1. Introduction

Tourmaline-supergroup minerals from Tuscany (Italy) are well known worldwide. Indeed, this Italian region is the type locality for seven species. Among them elbaite (Vernadsky 1913), tsilaisite (Bosi et al. 2012), fluor-tsilaisite (Bosi et al. 2015a), and cellerite (Bosi et al. 2022a) were found in vugs of granitic pegmatitic dykes in the San Piero in Campo area, Elba Island. This is a classic kind of occurrence that has been studied since the 19th century (e.g., D’Achiarodi 1894, 1897), providing nice specimens kept in several private and public collections worldwide.

Three additional species have been discovered during the crystal-chemical characterization of non-pegmatitic tourmalines from Tuscany. Uvite and magnesio-lucchesiite were identified in veins within metabasite of the thermal aureole of the Monte Capanne intrusion (Bosi et al. 2022b; Scribner et al. 2021), whereas dutrowite was discovered in a Permian metarhyolite belonging to the Apuan Metamorphic Complex (Biagioni et al. 2020).

Tourmaline-supergroup minerals are common in rocks from the Apuan Alps and, in the southern sector of this area they form tourmalinite bodies closely associated with ore deposits (e.g., Benvenuti et al. 1989), in some cases spatially related to Permian metarhyolite (Vezzoni et al. 2018). Other minor occurrences have been reported from several localities (e.g., Orlandi and Dini 2004; Biagioni et al. 2019), but the only crystal-chemical data currently available were provided by Benvenuti et al. (1991) on tourmaline supergroup minerals occurring in tourmalinite associated with the Pb–Zn–Ag ore deposit formerly exploited at the Bottino mine.

During the examination of a suite of specimens from the small Artana Mn prospect on the northern slope of the mountain ridge La Rocchetta–Monte Brugiana, near Carrara (Apuan Alps, northern Tuscany), a sample con-
taining sub-millimetric prismatic crystals of a potential tourmaline supergroup mineral was identified. The mineralogical study confirmed the first identification, pointing out a high Ni content and suggesting the necessity of its full crystal-chemical investigation. Indeed, nickeloan tourmalines have been reported from a few localities worldwide (e.g., Henry and Dutrow 2001; Baksheev and Kudryavtseva 2004; Voudouris et al. 2019) and structural data have been mainly collected on synthetic analogs (e.g., Rozhdestvenskaya et al. 2012; Vereshchagin et al. 2015); the only natural refined sample was reported as triclinic (Hughes et al. 2011).

In this paper, the crystal chemistry, genesis and geological implications of this new finding of a nickeloan tourmaline are reported.

2. Geological background and sample description

The Apuan Alps are a sector of the Northern Apennines where the lowermost tectonic units are exposed, i.e., the Massa Unit and the Apuane Unit. These units were affected by greenschist facies metamorphism during the late Oligocene to early Miocene, with peak estimates at $T = 350–450 \, ^\circ \text{C}$ and $P = 0.3–0.4 \, \text{GPa}$ in the Apuane Unit (e.g., Franceschelli et al. 2004; Fellin et al. 2007). The current structural setting is due to two main tectono-metamorphic phases, i.e., a shortening D_1 event at 27 Ma followed by an extensional D_2 phase at 14–12 Ma (Kligfield et al. 1986; Carmignani and Kligfield 1990).

The Artana Mn mineralization occurs on the western and northern slopes of the Monte Zuccone, close to the Artana B marble quarry, and northern of the mountain ridge La Rocchetta–Monte Brugiana. According to Conti et al. (2019), the ore deposit, prospected in the first half of the 20th century, is located at the contact between cherty metalimestone and the Marble Formation belonging to the Apuane Unit. The Mn ore body has an average thickness of 50 cm, only locally being ca. 1 m thick. Its mineralogy (as well as its actual setting) is poorly known. Di Giovanni (1981) reported the occurrence of braunite, whereas Bonazzi et al. (1992) studied REE-bearing piemontite, also citing the presence of Mn-oxides, titanite, “apatite”, Al-Mg-Fe dioctahedral mica, some rhombohedral Mn-bearing Ca-carbonates, as well as spessartine, “allanite”, and actinolite. Finally, Orlandi (1990) reported the identification of gasparite-(Ce), as associated with manganite, quartz, and hematite.

Some samples were collected in a short tunnel of the Artana Mn prospect in December 2011. Tourmaline occurs as brownish-orange prismatic crystals, up to 0.3 mm in length (Fig. 1a), associated with quartz, carbonates, and tabular crystals of hematite. The studied material is kept in the mineralogical collection of the Natural History Museum of the University of Pisa under catalog number 19935.

3. Methods and results

3.1. X-ray crystallography

Single-crystal X-ray diffraction intensity data were collected using a Bruker Apex II diffractometer (50 kV, 30 mA) equipped with a Photon II CCD detector and
graphite-monochromatized MoKα radiation (Dipartimento di Scienze della Terra, Università di Pisa, Italy). The detector-to-crystal distance was set at 50 mm. A total of 1054 frames were collected using φ and ω scan modes in 0.5° slices, with an exposure time of 10 s per frame, and they were corrected for Lorentz, polarization, absorption and background effects using the software package Apex3 (Bruker AXS Inc. 2016). The refined unit-cell parameters are \(a = 15.9349(11) \) Å, \(c = 7.2038 \) Å, \(V = 1584.1(2) \) Å³; space group \(R3m \). The crystal structure of the studied sample was refined using SHELXL-2018 (Sheldrick 2015), starting from the structural model of oxy-vanadium-dravite (Bosi et al. 2013). The following neutral scattering curves, taken from the International Tables for Crystallography (Wilson 1992), were used: Na vs. Ca at the \(X \) site, Mg vs. Fe at the \(Y \) site, Al vs. Fe at the \(Z \) site. The \(T, B, \) and anion sites were modeled with Si, B and O scattering factors and with a fixed occupancy of 1, because refinement with unconstrained occupancies showed no significant deviations from this value. The anisotropic structural model for all atoms converged to \(R_1 = 0.0146 \) for 1138 unique reflections with \(F_o > 4\sigma(F_o) \) and 94 refined parameters. Tab. 1 gives details of data collection and refinement, whereas fractional atomic coordinates, displacement parameters, and selected bond distances are given in the Crystallographic Information File (CIF), available as Electronic Supplementary Material.

Data collection and refinement

<table>
<thead>
<tr>
<th>Crystal size (mm)</th>
<th>0.240 × 0.050 × 0.050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>(R3m)</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>15.9349(11)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>7.2038(5)</td>
</tr>
<tr>
<td>(V) (Å³)</td>
<td>1584.1(2)</td>
</tr>
<tr>
<td>(Z)</td>
<td>3</td>
</tr>
<tr>
<td>Radiation, wavelength (Å)</td>
<td>MoKα, (\lambda = 0.71073)</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
</tr>
<tr>
<td>(2\theta_{max}) (°)</td>
<td>63.00</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>8233</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>1142</td>
</tr>
<tr>
<td>Reflections with (F_o > 4\sigma(F_o))</td>
<td>1138</td>
</tr>
<tr>
<td>(R_w)</td>
<td>0.0216</td>
</tr>
<tr>
<td>(R_1)</td>
<td>0.0175</td>
</tr>
<tr>
<td>Range of (h, k, l)</td>
<td>(-23 \leq h \leq 21,) (-23 \leq k \leq 19,) (-10 \leq l \leq 10)</td>
</tr>
<tr>
<td>(R_1 { F_o > 4\sigma(F_o) })</td>
<td>0.0146</td>
</tr>
<tr>
<td>(R_1 { \text{all data} })</td>
<td>0.0146</td>
</tr>
<tr>
<td>(\psi R_1 { \text{on } F_o })</td>
<td>0.0375</td>
</tr>
<tr>
<td>Goof</td>
<td>1.117</td>
</tr>
<tr>
<td>Number of least-squares parameters</td>
<td>94</td>
</tr>
<tr>
<td>Maximum and minimum residual peak (e Å⁻³)</td>
<td>+0.28 [at 0.71 Å from (X)] and -0.26 [at 0.30 Å from (T)]</td>
</tr>
</tbody>
</table>

3.2. Electron microprobe analysis

The crystal used for single-crystal X-ray diffraction was then embedded in epoxy and polished for chemical analysis. Back-scattered electron images and preliminary chemical data were collected using an FEI Quanta 450 ESEM FEG equipped with a Bruker QUANTAX XFlash detector 6|10 operating in EDS mode (C. I. S. U. P., University of Pisa, Italy). Back-scattered electron images showed the studied sample to be homogeneous (Fig. 1b).

Quantitative chemical analyses were carried out using a Cameca SX50 (Istituto di Geologia Ambientale e Geoingegneria, CNR, Rome, Italy). Experimental conditions were: accelerating voltage 15 kV, beam current 15 nA, beam diameter 10 μm. The following standards were used (element; \(K\alpha \) lines were used for all elements): wollastonite (Si, Ca), rutile (Ti), corundum (Al), \(Cr_2O_3 \) (Cr), \(V_2O_5 \) (V), magnetite (Fe), metallic Mn (Mn), periclase (Mg), metallic Ni (Ni), sphalerite (Zn), jadeite (Na), and fluorophologopite (F). The "PAP" routine was applied (Pouchou and Pichoir 1985). Results (average of 7 spot analyses) are given in Tab. 2. Due to the small amount of available material, the Fe\(^{3+}/\)Fe\(^{2+}\) ratio cannot be directly determined, for instance, through Mössbauer spectroscopy. Therefore, this ratio was estimated based on polarized optical absorption spectroscopy (see below).

3.3. Single-crystal infrared spectroscopy

Polarized Fourier-transform infrared (FTIR) absorption spectra of the studied sample were recorded using a Bruker 143
The spectra recorded in polarized mode parallel to the c-axis (E||c) show a very intense band centered around 3550 cm⁻¹, which is off-scale as normally observed for tourmaline spectra, a significant band at 3731 cm⁻¹, and a weak band at 3761 cm⁻¹ (Fig. 2). Spectra polarized perpendicular to the c-axis (E⊥c) show considerably weaker bands at 3561 and 3731 cm⁻¹, and a shoulder feature at 3505 cm⁻¹, as determined by spectral fitting. The occurrence of bands above 3650 cm⁻¹ is consistent with a significant amount of (OH) groups at the O(1) site (see below). In detail, it is worth noting that the intensity of these bands, corresponding to W(OH)₀.35 (see below), is slightly stronger than, but fully compatible with, the intensity of bands observed for vanadio-oxy-dravite with W(OH)₀.26 (Bosi et al. 2014).

3.4. Optical Absorption Spectroscopy (OAS)

Polarized, room temperature optical absorption spectra in the range 30000–10000 cm⁻¹ (333–1000 nm) were recorded at a spectral resolution of 1 nm on the same 41 μm thick section studied by FTIR spectroscopy, using an AVASPEC-ULS2048×16 spectrometer (Swedish Museum of Natural History, Stockholm, Sweden) attached via a 400 μm UV fiber cable to a Zeiss Axiotron UV-microscope. A 75 W Xe arc lamp was used as a light source, and Zeiss Ultrafluar 10× lenses served as an objective and condenser. The size of the circular measure aperture was 30 μm across. A UV-quality Glan-Thompson prism with an operating range from 40000 to 3704 cm⁻¹ (250 to 2700 nm) was used as a polarizer. Spectral data in the range 10000–2000 cm⁻¹ (1000–5000 nm) was taken from the FTIR measurements.

The recorded E⊥c (E||O) spectrum (Fig. 3) shows medium strong absorption bands at 20600, 13900, and 8900 cm⁻¹. In the E||c (E||E) spectrum (Fig. 3) only weak to very weak bands occur at 24100, 20600, 18000, 15200, 13900, 13000, 9500, and 8900 cm⁻¹. The relatively sharp bands at 20600 and 18000 cm⁻¹ are due to electronic transitions in Fe³⁺ pairs at neighboring Y-sites (Mattson and Rossman 1984). The relatively broad and distinctly E⊥c-polarized bands at 13900 and 8900 cm⁻¹ are assigned in agreement with previous optical studies of tourmaline (e.g., Mattson and Rossman 1987) to Fe³⁺-enhanced spin-allowed d-d transitions in six-coordinated Fe³⁺. The very weak absorption bands at 24100, 15200, 13000, and 9500 cm⁻¹ occur at energies close to those recorded for spin-allowed d-d transitions in octahedrally coordinated Ni²⁺ in tourmaline (Taran et al. 1993). Based on the linear absorption coefficients reported for these absorption bands (Taran et al. 1993), combined with the Ni²⁺-content and absorber thickness of the present tourmaline, absorbance...
values of merely 0.03 are expected for these bands, which compares well with what is observed. Additional sharp absorption bands that were observed in the E[ε]-spectrum in the range 6700–7000 cm⁻¹ are attributed to overtones of the fundamental (OH)-stretching modes.

The relatively high intensity of the Fe³⁺ pair band at 20600 cm⁻¹ in combination with moderate intensities of the bands at 13900 and 8900 cm⁻¹ that are caused by Fe³⁺-enhanced spin-allowed d-d transitions in six-coordinated Fe³⁺ strongly suggest that ferric iron dominates over ferrous in the present sample. A low fraction of ferrous iron is also underlined by the absence of a Fe²⁺–Ti⁺ charge transfer band at 22000 cm⁻¹ (e.g., Taran et al. 1993) in the present optical absorption spectra, although the sample contains 0.41 wt. % TiO₂. Based on the molar absorption coefficient for the Fe³⁺ pair band at 20600 cm⁻¹ suggested by Mattson and Rossman (1984), the ferric iron content of the present tourmaline is calculated at 3.3 wt. % by Mattson and Rossman (1984), the ferric iron content of the present tourmaline is calculated at 3.3 wt. % Fe₂O₃. With a total iron content of 3.69 wt. % Fe₂O₃, as determined by electron microprobe analyses, the resulting Fe³⁺/Fe₂O₃ ratio becomes ~0.9, suggesting that the present tourmaline is indeed strongly oxidized. This is in keeping with the occurrence of hematite in close association with the studied tourmaline.

The brownish-orange color of the present tourmaline is determined mainly by a steep UV-absorption edge, which is caused mainly by the ligand to Fe³⁺ charge transfer processes, and by the relatively strong Fe³⁺ pair band absorption at 20600 cm⁻¹.

3.5. Determination of the number of atoms per formula unit (apfu)

In agreement with the structure-refinement results, the boron content was assumed to be stoichiometric (B³⁺ = 3.00 apfu). Both the site-scattering results and the bond lengths of B and T sites are consistent with the B site fully occupied by boron and no amount of B³⁺ at the T site (e.g., Bosi and Lucchesi 2007). The iron oxidation state was determined by OAS with Fe³⁺/Fe²⁺ = 0.9. In accordance with the OAS result and Fe and Mn redox potential arguments, all Mn was considered as Mn²⁺. Following Pesquera et al. (2016), the Li₁O content was assumed to be insignificant as MgO > 2 wt. % is contained in the sample studied. The (OH) content and the formula were then calculated by charge balance with the assumption T + Y + Z = 15 apfu and 31 anions. The excellent agreement between the number of electrons per formula unit (epfu) derived from electron microprobe analysis and structure refinement (241.6 and 241.1 epdfu, respectively) supports the stoichiometric assumptions.

4. Discussion

4.1. Crystal-chemistry of (Ni,Fe³⁺)-rich oxy-dravite

Following Henry et al. (2011), the empirical ordered formula of the studied sample is (with rounding errors)

\[\chi(Na_{0.92}Ca_{0.07}Mg_{0.01})_{3.01} \gamma(Mg_{2.01}Ni_{1.25}Fe^{3+}_{0.75})_{3.01} \delta(Ti_{1.00}Mn^{2+}_{0.05}Zn_{0.10})_{3.00} \]

\[\zeta(Al_{1.00}Mg_{0.35}Fe^{3+}_{0.65}Si_{0.50}BO_{3})_{3} \gamma(OH)_{3} F_{1.05} Cl_{0.05} \]

This ordered formula, used for classification purposes, indicates that the studied sample belongs to the alkali group, alkali-subgroup 1, since \(Y = R^{2+} \) and \(Z = R^{3+} \). The ratio between monovalent and divalent W-anions is 0.5, thus indicating that it is intermediate between a hydroxy- [(OH) > F] and an oxy-species. The prefix oxy- was preferred in naming it since the \(\delta \)O content is very close to be more than 0.5 apfu. Consequently, the studied sample can be classified as (Ni,Fe³⁺)-rich oxy-dravite. Among transition elements, in addition to Fe³⁺, Mn²⁺, V³⁺, Cr³⁺, and Ti³⁺, minor Zn²⁺ has also been observed.

The crystal-chemical formula was optimized using the method of Bosi et al. (2017): \(\chi(Na_{0.92}Ca_{0.07}Mg_{0.01})_{3.01} \gamma(Mg_{2.01}Ni_{1.25}Fe^{3+}_{0.75})_{3.01} \delta(Ti_{1.00}Mn^{2+}_{0.05}Zn_{0.10})_{3.00} \)

\[\zeta(Al_{1.00}Mg_{0.35}Fe^{3+}_{0.65}Si_{0.50}BO_{3})_{3} \gamma(OH)_{3} F_{1.05} Cl_{0.05} \]

The optimized cation site populations are also shown in Tab. 3, where their reliability is supported by mean atomic numbers and mean bond lengths, and weighted bond-valence sums reported in Tab. 4. It is worth noting that the \(\gamma \)O content calculated from the empirical equation of Bosi (2013), i.e.,

<table>
<thead>
<tr>
<th>Site</th>
<th>Site population</th>
<th>Mean atomic number</th>
<th>Mean bond length</th>
<th>Calc.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.92 Na + 0.07 Ca + 0.01 Mg</td>
<td>11.54(22)</td>
<td>11.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>1.21 Mg + 0.47 Ni²⁺ + 0.05 Mn²⁺ + 0.05 Zn + 0.80 Al</td>
<td>17.01(10)</td>
<td>17.06</td>
<td>2.01</td>
<td>2.024⁺</td>
</tr>
<tr>
<td>Z</td>
<td>5.00 Al + 0.16 Fe³⁺ + 0.80 Mg + 0.05 Fe²⁺</td>
<td>13.25(8)</td>
<td>13.31</td>
<td>1.930</td>
<td>1.932⁺</td>
</tr>
<tr>
<td>T</td>
<td>6.00 Si</td>
<td>14⁺</td>
<td>14.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3 B</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Calculated from the empirical ionic radii (in Å) of Bosi (2018): Al = 0.547, Fe⁴⁺ = 0.675, Fe³⁺ = 0.776, Mn²⁺ = 0.809, Zn = 0.740, V = 0.655, Cr = 0.615, Ti = 0.605; the mean T and Z anion radii are functions of constituent-anion radius (1.361 and 1.357 Å, respectively). The ionic radius of Ni²⁺ = 0.69 Å from Shannon (1976).

* Fixed in the final stages of refinement.

Obs. = observed; Calc. = calculated
Tab. 4 Weighted bond-valences (valence units, vu) for (Ni,Fe\(^{3+}\))-rich oxy-dravite.

<table>
<thead>
<tr>
<th>Site</th>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
<th>(T)</th>
<th>(B)</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>0.438(^{-1})→</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.314</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.160(^{-1})↑ 0.414(^{-2})→</td>
<td></td>
<td></td>
<td>1.029</td>
<td>2.017</td>
<td></td>
</tr>
<tr>
<td>O(3)</td>
<td>0.311 0.407(^{-2})→</td>
<td></td>
<td></td>
<td></td>
<td>1.125</td>
<td></td>
</tr>
<tr>
<td>O(4)</td>
<td>0.071(^{-1})↑</td>
<td>0.999(^{-2})→</td>
<td></td>
<td>2.068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)</td>
<td>0.087(^{-1})↑</td>
<td>0.957(^{-2})→</td>
<td></td>
<td>2.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(6)</td>
<td>0.422(^{-1})↓</td>
<td>0.517 0.105</td>
<td></td>
<td>1.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7)</td>
<td></td>
<td>0.506 0.438</td>
<td>1.056</td>
<td>2.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(8)</td>
<td></td>
<td>0.480 0.515</td>
<td></td>
<td>1.981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>0.952 2.421 2.862</td>
<td>4.066 3.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAV</td>
<td>1.060 2.426 2.859</td>
<td>4.000 3.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: weighted bond valence according to Bosi (2014). Bond-valences obtained from the bond-valence parameters of Gagné and Hawthorne (2015) for cations bonded to O\(^{2-}\) and from Brown and Altermatt (1985) for cations bonded to F\(^{-}\). MAV = Mean atomic valence.

\(^{a}\) Expected mean atomic valence (or formal charge) from the empirical crystal-chemical formula.

...Infrared spectroscopy is in accord with the occurrence of (OH) groups at the O(1) site (≡ W letter). It is known that the strength of the H-bond is related to a frequency shift in the principal (OH)-stretching vibration (e.g., Libowitzky 1999). In the tourmaline crystal structure, the (OH) group forms a very weak H-bond (bond strength < 0.05 valence units, vu) with O(4) and O(5), whereas the (OH) group forms a weak H-bond (bond strength ~ 0.11 vu) with the closest O(5) atom (e.g., Gatta et al. 2014). The different strengths of the H-bonds cause a frequency shift of the principal (OH)-stretching vibration (e.g., Libowitzky 1999). In the tourmaline crystal structure, the (OH) group forms a very weak H-bond (bond strength < 0.05 valence units, vu) with O(4) and O(5), whereas the (OH) group forms a weak H-bond (bond strength ~ 0.11 vu) with the closest O(5) atom (e.g., Gatta et al. 2014). The different strengths of the H-bonds cause a frequency shift of the principal (OH)-stretching vibration (e.g., Libowitzky 1999). Therefore, the relatively weak vibrational bands above 3600–3650 cm\(^{-1}\) may be assigned to the O(1) site, whereas the strong bands below 3600–3650 cm\(^{-1}\) may be assigned to the O(3) site (e.g., Gonzalez-Carreño et al. 1988; Bosi et al. 2015b). Based on previous studies (e.g., Skogby et al. 2012; Bosi et al. 2016; Watenphul et al. 2016) as well as on the observed site populations (Tab. 3), the FTIR bands of the studied tourmaline may be likely related to the following atomic arrangements:

i) \(\sim 3505\) cm\(^{-1}\) assigned to \((\text{Mg}^{2+}\text{Al}^-\text{Al}^-\text{Al}^-)^\text{O}(\text{OH})^-\text{X}\),

ii) \(\sim 3561\) cm\(^{-1}\) to \((\text{Mg}^{2+}\text{Al}^-\text{Al}^2\text{Al}^-)^\text{O}(\text{OH})^-\text{Y}\),

iii) \(\sim 3731\) cm\(^{-1}\) to \((\text{MgMgAl}^-\text{O}(\text{OH})^-\text{X}(\text{Na})\),

iv) \(\sim 3761\) cm\(^{-1}\) to \((\text{MgMgNi}^-\text{O}(\text{OH})^-\text{X}(\text{Na})\).

4.2. Nickel in tourmaline supergroup minerals

As briefly reported in the Introduction, nickel-bearing tourmaline supergroup minerals are relatively rare. They are usually related to meta-ultramafic rocks, where they are usually also enriched in Cr (e.g., Jan et al. 1972; Challis et al. 1995; Michailidis et al. 1995). Henry and Dutrow (2001) described dravite from a metamorphosed karstic bauxite occurring on Samos Island (Greece), having 3.53 wt. % NiO, corresponding to 0.47 Ni appfu. Baksheev and Kudryatszeva (2004) reported up to 3.96 wt. % Ni appfu (= 0.53 Ni appfu) from quartz-carbonate veins hosted in propylitized ultramafic rocks in the Berezovskoe Au deposit, Middle Urals, Russia. Oxy-dravite from the Artana Mn deposit has a Ni content similar to that reported by Henry and Dutrow (2001) and slightly lower than that of the Russian material.

A later structural investigation of the material from the Middle Urals finding, characterized by a lower amount of Ni (NiO = 1.10 wt. %, corresponding to 0.15 appfu), was performed by Hughes et al. (2011). It revealed a lowering of symmetry from trigonal \(R3m\) to triclinic \(P1\) due to non-equivalence at \(Y\) and \(Z\) sites. According to these authors, a first hint of the possible desymmetrization was observed during the refinement of the unit-cell parameters, yielding a \(\gamma\) angle of 119.742(3)°. However, in oxy-dravite from the Artana Mn prospect, such a deviation from the ideal cell was not observed: unconstrained unit-cell parameters, refined based on 8173 reflections in the 2\(\theta\) range between 6.38 and 62.98°, are \(a = 15.9410(11), b = 15.9307(11), c = 7.2048(5)\) \(\AA\), \(\alpha = 90.019(3), \beta = 90.031(3), \gamma = 119.982(2)\)°. Moreover, the calculated \(R_{int}\) value for trigonal symmetry is 0.0216 and for triclinic symmetry is 0.0181, a negligible difference. As a result, no evidence of lower symmetry in the diffraction data is provided, and hence the crystal structure of the present Ni-rich tourmaline is consistent with \(R3m\) symmetry.

Hughes et al. (2011) suggested that Ni was mainly hosted at one of the three symmetry-independent \(Y\) sites (0.112 appfu), whereas the remaining amount was disordered over three out of the six independent \(Z\) sites (0.033, 0.010, and 0.003 appfu). Studies on synthetic Ni-tourmalines suggested that Ni\(^{3+}\) was preferentially hosted at the \(Y\) site but that its actual distribution was related to its content. Synthetic tourmaline having ca. 5 wt. % NiO (= 0.81 Ni appfu) has Ni\(^{3+}\) at the \(Y\) site, whereas for higher contents (ca. 13.5 and 19 wt. % NiO, corresponding to 2.40 and 2.94 Ni appfu) Ni\(^{3+}\) occupies both the \(Y\) and \(Z\) sites (Rozhdestvenskaya et al. 2012; Vereshchagin et al. 2015). The Italian sample studied...
in this work has a NiO content of 3.46 wt. %, with Ni ordered at the Y site (Tab. 3), in line with previous results on synthetic tourmalines and theoretical studies (e.g., Hughes et al. 2011; Rozhdestvenskaya et al. 2012; Vereshchagin et al. 2015; Bačík and Fridichová 2021).

4.3. Genesis of (Ni,Fe$^{3+}$)-rich oxy-dravite

The high Ni content measured in oxy-dravite from the Artana Mn prospect was unsuspected since previous findings of Ni-bearing tourmaline supergroup minerals were reported from metamorphosed ultramafic rocks or from metabauxites (e.g., Henry and Dutrow 2001; Baksheev and Kudryatseva 2004). Such rocks do not occur in the Artana area, where the Marble formation crops out, along with pelagic cherty met limestone. The Marble formation is formed by platform met limestone; at its top, karstic dykes and sills were reported by some authors (e.g., Boccaletti et al. 1981; Fazzuoli and Squazzoni 1981; Molli and Meccheri 2012). In particular, Molli and Meccheri (2012) pointed out the occurrence of Jurassic structures likely representing the expression of a fault zone related to the rifting stage and the drowning of the Early Jurassic carbonate platform, in some cases associated with structures interpreted as due to syn-sedimentary fault activity. In similar environments, Fe–Mn crusts have been described. For instance, Sulli and Interbartolo (2016) reported Fe–Mn concentrations at the top of the carbonate platform in central Western Sicily (Italy), before the onset of pelagic sediments. According to them, the occurrence of Mn may be related to submarine fault-controlled hydrothermal vents.

Iron–manganese crusts are usually enriched in several transition elements, like Ni (e.g., Jenkins 1970; Usui 1979). Unfortunately, no geochemical data are currently available for the Artana Mn ore minerals. However, two other Mn mineralizations occurring in the Apuan Alps show a Ni-enrichment. The first one, studied by Franceschelli et al. (1996) and located in the Monte Corchia area, is hosted in a lower stratigraphic level (i.e., the Norian Breccia di Seravezza Formation) than that where the Artana Mn mineralization occurs. Several transition elements are enriched in the Mn-rich rocks, the most abundant ones being represented by Cu (up to 2967 μg/g) and Ni (up to 744 μg/g). Another Mn-rich outcrop, whose stratigraphic position has not been clearly constrained, is located in the upper part of the Monte Arsiccio mine, where some lenses of Mn-oxides are embedded in metadolostone; in this occurrence, gersdorffite, NiAsS, and its oxidation product annabergite, Ni$_2$(AsO$_4$)$_3$·8H$_2$O, have been identified, thus supporting a Ni-rich environment. Likely, Ni measured in oxy-dravite from the Artana Mn prospect was sourced by the Alpine recrystallization of the Mn ores occurring at the top of the Marble Form-

5. Conclusions

Nickel- and Fe$^{3+}$-rich oxy-dravite from the Artana Mn prospect (Apuan Alps) is the fourth well-characterized non-pegmatitic tourmaline supergroup minerals from Tuscany. Along with the recently approved new minerals dutrowite (Biagioni et al. 2020), uvite (Bosi et al. 2022b), and magnesio-lucchesiite (Scribner et al. 2021), it suggests that further crystal-chemical investigations on the many tourmaline occurrences from this Italian sector may be able to improve the tourmaline systematics and our understanding of its crystal chemistry. Moreover, the studied sample is one of the Ni-richest so far described and it occurs in a different geological setting concerning the previously-known occurrences for Ni-bearing tourmalines. On one side, this finding clearly indicates that a careful geochemical study may be desirable for a better knowledge of the geological evolution of the small Mn ore deposit located at the top of the Marble Formation, providing new insights into the geological evolution of the northern Apennines; on the other side it testify, once again, the capability of these cyclosilicates rich in B to record the geochemistry of the crystallizing environments, in agreement with previous studies (e.g., Dutrow and Henry 2011).

Acknowledgments: A. Criscuolo is acknowledged for field assistance. Funding by Sapienza University of Rome (Prog. Università 2020 to F.B.) is gratefully acknowledged. C.B. and F.B. acknowledge funding by the Ministero dell'Istruzione, dell'Università e della Ricerca through the project PRIN 2020 “HYDROX – HYDRous-OXo-components in minerals: adding new pieces to the Earth’s H$_2$O cycle puzzle”, prot. 2020WYL4NY. The editorial handling of Jan Cempírek and the comments of Peter Bačík and Aaron J. Lussier improved the original manuscript.

Electronic supplementary material. Crystallographic information file (CIF) is available online at the Journal web site (http://dx.doi.org/10.3190/jgeosci.346).

References

Bosi F, Skogby H, Lazor P, Reznitskii L (2015b) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-

Fellin MG, Reiners PW, Brandon MT, Wü thrich E,

geological evolution of the basement of the Adria plate. Lithos 318–319: 104–123

