
positive εNd (t: 5.65 Ma) values of 1.67 to 9.02 and 
87Sr/86Sr(i) ratios in the range 0.70491–0.70518 (ESM2; 
Fig. 7). The investigated intermediate-acidic rocks from 
the Karacadağ volcanic complex are characterized by 
negative εNd values from –1.21 to –2.29 and 87Sr/86Sr(i) 
ratios 0.705188–0.70635. The investigated rocks show 
limited variations in Pb isotope ratios with 206Pb/204Pb = 
18.88–18.93, 207Pb/204Pb = 15.72–15.66, and 208Pb/204Pb = 
39.03–38.17 (ESM2; Fig. 8). Generally, the olivine grains 
separated from the Karapınar volcanic rocks vary in δ18O 
between 5.7 and 6.5 ‰ (ESM2). However, Karacadag 
volcanic rocks have δ18O values ranging between 7.5 
and 8.9. The δ18O values of the Karacadağ whole-rock 
samples (7.7–8.9 ‰) are much higher than those of the 
olivine separates (7.5 ‰).

5.	Discussion

5.1.	Fractional Crystallization vs. Magma 
Mixing

Major and trace element variation diagrams (ESM4) 
give valuable information on the fractionated phases 
during fractional crystallization. Therefore, the decrease 
of MgO, CaO, Ni and Cr with increasing SiO2 can be 
best clarified by olivine and clinopyroxene fraction-
ation, especially in the basaltic rocks. The decrease in 
Fe2O3, TiO2, Sc, Co and V shows the crystallization of 
Fe–Ti oxides (e.g., magnetite, ilmenite etc). Although 
Al2O3 and Sr variations are complex, they can be in-
terpreted by plagioclase accumulation in the basaltic 
rocks but its fractionation in the evolved rocks. Other 
information on the fractionated phases may be taken 
from REE patterns of the investigated rocks. The slight 
depletion in MREE of the Karacadağ intermediate to 
felsic rocks can be attributed to the amphibole fraction-
ation in their evolution because amphibole preferentially 
incorporates MREE relative to the LREE and HREE, 
especially in the evolved rocks (Davidson et al. 2007). 
On the other hand, the Karacadağ intermediate to felsic 
rocks show a slight negative Eu anomaly in their REE 
patterns, indicating the role of plagioclase fractionation 
in the evolution of the rocks. Although the Karapınar 
and Karacadağ samples generally exhibit similar major 
and trace element variations, and they follow different 
trends in SiO2 vs. Al2O3, K2O, Zr, V, Cr, La, Rb, and Sr 
diagrams (e.g., ESM4), suggesting a distinct differentia-
tion history.

The investigated rocks, especially intermediate ones, 
show disequilibrium textures and mineralogies with vari-
ous enclave types and linear trends in some major and 
trace element distribution plots. These are suggestive of 
magma mixing. To test the role of magma mixing in the 
evolution of the volcanic units, we performed mixing 
models (Bryan et al. 1969) based on the least-squares 
regression of the major and trace elements for a subset 
of the intermediate samples by using IgPet. Based on 
about twenty calculations, we tested the mixing combi-
nation of the basaltic and felsic end members from the 
KPVF and KCVC to be able to produce an intermedi-
ate composition. In such models, ∑r2 (e.g., the sum of 
squares of residuals; a measure of the differences be-
tween calculated and observed element abundances), is 
anticipated to be low, approximating zero for acceptable 
models. The high ∑r2 of our calculations suggests that 
magma mixing is not a dominant magmatic process in 
the evolution of the modeled intermediate units. To sum 
up, we stress here that fractional crystallization played 
a major role relative to magma mixing in the evolution 
of the investigated rocks.
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5.2.	Crustal vs. Source Contamination

N-MORB-normalized spider diagrams of the investigated 
basaltic rocks exhibit enrichments in large ion lithophile 
elements (LILE: Ba, K, Rb, Sr, Pb, and Th) and light 
rare earth elements (LREE, namely La, Ce) with distinct 
Nb–Ta–Ti trough, which is typical for volcanic rocks at 
convergent margins. Many researchers have suggested 
that mantle source contamination by subduction-related 
processes and crustal contamination were possible for the 
genesis and evolution of the Neogene CVP calc–alkaline 
rocks, including the Karacadağ volcanic rocks. However, 
the transitional Quaternary Karapınar volcanic rocks 
cannot be originated from a mantle source contaminated 
by subduction-related processes because the Karapınar 
basaltic rocks have δ18O values and incompatible trace 
element ratios resembling those of OIB-like volcanic 
rocks, which will be further discussed.

Nb/U, Ce/Pb and Nb/Ta are considered useful indi-
cators to assess the effect of crustal contamination on 
basaltic rocks (Rudnick and Gao 2003; Dai et al. 2018). 

B1 has Ce/Pb (~7) and Nb/U (~2) ratios having crustal 
signature (Ce/Pb:~4), Nb/U: 10; Hofmann 1986). On the 
other hand, B2 and B3 group rocks have Ce/Pb ratios 
(~8–16 and 20, respectively), close to those for OIB 
(~25), while their Nb/U ratios (2–12 and 3, respectively) 
are lower than OIB (~47) (Hofmann et al. 1986; Tab. 2; 
ESM5). Moreover, the investigated basaltic rocks are 
represented by different Nb/Ta ratios. B1 exhibits Nb/Ta 
ratios (10.5) resembling those for the continental crust 
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Table 2 Some trace element ratios of the basalts from the Karapınar 
Volcanic Field and Karacadağ Volcanic Complex. 

Sample Ce/Pb Nb/U Nb/Ta Th/Yb
Basalt-1 GK60 7.07 1.91 10.50 3.96

Basalt-2

GK31* 14.81 9.89 14.83 1.90
L8* 9.84 12.00 19.20 2.33
KR21B_E. 7.98 3.74 17.20 3.88
KR15 16.36 5.18 17.60 2.93

Basalt-3
KR30 19.56 2.65 14.25 9.00
KR-33D 5.08 0.77 15.05 8.85

* – Mildly alkaline (ne-normative) basalts
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(12: Pfänder et al. 2012). However, B2 samples have Nb/
Ta ratios (17–19.2), which are specific for the chondrites 
(19.9; Münker et al. 2003), and B3 group rocks (Nb/Ta = 

14–15) have OIB-like signature (14: Pfänder et al. 2012). 
Furthermore, the enrichment of Th/Yb ratios relative to 
SiO2 and Nb/Yb can be attributed to crustal contamina-
tion (Kheirkhah et al. 2015; ESM5). Based on the trace 
element ratios, we suggest that crustal contamination had 
a key role in the evolution of the studied volcanic units 
and was more effective in the evolution of the Karacadağ 
volcanic rocks relative to the Karapınar volcanic rocks.

Alteration and low-temperature weathering after 
a  volcanic eruption can increase the δ18O of the rocks. 
Therefore, the isotope value of the mantle source is 
represented by the 18O/16O values of the mineral separa-
tions rather than those of the whole-rock (Davidson and 
Harmon 1989; Ellam and Harmon 1990; Downes et al. 
1995; Dobosi et al. 1998). Whole-rock δ18O values of 
the investigated rocks (7.7–8.9 ‰) are slightly higher 
than those of the olivine grains (7.5 ‰). Whole-rock 
δ18O ratios of the Karacadağ volcanic rocks are close to 
that for the continental subduction basalts (4.8–7.7 ‰; 
Hofmann et al. 1986), and bulk continental crust (8.9 ‰; 
Simon and Lécuyer 2005), whereas the δ18O ratios of the 
olivine grains from the Karapınar basalts (δ18O = 5.7–6.5 
‰; ESM6) have an OIB–EMII like signature (5.4–6.1 
‰; Eiler et al. 1997). Therefore, we consider that the 
higher δ18O ratios of the Karacadağ volcanics than olivine 
phenocrysts from the Karapınar basalts may be attributed 
to the addition of δ18O-rich crustal components into their 
source or during magma evolution via assimilation of 
crustal material (Sun et al. 2015).

Both radiogenic Sr- and stable O-isotope ratios in-
crease with increasing SiO2 from basaltic to felsic rocks 
in the KPVF and KCVC (Figs 9a, b). Sr and O isotope 
ratios are then positively correlated, but they show large 
variations from the general trend. These are typical for 
crustal contamination rather than source contamination 
(Gertisser and Keller 2000, 2003).

To prove the crustal contamination effect in their 
evolution, we propose AFC and two-component mixing 
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models for the investigated rocks in Figs 10a and 10b. 
We preferred to utilize the most evolved Karacadağ unit 
(trachyte) as a contaminant (Ca), and used a hypothetical 
primary magma as C0. Fig. 10a indicates that a hypotheti-
cal primary magma (C0) could produce the mildly alka-
line basalts by assimilation of the trachytes. Moreover, 
some of the Karapınar basalts contain sieved plagioclase, 
embayed and ocelli quartz, fully opacitized biotite, and 
amphibole xenocrysts (Fig. 3 and ESM3), which were 
probably plucked from the wall rock represented by the 
Karacadağ volcanic rocks. Investigated rocks lie along a 
convex–upward mixing line (Fig. 10b) confirming that 
both Karapınar and Karacadağ volcanics were dominantly 
subjected to crustal contamination during their evolution 
(Zhang et al. 2016; Zhiguo et al. 2018).

In the Sr–Nd isotopes diagram (Fig. 7), the area where 
the samples are located is represented by the interaction 
of sublithospheric melts with the continental lithosphere, 
represented by the partial melting of subducted sediments 
or by melts derived from the continental lithosphere. In-
vestigated Karapınar basalts are plotted in the OIB-type 
rocks area. However, Karacadağ basalt deviates from 
the trend of Karacadağ intermediate-felsic units owing 
to their high positive ƐNd value (Fig. 7). Extremely high 
positive ƐNd values represent a long-term depleted source 
and also suggest that they were generated in an entirely 
oceanic environment devoid of the efficacy of continen-
tal crust (Dampare et al. 2009). Trace element contents 
and generated models indicate Karacadağ basalts were 
exposed to a significant crustal contamination process. 
Moreover, in the recent studies on CVP (Di Giuseppe et 
al. 2018b), the maximum value of the 144Nd/143Nd ratio 
is about 0.5127 of the calc-alkaline rocks in the area. 
Because Karacadağ basalt contains an extremely posi-
tive ƐNd value (~9) and 144Nd/143Nd ratio ( 0.51309), we 
do not prefer to use that unrealistic data to interpret the 
source of the rocks. Moreover, investigated rocks exhibit 
different areas in the Pb isotope diagrams (Fig. 8). It is 
possible to say that Karacadağ and Karapınar volcanic 
rocks may be derived from a different mantle source.

5.3.	Temporal and Spatial evolution of the 
volcanic units

Located in the southwestern part of the CVP, the KCVC 
and KPVF represent volcanic episodes that occurred 
during the Plio–Quaternary. The KCVC was previously 
dated at 4.7–5.98 Ma from three samples with the K–Ar 
dating technique (Platzman et al. 1998), which represents 
the only published radiometric age data on this unit. In 
this study, we have dated an amphibole separate from 
dacites and whole-rock fragments from basalts of the 
KCVC with the Ar–Ar dating technique, which resulted 
in 5.45 and 5.65 Ma, respectively. Our new age data 

are in the range of the published age span, and all these 
suggest ~1.3 Ma duration of volcanism for the KCVC. 
However, the duration of volcanism in the KCVC may 
be more than suggested here because this interpretation 
is based on only five radiometric data from such a large 
volcanic complex. On the other hand, relatively more 
radiometric age data were produced from the KPVF (no 
age data from this study), and these indicate younger than 
< 0.6 Ma for the Karapınar area, but monogenetic mafic 
volcanism can be dated back to 2.5 Ma across the CVP 
(Reid et al. 2017; Dogan-Kulahci et al. 2018; Notsu et 
al. 1995).

The published ages from the Cappadocia Volcanic 
Province (CVP) range from ~14 Ma to recent times 
and show obvious spatial, temporal and geochemical 
variations of volcanic activity in the province. The CVP 
extends in NE–SW direction, and vent alignments of the 
volcanoes in the CVP are mainly NE–SW to N–S (To-
prak 1998; Higgings et al. 2015). The main geochemical 
and spatiotemporal characteristics of the CVP are that 
the Late Miocene to Pliocene volcanic rocks are mainly 
calc–alkaline. Still, the Plio–Quaternary volcanic rocks 
are calc–alkaline or (mildly) Na-alkaline in compositions, 
both of which have orogenic geochemical signature and 
southwest-ward younging of the volcanism (see section 
2 for references). Schleiffarth et al. (2018) and Reid et 
al. (2017) argued that the SW younging age progression 
seen in the CVP could be related to the steepening and 
rollback of the Cyprean slab beneath the Kırşehir and 
Central Anatolide–Tauride Blocks, causing upwelling 
asthenospheric mantle. On the other hand, most authors 
suggested that geochemical characteristics of the CVP 
resulted from extension-related melting and the Late 
Miocene to Pliocene calc-alkaline volcanic rocks were 
derived from the subduction-modified lithospheric man-
tle. But, the origin of the Plio–Quaternary mafic to inter-
mediate volcanic rocks displaying (mildly) Na-alkaline to 
calc–alkaline geochemical character is still controversial. 
Ignoring the crustal contamination, Di Giuseppe et al. 
(2018b) proposed a petrologic model including mixing 
between different percentages of within-plate (OIB)-like 
magmas derived from the sub-lithospheric mantle and 
calc–alkaline magmas from subduction-modified lith-
ospheric mantle for the origin of the Plio–Quaternary 
Na-alkaline basalts in the CVP. However, such a model 
may not be possible for the KPVF basalts because they 
show evidence of crustal contamination discussed in 
section 5.2. Thus, we suggest that the KPVF basaltic 
magmas, originally of anorogenic geochemical signature, 
interacted with the upper crustal component represented 
by the KCVC via AFC-style differentiation to gain an 
orogenic signature. A similar model was suggested by 
Kocaarslan and Ersoy (2018) for the Kangal–Gürün Ba-
sin volcanic rocks located to the east of the CVP. In this 
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model, they argued that orogenic geochemical signature 
could result from crustal contamination of originally 
anorogenic magmas derived from an upwelling mantle 
source unmodified by any subduction-related metaso-
matism. Although having OIB-like signatures in terms 
of radiogenic and stable isotope ratios and trace element 
contents, Karapınar basalts show a trend extending in the 
region between OIB and continental crust in the SiO2 vs. 
Nb/U and Ce/Pb diagrams (ESM5). The reported evi-
dence suggests that the crustal contamination signature 
decreased from calc–alkaline to mildly-alkaline basalts 
from the Mio–Pliocene to the Quaternary. However, in 
the Quaternary, raised in the evolution of the basalts from 
mildly-alkaline (B2-MA) to calc–alkaline (B2-CA, B3) 
(ESM1, ESM2, ESM5).

6.	Conclusions

The petrographical, geochemical, and geochronological 
data obtained from this and previous studies have allowed 
us to put the following constraints regarding the evolu-
tion and origin of the Karacadağ Volcanic Complex and 
Karapınar Volcanic Field.
a)	The Karacadağ volcanic complex is represented by 

basaltic to dacitic and trachytic rocks that erupted du-
ring the late Miocene–Pliocene, showing calc–alkaline 
affinity. Our Ar–Ar geochronology analysis yielded 
ages from 5.45 to 5.65 Ma, representing a short time 
interval of the longer-lasted Karacadağ volcanism de-
duced from the published age data. Similar to orogenic 
volcanic rocks, the isotopic and geochemical characte-
ristics of the basaltic Karacadağ volcanic rocks suggest 
their derivation from parental magmas generated in a 
subduction-modified lithospheric mantle. The suite's 
intermediate and felsic rock types evolved by frac-
tional crystallization plus crustal contamination and 
magma mixing to a lesser extent.

b)	The Karapınar volcanic rocks ranging from basalt to 
andesite erupted during Quaternary and are characteri-
zed by both mildly alkaline and calc–alkaline compo-
sitions. Trace element geochemistry of the Karapınar 
basaltic rocks is similar to those of orogenic volcanic 
rocks as in the Karacadağ basaltic rocks, whereas their 
18O values are in the range of OIB-like rocks.

c)	Presence of crustal xenoliths and xenocrysts derived 
from the Karacadağ rocks, and isotopic variations in 
the Karapınar basalts indicate that crustal contamina-
tion had a key role in their evolution, and this process 
is responsible for the obtaining orogenic signature of 
the OIB-like Karapınar basalts.

d)	Taken as a whole, the obtained data can be elucidated 
by the derivation of the Karapınar basaltic rocks from 
an OIB-like mantle source and then contamination 

with the Karacadağ volcanic rocks at a shallow crustal 
level. This may be an alternative model for explaining 
orogenic geochemical signature in sodic alkali basalts 
in the CVP. 
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