1. Introduction

Two successive and contrasting volcanic suites in post-collisional geological settings are orogenic and anorogenic types. Orogenic volcanic suites are characterized by various rock types such as tholeiitic, calc–alkaline, shoshonitic and ultrapotassic rocks ranging from basaltic to felsic compositions, while anorogenic ones include mainly sodic alkali basaltic rocks and their differentiates (Bonin 2004). Orogenic geochemical signature (e.g., enrichment in large ion lithophile elements – LILE; K, Rb, Ba, Pb, Sr, and Th) accompanied by depletion in high field strength elements – HFSE (Nb, Ta, Ti) similar to “volcanic arc basalts” in post-collisional volcanic rocks can be related to the derivation from lithospheric mantle source metasomatically enriched by previous subduction or the effect of crustal assimilation of mantle-derived magmas during the ascent of the magma toward the surface (Pearce 1983; Pearce and Peate 1995). In an orogenic setting, the crustal component can be added by...
two processes via “source contamination” in the mantle or “crustal contamination” during magma evolution. Although distinguishing the role of these two processes is difficult when true primary mantle-derived melts are absent, crustal contamination can be simply recognized by (1) the presence of crustal xenocrysts and xenoliths, (2) correlations between indices of differentiation and isotopic compositions and (3) significant variations in oxygen isotope ratios (Gertisser and Keller 2000; Peccei et al. 2004; Davidson and Wilson 2011; Jung et al. 2011). Conversely, anorogenic geochemical signature (e.g., peak at Nb–Ta with a trough at Pb and K on spider diagrams, similar to “OIB – oceanic island basalts”) is a typical for magmas those derived from mantle source not influenced by subduction-related processes (Hofmann 1986, 1988, 1997; Hofmann et al. 1986).

Orogenic and anorogenic volcanic rock associations are characteristics of the Alpine–Mediterranean region (e.g., Betic–Alboran–Rif province, Central Mediterranean, Alps, Carpathian–Pannonian region, Dinarides and Rhodopes, Aegean sea and Anatolia) as a result of the Late Cretaceous–Cenozoic convergence of Afro–Arabian with Eurasian plates, and there is general agreement on the temporal sequence from early orogenic to late anorogenic volcanic activity in this region, except for some occurrences (Wilson and Bianchini 1999; Harangi et al. 2006; Lustrino and Wilson 2007). As a part of the Alpine–Mediterranean region, the Anatolian Late Cenozoic volcanism is traditionally reviewed in three sub-regions (e.g., Western, Central and Eastern Anatolian volcanism). Despite some overlap or opposite situations, there is a gradual transition from early orogenic calc–alkaline to potassic volcanic activity to late anorogenic sodic alkaline activity in the Western and Eastern Anatolia (Pearce et al. 1990; Güleç 1991; Aldanmaz et al. 2000; Aldanmaz 2002; Innocenti et al. 2005; Ersoy et al. 2012; Di Giuseppe et al. 2018b) as in the other Alpine–Mediterranean sectors. In contrast to the Western and Eastern Anatolia, the sodic alkali basaltic volcanic activity postdating or coeval with the orogenic calc–alkaline one is interestingly characterized by orogenic geochemical signature in Central Anatolia (Ercan et al. 1990; Reid et al. 2017; Di Giuseppe et al. 2018b; Dogan-Kulahci et al. 2018). Such a distinct signature in the Cappadocia Volcanic Province of Central Anatolia has recently been explained by mixing between subduction-related calc–alkaline and within-plate OIB-like magmas during their rise to the surface (Di Giuseppe et al. 2018b). In this scenario, crustal contamination was thought to have a negligible effect on the evolution of less evolved (basaltic) magmas. However, we hypothesize here, based on the petrography (e.g., presence of crustal xenoliths and xenocrysts, disequilibrium textures etc.) and geochemistry (e.g., crust-like trace element and isotopic signature; high LILE contents and

Fig. 1. Location of the Karacadag Volcanic Complex and Karapinar Volcanic Field in the map showing the main tectonic units of Turkey (Okay and Tüysüz 1999). The map also shows the position of the Hellenic arc, as well as Cyprus arc. CVP: Cappadocian Volcanic Province, IASZ: İzmir–Ankara Suture Zone, AESZ: Ankara–Erzincan Suture Zone, IPSZ: Intra–Pontide Suture Zone, ITSZ: Inner Tauride Suture Zone, BSZ: Bitlis Suture Zone. Solid lines stand for major suture zones (black lines with red triangles) separating continental blocks and arc systems (black lines with black triangles).
high Sr, Pb, O isotope ratios, low HFSE contents and low Nd isotope ratios) of the studied volcanic rocks, that the crustal contamination is a crucial magmatic process and could be an alternative model for explaining the orogenic signature of sodic alkaline basalts from the Cappadocia Volcanic Province (CVP).

Here, we report new Ar–Ar geochronology, whole-rock major-trace element, and Sr–Nd–Pb–O isotope data from the Plio–Quaternary post-collisional volcanic rocks from the Karapınar–Karacadağ area, southwestern part of the Cappadocia Volcanic Province (Central Anatolia, Turkey). The data used in this paper is based on the results of the unpublished PhD thesis of the first author, complemented with some previously published data to strengthen the presented model.
2. Geological Setting and Volcanism in the CVP

As a part of the Cenozoic Alpine–Himalayan orogenic belt, Anatolia was formed by the combination of several tectonic blocks, and its geology was mainly shaped by the convergence system between the Afro–Arabian and Eurasian Plates. The tectonic units separated by the Neotethys sutures are “the Pontides” along the north, “the Kırşehir Block” in the middle, “the Anatolide–Tauride Block” along the south and “the Arabian Platform” in the southeast (Fig. 1). These sutures are the result of the closure of the different branches of the Neotethys Ocean by northward subduction after the Late Cretaceous (Okay and Tüysüz 1999; Okay 2008; Şengör et al. 2019). The İzmir–Ankara–Erzincan and Inner Tauride Sutures were formed by the complete closure of the Northern branch of the Neotethys following the Eocene collision of the Tauride-Anatolide block with the Pontides and the Kırşehir Block. On the other hand, the Southern branch of the Neotethys has indicated diachronous closing (Şengör et al. 2003). This branch was subducted entirely in the east, and the Arabian Platform collided with the Anatolides–Tauride Block along the Bitlis Suture Zone at the end of the Middle Miocene. However, it is still subducting under the Anatolide–Tauride Block along to the contemporary Cyprus subduction zone in the Mediterranean.

The Cappadocia Volcanic Province (CVP) straddles the Inner Tauride Suture separating the Kırşehir and Anatolide–Tauride blocks in the Central Anatolia and is characterized by a number of monogenetic (i.e., maars, domes and cinder cones) and polygenetic volcanoes (such as HASANDAĞI, Karacağaz, Melendiz, Keçiboyduran and Erciyes stratovolcanoes, etc.), containing widespread ignimbrite areas of Neogene to Quaternary age (Toprak 1998). Inferred from the published radiometric data and their stratigraphy, the oldest volcanic units can be dated back to 14–13 Ma. Yet the youngest ages taken mainly from monogenetic volcanoes suggest that volcanic activity continued to the historical times in the CVP (Innocenti et al. 1975; Besang et al. 1977; Batum 1978; Ercan et al. 1992; Bigazzi et al. 1993; Notsu et al. 1995; Platzman et al. 1998; Temel et al. 1998; Le Pennc et al. 2005; Aydar et al. 2012; Lepefit et al. 2014; Reid et al. 2017; Di Giuseppe et al. 2018b; Dogan-Kulahci et al. 2018). Several geochemical and petrological studies support that the CVP rocks range from basaltic to rhylhotitic composition and display both calc–alkaline and sodic alkaline affinity with orogenic geochemical signature. The CVP volcanism is explained by several competitive geodynamic processes such as active subduction along the Cyprus arc, decompression melting in lithospheric mantle metasomatized by the previous subduction under extensional or transtensional tectonic regime, rollback and/or foundering of the Cyprus slab (Faccenna et al. 2001; Govers and Wortel 2005; Faccenna et al. 2006; Biryol et al. 2011; Cosentino et al. 2012; Schildgen et al. 2012; Schleiffarth et al. 2018; Aydar et al. 2013; Reid et al. 2017; Di Giuseppe et al. 2018b; Dogan-Kulahci et al. 2018; Rabayrol et al. 2019). Taken as a whole, the CVP volcanism was mainly calc–alkaline in Neogene, yet both calc-alkaline and sodic alkaline in Quaternary based on the published geochronological and geochemical data.

The Karacağaz Volcanic Complex (KCVC) and Karapınar Volcanic Field (KPVF) are located on the southwestern edge of the CVP. The Karacağaz volcanic complex was previously named from the Karacağaz stratovolcano (Keller 1974) and is represented by intermediate to felsic lava flows, domes and their pyroclastic equivalents in Mio–Pliocene age (4.7–5.98 Ma) (Platzman et al. 1998). The pioneering study of Keller (1974) has suggested that the Karacağaz volcanic samples range from andesite to dacite with calc-alkaline affinity. Cinder cones, maar craters and associated lava flows in the study area were previously named as “the Recent Quaternary volcanoes of Karapınar” by Keller (1974), but recently termed as “Hasan Monogenic Cluster (Reid et al. 2017)” or “Karapınar Monogenic Field (Uslular and Gençlıoğlu-Kuşcu 2019)”. Here, we collected these volcanic formations under the name of “the Karapınar volcanic field” for simplification. Cinder cones overlie the Karacağaz volcanic complex on the northeast near Kutören (Fig. 2) and include ejected dacitic blocks of the Karacağaz volcano. The Karapınar basaltic to andesitic lava flows appear to have fed from fissures and contain xenoliths and xenocrysts plucked from the Karacağaz volcanic complex, which was first identified as evidence of contamination by Keller (1974). Four well-known maar craters are present in the study area, one of which has a central cinder cone in maar lake (Meke gölü). These explosion craters are characterized by base surge deposits exposed in the surrounding pyroclastic rings. Phreatomagmatic tuff-rings and cones are other common volcanic forms of the Karapınar volcanic field. Based on the published geochronology data, cinder cones and associated basaltic flows from the Karapınar monogenetic field have ages < 0.6 Ma, but they can be dated back to 2.5 Ma in the whole CVP (Notsu et al. 1995; Reid et al. 2017; Dogan-Kulahci et al. 2018). The composition of the Karapınar volcanic rocks range from basalt to andesite, and they show both (sodic) alkaline and calc–alkaline character (Keller 1974; Ercan et al. 1992; Notsu et al. 1995; Olanca 1999; Reid et al. 2017; Di Giuseppe et al. 2018b; Dogan-Kulahci et al. 2018).

3. Material and methods

Around 700 samples were collected from the lava flows, sills, domes, and pyroclastic deposits in the study area for petrographic, geochemical and geochronological investi-
would be further powdered and prepared for analytical work. About 180 thin sections were made in the Ankara University, Earth Sciences Application and Research gations. Firstly, weathering rinds were extracted from all samples, and each was separated and carefully checked to make sure that only the freshest material possible.
Center (YEBIM) for mineralogical and petrographical investigations. Detailed petrographical investigations were executed under a petrographic microscope and microphotographed at the Konya Technical University.

The most representative and freshest samples whose mineralogical and petrographic properties were determined were powdered in an agate ball-mill in the Ankara University YEBIM. And then, eighteen representative samples were sent to ACME laboratory (Canada) for whole-rock major, trace, and rare earth element analyses. Whole-rock major, trace, and rare earth element analyses were performed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In-house standards (e.g., Reference Materials STD SO-19, STD OREAS45EA, and STD DS11) were analyzed together with the samples, and they were used for the calibration of the dataset. Whole-rock major and trace element results of the samples and Quality Control (QC) data, including the analyzed standard materials, are given in Supplementary files (ESM1). Based on replicate analyses on the reference materials, precision was evaluated to be better than 1% for major elements except for P_2O_5 (2.5%) and 5% for trace and rare earth elements.

40Ar/39Ar geochronology analyses of two samples were executed at the WiscAr Geochronology Laboratory at the University of Wisconsin–Madison (USA). To determine the cooling ages of the rocks, the freshest samples were selected from the Karacadag volcanic complex at different locations. Ar–Ar geochronology analyses were executed on a basaltic whole-rock sample and an amphibole separation from a dacitic sample. The 40Ar/39Ar variant of conventional 40K–40Ar dating depends on producing some 39Ar in each sample by bombarding in a nuclear reactor. After the samples are returned from the reactor, the isotopic composition of the argon is measured. When analyzing, a 25 Watt CO_2 laser can focus on spots between 10 and 400 µm in diameter. These analyses yield a plateau age at the 95% confidence level.

Isotopic ratios of Sr, Nd and Pb from four representative samples selected upon results of bulk rock geochemistry were analyzed using a Finnigan MAT262 RPQ2+ Thermal Ionization Mass Spectrometer (TIMS) at GEOMAR Helmholtz Centre for Ocean Research in Kiel (Germany). For this purpose, powder samples were prepared at Ankara University YEBIM. The powder samples were digested in a solution concentrated ultra-pure HF and HNO_3 at 150 °C for 60 h. Following the procedures of Geldmacher et al. (2006) and Hoernle et al. (1991), ion chromatography was executed. Sr and Nd isotope ratios were normalized to 86Sr/88Sr =0.1194, and 146Nd/144Nd = 0.7219, respectively. Moreover, all Pb isotope ratios were normalized to the reference ratios for USGS NBS 981.

Table 1: Mineralogical compositions and the textural properties of the investigated samples from the Karapınar Volcanic Field and Karacadag Volcanic Complex.

<table>
<thead>
<tr>
<th>Volcanic Rocks</th>
<th>Rock Type/ Symbol</th>
<th>Age</th>
<th>Mineral composition</th>
<th>Texture</th>
<th>Enclave Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karacadag Volcanic Complex</td>
<td>Basalt-1/B1</td>
<td>Neogene</td>
<td>Pl + Cpx + Ol + ox</td>
<td>Pilotaxitic, cellular and sieve (Pl)</td>
<td>1. Magma Segregation Enclaves (Cognate xenolith)</td>
</tr>
<tr>
<td></td>
<td>Andesite-1/A1</td>
<td>Neogene</td>
<td>Pl + Cpx + Amp + ox + Bt + Qz ± Ap ± Zrn</td>
<td>Hypocrystalline porphyric, glomeroporphyritic texture, cellular and sieve texture (Pl)</td>
<td>2. Magma mixing enclaves (Cognate xenolith)</td>
</tr>
<tr>
<td></td>
<td>Andesite-2/A2</td>
<td>Neogene</td>
<td>Pl + Cpx + Opx + Amp + Bt + Ol xe + ox ± Ap ± Zrn</td>
<td>Hypocrystalline porphyric, spongy cellular and sieve texture (Pl)</td>
<td>1. Magma Segregation Enclaves (Cognate xenolith)</td>
</tr>
<tr>
<td></td>
<td>Andesite-3/A3</td>
<td>Neogene</td>
<td>Pl + Cpx + Opx + ox ± Ap ± Zrn</td>
<td>Hypocrystalline porphyric, glomeroporphyritic texture, cellular and sieve texture (Pl)</td>
<td>2. Magma mixing enclaves (Cognate xenolith)</td>
</tr>
<tr>
<td></td>
<td>Andesite-4/A4</td>
<td>Neogene</td>
<td>Pl + Cpx + ox</td>
<td>Hyalopilitic porphyric, cellular and sieve texture (Pl)</td>
<td>1. Magma Segregation Enclaves (Cognate xenolith)</td>
</tr>
<tr>
<td></td>
<td>Dacite/D</td>
<td>Neogene</td>
<td>Qz + Pl + Cpx + Amp + Bt + ox</td>
<td>Hypocrystalline porphyric, spongy cellular and sieve texture (Pl)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Trachyte/T</td>
<td>Neogene</td>
<td>Pl + Sa + Cpx + Ol</td>
<td>Vitroporphyric</td>
<td>–</td>
</tr>
<tr>
<td>Karapınar Volcanic Field</td>
<td>Basalt-2/B2</td>
<td>Quaternary</td>
<td>Ol + Cpx + Pl + ox (± Qz xe)</td>
<td>Holocrystalline porphyric, texture – hypocrystalline porphyritic, glomeroporphyritic, vesicular, cellular and sieve (Pl), ocellar (Qz)</td>
<td>1. Magma Segregation Enclaves (Cognate xenolith)</td>
</tr>
<tr>
<td></td>
<td>Basalt-3/B3</td>
<td>Quaternary</td>
<td>Cpx + Pl + OI + ox (Amp ± Bt ± Qz ± Pl xe)</td>
<td>Hypocrystalline porphyric, glomeroporphyritic, vesicular, amygdaloidal, cellular and sieve (Pl), ocellar (Qz)</td>
<td>1. Magma Segregation Enclaves (Cognate xenolith)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Magma mixing enclaves (Cognate xenolith)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Xenocrysts (Qz, Pl, Bt, Amp)</td>
</tr>
</tbody>
</table>

Amp – amphibole; Ap – apatite; Bt – biotite; Cpx – clinopyroxene; Ol – olivine; Opx – orthopyroxene; ox – Fe-Ti oxides; Pl – Plagioclase; Sa – sanidine; Qz – quartz; Zrn – zircon; xe – xenocryst (Mineral abbreviations after Warr 2020).
of Baker et al. (2004). External precisions are 2σ for all radiogenic isotopes.

Oxygen isotope (18O/16O) analyses of three whole-rock samples and five olivine separates were provided at the Queen's University Queen's Facility for Isotope Research (QFIR). Oxygen was extruded from 5 mg samples at 550–600°C according to the conventional BrF$_5$ method of Clayton and Mayeda (1963) and measured by a dual inlet on a Thermo-Finnigan Delta Plus XP Isotope-Ratio Mass Spectrometer (IRMS). δ18O ratios are presented utilizing the delta (δ) notation in units of permil (‰) relative to the Vienna Standard Mean Ocean Water (VSMOW) international standard, with a precision of 0.5 ‰. Results of both radiogenic and stable isotope analyses of the samples are available in Supplementary files (ESM2).

4. Results

4.1. Petrography

Based on the petrography (Tab. 1 and Fig. 3) and geochemistry (Fig. 4), the studied rocks can be separated into several units. Karacadağ volcanic complex comprises basaltic andesites (B1), four andesite units (A1 to A4), dacites (D) and trachytes (T), whereas Karapınar volcanic field comprise two groups of basalts to basaltic andesites (B2 and B3).

The Karacadağ basaltic andesites (B1) exhibit hypocrystalline porphyritic texture with phenocrysts of plagioclase, clinopyroxene, and rare Fe–Ti oxides. Those are enclosed in a fine-grained groundmass composed of the same mineral assemblages complemented with iddingsite pseudomorphs after olivine and rare glass (Fig. 3a). However, the Karacadağ andesitic rocks show textures ranging from holocrystalline porphyritic to vitrophyric porphyritic textures, and display disequilibrium textures as cellular-sieve textured plagioclases, amphiboles, and clinopyroxenes. Andesite-1 (A1) group rocks generally contain phenocrysts of mainly clinopyroxene, amphibole, and plagioclase, rare or no biotite, quartz xenocrysts, and Fe–Ti oxides enclosed in isotropic glass (Fig. 3b). Andesite-2 (A2) group rocks differ in the common presence of biotite, with otherwise mineral assemblage similar to A1 group. This unit also includes rare quartz and olivine xenocrysts (Fig. 3c). Andesite-3 (A3) group rocks are classified as two-pyroxene andesites composed of dominantly ortho and clinopyroxene, plagioclase, and Fe–Ti oxides and minor quantities of glass. While disequilibrium and/or decompression reaction textures are present in (A3) (resorbed and sieved plagioclase,

Fig. 4. a – Total alkali-silica (TAS) diagram (Le Bas et al. 1986), the red line separates alkaline and subalkaline fields according to Irvine and Baragar (1971), b – Nb/Y vs. Zr/Ti diagram (Pearce 1996) of the investigated rocks, c – AFM diagram of the subalkaline volcanic rocks (Irvine and Baragar 1971). Red symbols indicate the Karacadağ volcanic rocks, and black symbols stand for the Karapınar volcanic rocks. MA: Mildly-alkaline; CA: Calc-alkaline. Green diamonds stand for Karapınar basalts in the previous research (Dogan-Kulahç et al. 2018).
plagioclase ± clinopyroxene ± Fe–Ti oxide clots), they are much less abundant than in A1 and A2 (ESM3). Andesite-4 (A4) group rocks display pilotaxitic texture and consist mainly of plagioclase and Fe–Ti oxide minerals, rarely clinopyroxene, and have microlithic groundmass (ESM3). Dacites (D) have hypocrystalline porphyritic texture, dominated by amphibole, and less frequent biotite, plagioclase, and rarely quartz and Fe–Ti oxides in a glass-rich groundmass (Fig. 3d). Trachytes (T) exhibit vitrophyric porphyritic texture and are composed mostly of plagioclase, rare clinopyroxene, sanidine, and Fe–Ti oxide minerals embedded in a glassy groundmass (ESM3). Some of the andesites from the Karacadağ rocks contain gabbroic cognate xenoliths and enclaves displaying magma mixing between basaltic and andesitic melt.

The Karapınar basalt to basaltic andesite lavas are characterized by porphyritic texture. Basalt-2 group rocks (B2) contain mainly olivine, clinopyroxene, plagioclase, and rare Fe–Ti oxides (Fig. 3e). Quartz xenocrysts occur scarcely as well. Basalt-3 group rocks (B3) differ from B2 rocks in a lower amount of olivine and a higher proportion of clinopyroxene phenocrysts accompanied by plagioclase (sieve-textured, up to 20 vol. %) and Fe–Ti oxides (ESM3). In addition, they contain common quartz xenocrysts (up to 10 %), rare biotite, and amphibole xenocrysts (Fig. 3f and ESM3). Quartz xenocrysts with corrosive embayments and also ocellar texture surrounded by clinopyroxenes. Also, amphibole and biotite minerals are completely opacitized.

4.2 Major and Trace Element Composition

The Karacadağ volcanic rocks were classified as basaltic andesite (B1), andesites (A1 to A4), dacite (D) and trachyte (T; $q \leq 20\%$), whereas the Karapınar volcanic rocks as basalt, basaltic andesite and andesite (B2 and B3) (Figs. 4a, b). The Karapınar volcanic rocks have a transitional geochemical character (calc–alkaline; CA to mildly alkaline; MA), while the Karacadağ volcanic rocks are subalkaline (Fig. 4a). In the AFM diagram (Fig. 4c),...
all subalkaline samples plot in the calc–alkaline field. Consistently with their chemical character, mildly alkali
line samples from the Karapınar rocks have normative
nepheline plus olivine, but calc–alkaline samples have
normative hypersthene plus quartz or olivine.

The SiO$_2$ vs. major and trace elements show varia-
tions characterized by straight linear, curved, or inflected
trends with progressive differentiation for the Karapınar
and Karacadağ volcanic rocks. MgO, Fe$_2$O$_3$, CaO, TiO$_2$,
Sc, Co, Cr and V linearly decrease with increasing SiO$_2$,
but K$_2$O, Rb, Ba, Zr, Th and La have a good positive cor-
relation with SiO$_2$ (ESM4). On the other hand, Al$_2$O$_3$
and Sr variations show complex patterns when plotted against
SiO$_2$. Al$_2$O$_3$ increases until SiO$_2$ reaches ~55 wt. %, then
it decreases, but Sr linearly decreases for the Karapınar
samples. Conversely, Sr increases until SiO$_2$ reaches ~55
wt. %, then it decreases, but Al$_2$O$_3$ linearly decreases
for the Karacadağ samples. Although the Karapınar and
Karacadağ samples generally display similar major and
trace element variations, they plot on the different parallel
trends in some diagrams (ESM4).

Basaltic rocks from the investigated suites exhibit en-
richments in large ion lithophile elements (LILE; K, Ba,
Rb, Sr, Pb, and Th) and light rare earth elements (LREE;
La, Ce) with distinct Nb–Ta–Ti trough on the N-MORB-
normalized spider diagrams (Figs 5a, b). However, the
studied intermediate and felsic units exhibit patterns that
are largely comparable with those of the basaltic rocks,
but they are more enriched in incompatible trace elements
than basaltic ones. On the chondrite-normalized rare earth
element (REE) plots (Figs 5c, d), the studied rocks exhibit
moderately fractionated LREE patterns (Karacadağ volca-
nics La$_N$/Yb$_N$ = 6.2–13.8, and Karapınar volcanics La$_N$/Yb$_N$
= 7.54–14), and they also show flat heavy-REE (HREE)
distributions. As in the spider diagrams, the intermediate
and felsic rocks show more enrichment in all REEs rela-
tive to the basaltic samples. Spider and REE diagrams
of the Karapınar and Karacadağ volcanic rocks resemble

Fig. 6. a – 39Ar/ 40Ar age spectra (plateau age) and b – inverse isochron (isochron age) of Basalt-1 e – 39Ar/ 40Ar age spectra (plateau age) and d – inverse isochron (isochron age) of an amphibole mineral separate from Dacite.
each other, except for distinct depletion in Ba and slight negative Eu anomaly of the Karacadag samples. Spider diagrams also indicate that the Karapinar calc–alkaline basalts were seemed more enriched in LREE and LILE relative to the Karapinar mildly alkaline basalts.

4.3. Geochronology

40Ar–39Ar age data of the basalt from the Karacadag volcanic complex is shown as apparent age in Figs 6a and 6b. Whole-rock fragments from the basalt yielded meaningful plateau age of 5.65 ± 0.06 Ma. An amphibole separate from dacites yielded 40Ar–39Ar plateau age of 5.379 ± 0.028 Ma and an isochron age of 5.45 ± 0.09 Ma (Figs 6c–d).

4.4. Sr–Nd–Pb–O Isotope systematics

The investigated intermediate-acidic rocks from the Karacadag volcanic complex are characterized by negative εNd values from –1.21 to –2.29 and 87Sr/86Sr(i) ratios in the range 0.70491–0.70518 (ESM2; Fig. 7). The investigated intermediate-acidic rocks vary in δ18O between 5.7 and 6.5‰ (ESM2). However, Karacadag volcanic rocks have δ18O values ranging between 7.5 and 8.9. The δ18O values of the Karacadag whole-rock samples (7.7–8.9‰) are much higher than those of the olivine separates (7.5‰).

5. Discussion

5.1. Fractional Crystallization vs. Magma Mixing

Major and trace element variation diagrams (ESM4) give valuable information on the fractionated phases during fractional crystallization. Therefore, the decrease of MgO, CaO, Ni and Cr with increasing SiO$_2$ can be best clarified by olivine and clinopyroxene fractionation, especially in the basaltic rocks. The decrease in Fe$_2$O$_3$, TiO$_2$, Sc, Co and V shows the crystallization of Fe–Ti oxides (e.g., magnetite, ilmenite etc). Although Al$_2$O$_3$ and Sr variations are complex, they can be interpreted by plagioclase accumulation in the basaltic rocks but its fractionation in the evolved rocks. Other information on the fractionated phases may be taken from REE patterns of the investigated rocks. The slight depletion in MREE of the Karacadag intermediate to felsic rocks can be attributed to the amphibole fractionation in their evolution because amphibole preferentially incorporates MREE relative to the LREE and HREE, especially in the evolved rocks (Davidson et al. 2007). On the other hand, the Karacadag intermediate to felsic rocks show a slight negative Eu anomaly in their REE patterns, indicating the role of plagioclase fractionation in the evolution of the rocks. Although the Karapinar and Karacadag samples generally exhibit similar major and trace element variations, and they follow different trends in SiO$_2$ vs. Al$_2$O$_3$, K$_2$O, Zr, V, Cr, La, Rb, and Sr diagrams (e.g., ESM4), suggesting a distinct differentiation history.

The investigated rocks, especially intermediate ones, show disequilibrium textures and mineralogies with various enclave types and linear trends in some major and trace element distribution plots. These are suggestive of magma mixing. To test the role of magma mixing in the evolution of the volcanic units, we performed mixing models (Bryan et al. 1969) based on the least-squares regression of the major and trace elements for a subset of the intermediate samples by using IgPet. Based on about twenty calculations, we tested the mixing combination of the basaltic and felsic end members from the KPVF and KCVC to be able to produce an intermediate composition. In such models, $\sum r^2$ (e.g., the sum of squares of residuals; a measure of the differences between calculated and observed element abundances), is anticipated to be low, approximating zero for acceptable models. The high $\sum r^2$ of our calculations suggests that magma mixing is not a dominant magmatic process in the evolution of the modeled intermediate units. To sum up, we stress here that fractional crystallization played a major role relative to magma mixing in the evolution of the investigated rocks.
5.2. Crustal vs. Source Contamination

N-MORB-normalized spider diagrams of the investigated basaltic rocks exhibit enrichments in large ion lithophile elements (LILE: Ba, K, Rb, Sr, Pb, and Th) and light rare earth elements (LREE, namely La, Ce) with distinct Nb–Ta–Ti trough, which is typical for volcanic rocks at convergent margins. Many researchers have suggested that mantle source contamination by subduction-related processes and crustal contamination were possible for the genesis and evolution of the Neogene CVP calc–alkaline rocks, including the Karacadağ volcanic rocks. However, the transitional Quaternary Karapinar volcanic rocks cannot be originated from a mantle source contaminated by subduction-related processes because the Karapinar basaltic rocks have δ18O values and incompatible trace element ratios resembling those of OIB-like volcanic rocks, which will be further discussed.

Nb/U, Ce/Pb and Nb/Ta are considered useful indicators to assess the effect of crustal contamination on basaltic rocks (Rudnick and Gao 2003; Dai et al. 2018). B1 has Ce/Pb (~7) and Nb/U (~2) ratios having crustal signature (Ce/Pb:~4), Nb/U: 10; Hofmann 1986). On the other hand, B2 and B3 group rocks have Ce/Pb ratios (~8–16 and 20, respectively), close to those for OIB (~25), while their Nb/U ratios (2–12 and 3, respectively) are lower than OIB (~47) (Hofmann et al. 1986; Tab. 2; ESM5). Moreover, the investigated basaltic rocks are represented by different Nb/Ta ratios. B1 exhibits Nb/Ta ratios (10.5) resembling those for the continental crust.

Table 2 Some trace element ratios of the basalts from the Karapınar Volcanic Field and Karacadağ Volcanic Complex.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ce/Pb</th>
<th>Nb/U</th>
<th>Nb/Ta</th>
<th>Th/Yb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basalt-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GK60</td>
<td>7.07</td>
<td>1.91</td>
<td>10.50</td>
<td>3.96</td>
</tr>
<tr>
<td>GK31*</td>
<td>14.81</td>
<td>9.89</td>
<td>14.83</td>
<td>1.90</td>
</tr>
<tr>
<td>L8*</td>
<td>9.84</td>
<td>12.00</td>
<td>19.20</td>
<td>2.33</td>
</tr>
<tr>
<td>KR21B_E.</td>
<td>7.98</td>
<td>3.74</td>
<td>17.20</td>
<td>3.88</td>
</tr>
<tr>
<td>KR15</td>
<td>16.56</td>
<td>5.18</td>
<td>17.60</td>
<td>2.93</td>
</tr>
<tr>
<td>Basalt-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR30</td>
<td>19.56</td>
<td>2.65</td>
<td>14.25</td>
<td>9.00</td>
</tr>
<tr>
<td>KR-33D</td>
<td>5.08</td>
<td>0.77</td>
<td>15.05</td>
<td>8.85</td>
</tr>
</tbody>
</table>

* – Mildly alkaline (ne-normative) basalts.
However, B2 samples have Nb/Ta ratios (17–19.2), which are specific for the chondrites (19.9; Münker et al. 2003), and B3 group rocks (Nb/Ta = 14–15) have OIB-like signature (14; Pfänder et al. 2012). Furthermore, the enrichment of Th/Yb ratios relative to SiO$_2$ and Nb/Yb can be attributed to crustal contamination (Kheirkhah et al. 2015; ESM5). Based on the trace element ratios, we suggest that crustal contamination had a key role in the evolution of the studied volcanic units and was more effective in the evolution of the Karacadağ volcanic rocks relative to the Karapınar volcanic rocks.

Alteration and low-temperature weathering after a volcanic eruption can increase the δ^{18}O of the rocks. Therefore, the isotope value of the mantle source is represented by the δ^{18}O/δ^{16}O values of the mineral separations rather than those of the whole-rock (Davidson and Harmon 1989; Ellam and Harmon 1990; Downes et al. 1995; Dobosi et al. 1998). Whole-rock δ^{18}O values of the investigated rocks (7.7–8.9 ‰) are slightly higher than those of the olivine grains (7.5 ‰). Whole-rock δ^{18}O ratios of the Karacadağ volcanic rocks are close to that for the continental subduction basalts (4.8–7.7 ‰; Hofmann et al. 1986), and bulk continental crust (8.9 ‰; Simon and Lécuyer 2005), whereas the δ^{18}O ratios of the olivine grains from the Karapınar basalts (δ^{18}O = 5.7–6.5 ‰; Eiler et al. 1997). Therefore, we consider that the higher δ^{18}O ratios of the Karacadağ volcanics than olivine phenocrysts from the Karapınar basalts may be attributed to the addition of δ^{18}O-rich crustal components into their source or during magma evolution via assimilation of crustal material (Sun et al. 2015).

Both radiogenic Sr- and stable O-isotope ratios increase with increasing SiO$_2$ from basaltic to felsic rocks in the KPVF and KCVC (Figs 9a, b). Sr and O isotope ratios are then positively correlated, but they show large variations from the general trend. These are typical for crustal contamination rather than source contamination (Gertisser and Keller 2000, 2003).

To prove the crustal contamination effect in their evolution, we propose AFC and two-component mixing.
models for the investigated rocks in Figs 10a and 10b. We preferred to utilize the most evolved Karacadag unit (trachyte) as a contaminant (Ca), and used a hypothetical primary magma as C0. Fig. 10a indicates that a hypothetical primary magma (C0) could produce the mildly alkaline basalts by assimilation of the trachytes. Moreover, some of the Karapinar basalts contain sieved plagioclase, embayed and ocelli quartz, fully opacitized biotite, and amphibole xenocrysts (Fig. 3 and ESM3), which were probably plucked from the wall rock represented by the Karacadag volcanic rocks. Investigated rocks lie along a convex–upward mixing line (Fig. 10b) confirming that both Karapinar and Karacadag volcanics were dominantly subjected to crustal contamination during their evolution (Zhang et al. 2016; Zhiguo et al. 2018).

In the Sr–Nd isotopes diagram (Fig. 7), the area where the samples are located is represented by the interaction of sublithospheric melts with the continental lithosphere, represented by the partial melting of subducted sediments or by melts derived from the continental lithosphere. Investigated Karapinar basalts are plotted in the OIB-type rocks area. However, Karacadag basalt deviates from the trend of Karacadag intermediate-felsic units owing to their high positive ENd value (Fig. 7). Extremely high positive ENd values represent a long-term depleted source and also suggest that they were generated in an entirely oceanic environment devoid of the efficacy of continental crust (Dampare et al. 2009). Trace element contents and generated models indicate Karacadag basalts were exposed to a significant crustal contamination process. Moreover, in the recent studies on CVP (Di Giuseppe et al. 2018b), the maximum value of the $^{144}\text{Nd}/^{143}\text{Nd}$ ratio is about 0.5127 of the calc-alkaline rocks in the area. Because Karacadag basalt contains an extremely positive ENd value (~9) and $^{144}\text{Nd}/^{143}\text{Nd}$ ratio (0.51309), we do not prefer to use that unrealistic data to interpret the source of the rocks. Moreover, investigated rocks exhibit different areas in the Pb isotope diagrams (Fig. 8). It is possible to say that Karacadag and Karapinar volcanic rocks may be derived from a different mantle source.

5.3. Temporal and Spatial evolution of the volcanic units

Located in the southwestern part of the CVP, the KCVC and KPVF represent volcanic episodes that occurred during the Plio–Quaternary. The KCVC was previously dated at 4.7–5.98 Ma from three samples with the K–Ar dating technique (Platzman et al. 1998), which represents the only published radiometric age data on this unit. In this study, we have dated an amphibole separate from dacites and whole-rock fragments from basalts of the KCVC with the Ar–Ar dating technique, which resulted in 5.45 and 5.65 Ma, respectively. Our new age data are in the range of the published age span, and all these suggest ~1.3 Ma duration of volcanism for the KCVC. However, the duration of volcanism in the KCVC may be more than suggested here because this interpretation is based on only five radiometric data from such a large volcanic complex. On the other hand, relatively more radiometric age data were produced from the KPVF (no age data from this study), and these indicate younger than < 0.6 Ma for the Karapinar area, but monogenetic mafic volcanism can be dated back to 2.5 Ma across the CVP (Reid et al. 2017; Dogan-Kulahci et al. 2018; Notsu et al. 1995).

The published ages from the Cappadocia Volcanic Province (CVP) range from ~14 Ma to recent times and show obvious spatial, temporal and geochemical variations of volcanic activity in the province. The CVP extends in NE–SW direction, and vent alignments of the volcanoes in the CVP are mainly NE–SW to N–S (Toprak 1998; Higgins et al. 2015). The main geochemical and spatiotemporal characteristics of the CVP are that the Late Miocene to Pliocene volcanic rocks are mainly calc–alkaline. Still, the Plio–Quaternary volcanic rocks are calc–alkaline or (mildly) Na-alkaline in compositions, both of which have orogenic geochemical signature and southwest-ward younging of the volcanism (see section 2 for references). Schleiffarth et al. (2018) and Reid et al. (2017) argued that the SW younging age progression seen in the CVP could be related to the steepening and rollback of the Cyprian slab beneath the Kırşehir and Central Anatolide–Tauride Blocks, causing upwelling asthenospheric mantle. On the other hand, most authors suggested that geochemical characteristics of the CVP resulted from extension-related melting and the Late Miocene to Pliocene calc-alkaline volcanic rocks were derived from the subduction-modified lithospheric mantle. But, the origin of the Plio–Quaternary mafic to intermediate volcanic rocks displaying (mildly) Na-alkaline to calc–alkaline geochemical character is still controversial. Ignoring the crustal contamination, Di Giuseppe et al. (2018b) proposed a petrologic model including mixing between different percentages of within-plate (OIB)-like magmas derived from the sub-lithospheric mantle and calc–alkaline magmas from subduction-modified lithospheric mantle for the origin of the Plio–Quaternary Na-alkaline basalts in the CVP. However, such a model may not be possible for the KPVF basalts because they show evidence of crustal contamination discussed in section 5.2. Thus, we suggest that the KPVF basaltic magmas, originally of anorogenic geochemical signature, interacted with the upper crustal component represented by the KCVC via AFC-style differentiation to gain an orogenic signature. A similar model was suggested by Kocaarslan and Ersoy (2018) for the Kangal–Gürün Basin volcanic rocks located to the east of the CVP. In this
model, they argued that orogenic geochemical signature could result from crustal contamination of originally anorogenic magmas derived from an upwelling mantle source unmodified by any subduction-related metasomatism. Although having OIB-like signatures in terms of radiogenic and stable isotope ratios and trace element contents, Karapınar basalts show a trend extending in the region between OIB and continental crust in the SiO$_2$ vs. Nb/U and Ce/Pb diagrams (ESM5). The reported evidence suggests that the crustal contamination signature decreased from calc–alkaline to mildly-alkaline basalts from the Mio–Pliocene to the Quaternary. However, in the Quaternary, raised in the evolution of the basalts from mildly-alkaline (B2-MA) to calc–alkaline (B2-CA, B3) (ESM1, ESM2, ESM5).

6. Conclusions

The petrographical, geochemical, and geochronological data obtained from this and previous studies have allowed us to put the following constraints regarding the evolution and origin of the Karacadağ Volcanic Complex and Karapınar Volcanic Field.

a) The Karacadağ volcanic complex is represented by basaltic to dacitic and trachytic rocks that erupted during the late Miocene–Pliocene, showing calc–alkaline affinity. Our Ar–Ar geochronology analysis yielded ages from 5.45 to 5.65 Ma, representing a short time interval of the longer-lasted Karacadağ volcanism deduced from the published age data. Similar to orogenic volcanic rocks, the isotopic and geochemical characteristics of the basaltic Karacadağ volcanic rocks suggest their derivation from parental magmas generated in a subduction-modified lithospheric mantle. The suite's intermediate and felsic rock types evolved by fractional crystallization plus crustal contamination and magma mixing to a lesser extent.

b) The Karapınar volcanic rocks ranging from basalt to andesite erupted during Quaternary and are characterized by both mildly alkaline and calc–alkaline compositions. Trace element geochemistry of the Karapınar basaltic rocks is similar to those of orogenic volcanic rocks as in the Karacadağ basaltic rocks, whereas their 18O values are in the range of OIB-like rocks.

c) Presence of crustal xenoliths and xenocrysts derived from the Karacadağ rocks, and isotopic variations in the Karapınar basalts indicate that crustal contamination had a key role in their evolution, and this process is responsible for the obtaining orogenic signature of the OIB-like Karapınar basalts.

d) Taken as a whole, the obtained data can be elucidated by the derivation of the Karapınar basaltic rocks from an OIB-like mantle source and then contamination with the Karacadağ volcanic rocks at a shallow crustal level. This may be an alternative model for explaining orogenic geochemical signature in sodic alkaline basalts in the CVP.

Acknowledgments This study was financially supported by Tübitak Çağdag project number 118Y252 and Selcuk University Bap project number 1740117. We thank Professor Yusuf Kağan Kadioğlu and Dr. Kiymet Deniz for making the thin sections. The authors thank to the Handling Editor Dr. Vladislav Rapprich, and Professor Tamer Koralay, Dr. Raymundo Casas-García, and an anonymous reviewer for their critical and constructive comments that improved the quality of this paper.

Electronic supplementary material. Supplementary data for this paper are available online at the Journal web site (http://dx.doi.org/10.3190/jgeosci.343).

References

Batum I (1978) Geology and petrography of Acığöl and Gölũldaoğ volcanics at SW of Nevşehir, Central Anatolia, Turkey. Geosciences 4: 50–69

The Karapınar–Karacadag Volcanic Rocks, Cappadocia Volcanic Province

DEPAULO DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53, 2: 189–202

