Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original Paper

Carlos Villaseca, Cecilia Pérez-Soba, Enrique M. Merino, David Orejana, José A. López-García, Kjel Billstrom

Contrasted crustal sources for peraluminous granites of the segmented Montes de Toledo Batholith (Iberian Variscan Belt)

Journal of Geosciences, volume 53 (2008), issue 3-4, 263 - 280

DOI: http://doi.org/10.3190/jgeosci.035


  Abstract References

Ábalos B, Carreras J, Druguet E, Escuder J, Gómez-Pugnaire MT, Lorenzo Álvarez S, Quesada C, Rodríguez-Fernández R, Gil-Ibarguchi JI (2002) Variscan and Pre-Variscan tectonics. In: Gibbons W, Moreno T (eds) The Geology of Spain. Geol Soc London, pp 155-183
http://doi.org/10.1144/GOSPP.9

Abdel-Rahman A-F M (1994) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. J Petrol 35: 525-541
http://doi.org/10.1093/petrology/35.2.525

Andonaegui P (1990) Geochemistry and Geochronology of the Granitoids South of Toledo. Unpublished PhD. Thesis, Complutense University, Madrid, pp 1-357 (in Spanish)

Andonaegui P, Barrera JL (1984) Petrology of two peraluminous granite series from Valdeverdeja-Aldeanueva de Barbarroya (Toledo). Bol Geol Min España 95: 165-183 (in Spanish)

Andonaegui P, Villaseca C (1998) Granites from the Mora-Gálvez Pluton (Toledo): an example of evolution by crystal fractionation. Bol R Soc Española Hist Nat 94: 17-31 (in Spanish)

Barbero L, Villaseca C (1992) The Layos granite, Hercynian complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area. Trans Roy Soc Edinb, Earth Sci 83: 127-138
http://doi.org/10.1017/S0263593300007811

Barrera JL, Bellido F, Klein E (1985) Contact metamorphism in synkinematic two-mica granites produced by younger granitic intrusions. Geol Mijnbouw 64: 413-422

Bea F, Fershtater G, Corretgé LG (1992) The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos 29: 43-56
http://doi.org/10.1016/0024-4937(92)90033-U

Bea F, Pereira MD, Corretgé LG, Fershtater GB (1994) Differentiation of strongly peraluminous, perphosphorous granites: the Pedrobernardo Pluton, central Spain. Geochim Cosmochim Acta 58: 2609-2627
http://doi.org/10.1016/0016-7037(94)90132-5

Bea F, Montero P, Molina JF (1999) Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: a model for the generation of Variscan batholiths in Iberia. J Geol 107: 399-419
http://doi.org/10.1086/314356

Bea F, Montero P, Zinger T (2003) The nature, origin, and thermal influence of the granite source layer of Central Iberia. J Geol 111: 579-595
http://doi.org/10.1086/376767

Beetsma JJ (1995) The late Proterozoic/Paleozoic and Hercynian crustal evolution of the Iberian Massif, N Portugal, as traced by geochemistry and Sr-Nd-Pb isotope systematics of pre-Hercynian terrigenous sediments and Hercynian granitoids. Unpublished PhD.Thesis, Vrije Universiteit, Amsterdam, the Netherlands, pp 1-223

Capdevila R, Corretgé LG, Floor P (1973) Les granitoides Varisques de la Meseta Ibérique. Bull Soc Géol France 15: 209-228
http://doi.org/10.2113/gssgfbull.S7-XV.3-4.209

Castro A, Patiño-Douce A, Corretgé LG, De la Rosa J, El-Biad M, El-Hmidi H (1999) Origin of peraluminous granites and granodiorites, Iberian Massif, Spain: an experimental test of granite petrogenesis. Contrib Mineral Petrol 135: 255-276
http://doi.org/10.1007/s004100050511

Castro A, Corretgé LG (2002) Variscan granites. In: Gibbons W, Moreno T (eds) The Geology of Spain. Geol Soc London, pp 129-136

Chappell BW, White AJR, Wyborn D (1987) The importance of residual material (restite) in granite petrogenesis. J Petrol 28: 1111-1138
http://doi.org/10.1093/petrology/28.6.1111

Chappell BW, White AJR, Williams IS (1991) A transverse section through granites of the Lachlan Fold Belt. Second Hutton Symposium Excursion Guide. ABMR Record 1991/22, Canberra, pp 1-125

Clarke DB, Dorais M, Barbarin B, Barker D, Cesare B, Clarke G, El Baghdadi M, Erdmann S, Förster H-J, Gaeta M, Gottesmann B, Jamieson RA, Kontak DJ, Koller F, Gomes CL, London D, Morgan VI GB, Neves LJPF, Pattison DRM, Pereira AJSC, Pichavant M, Rapela CW, Renno AD, Richards S, Roberts M, Rottura A, Saavedra J, Sial AN, Toselli AJ, Ugidos JM, Uher P, Villaseca C, Visonà D, Whitney DL, Williamson B, Woodard HH (2005) Occurrence and origin of andalusite in peraluminous felsic igneous rocks. J Petrol 46: 441-472
http://doi.org/10.1093/petrology/egh083

Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Canad Mineral 10: 111-131

D’Amico C, Rottura A, Bargossi GM, Nannetti MC (1981) Magmatic genesis of andalusite in peraluminous granites. Examples from Eisgarn type granites in Moldanubicum. Rend Soc Italiana Mineral Petrol 38: 15-25

Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks associations. Trans Roy Soc Edinb, Earth Sci 73: 135-149
http://doi.org/10.1017/S0263593300010117

Dias G, Leterrier J (1994) The genesis of felsic-mafic plutonic associations: a Sr and Nd isotopic study of the Hercynian Braga Granitoids Massif (Northern Portugal). Lithos 32: 207-223
http://doi.org/10.1016/0024-4937(94)90040-X

Dias G, Leterrier J, Mendes A, Simões PP, Bertrand JM (1998) U-Pb zircon and monazite geochronology of syn- to post-tectonic Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 45: 349-369
http://doi.org/10.1016/S0024-4937(98)00039-5

Erdmann S, Clarke DB, MacDonald MA (2004) Origin of chemically zoned and unzoned cordierites from the South Mountain and Musquodoboit batholiths. Trans Roy Soc Edinb, Earth Sci 95: 99-110
http://doi.org/10.1017/S0263593304000112

Fernández-Catuxo J, Corretgé LG, Suárez O (1995) Influence of minor elements on the stability of andalusite in granitic rocks from the Iberian Massif. Bol Soc Española Mineral 18: 55-71 (in Spanish)

Fernández-Suárez J, Dunning GR, Jenner GA, Gutiérrez-Alonso G (2000) Variscan collisional magmatism and deformation in NW Iberia: constraints from U-Pb geochronology of granitoids. J Geol Soc, London 157: 565-576
http://doi.org/10.1144/jgs.157.3.565

Fernández C, Becchio R, Castro A, Viramonte JM, Moreno-Ventas I, Corretgé LG (2008) Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: implications for cold plumes and back-arc magma generation. Gondwana Res 14: 451-473
http://doi.org/10.1016/j.gr.2008.04.001

Gallego M (1992) Las mineralizaciones de litio asociadas a magmatismo ácido en Extremadura y su encuadre en la zona Centro-Ibérica. Unpublished PhD. Thesis, Complutense University, Madrid, pp 1-323 (in Spanish)

García-Moreno O, Corretgé LG, Castro C (2007) Processes of assimilation in the genesis of cordierite leucomonzogranites from the Iberian Massif: a short review. Canad Mineral 45: 71-85
http://doi.org/10.2113/gscanmin.45.1.71

Green TH (1976) Experimental generation of cordierite- or garnet-bearing liquids from a pelitic starting composition. Geology 4: 85-88
http://doi.org/10.1130/0091-7613(1976)4<85:EGOCGG>2.0.CO;2

Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48: 2469-2482
http://doi.org/10.1016/0016-7037(84)90298-9

Hassan Mohamud A, Casquet C, Pérez del Villar L, Cozar J, Pellicer MJ (2002) High temperature hydrothermal fibrolite in “El Payo granite” Cadalso-Casillas de Flores granitic complex (Salamanca-Cáceres, Spain). Geogaceta 32: 23-26

IGME (1985) Spanish Geological Map, Sheet nº 653, Valdeverdeja. Serv Publ Minist Industria, Madrid.

IGME (1987) Spanish Geological Map, Sheet nº 652, Jaraicejo. Serv Publ Minist Industria, Madrid.

IGME (1989) Spanish Geological Map, Sheet nº 654, El Puente del Arzobispo. Serv Publ ITGE, Madrid.

Johannes W, Holtz F (1996) Petrogenesis and Experimental Petrology of Granitic Rocks. Springer-Verlag, Berlin, pp 1-335

Kemp AIS, Hawkesworth CJ (2003) Granitic perspectives on the generation and secular variation of the continental crust. In: Rudnick RL (ed) The Crust, vol. 3 Treatise of Geochemistry. Elsevier-Pergamon, Oxford, pp 349-410

Kerrick DM (1990) The Al2SiO5 polymorphs. Mineralogical Society of America Reviews in Mineralogy 22, pp 1-406
http://doi.org/10.1515/9781501509094

Kerrick DM, Speer JA (1988) The role of minor element solid solution on the andalusite-sillimanite equilibrium in metapelites and peraluminous granitoids. Amer J Sci 288: 152-192
http://doi.org/10.2475/ajs.288.2.152

Liñán E, Gozalo R, Palacios T, Gámez-Vintaned JA, Ugidos JM, Mayoral E (2002) Cambrian. In: Gibbons W, Moreno T (eds) The Geology of Spain. Geol Soc London, pp 17-29
http://doi.org/10.1144/GOSPP.3

London D (2008) Pegmatites. Canad Mineral Spec Publ 10, pp 1-347

London D, Wolf MB, Morgan GB-VI, Gallego M (1999) Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz, Spain. J Petrol 40: 215-240
http://doi.org/10.1093/petrology/40.1.215

López Plaza M, López Moro FJ (2003) The Tormes Dome. Eurogranites in western Castilla y León. Guide Book, pp 1-192

Manning DAL, Pichavant M (1983) The role of fluorine and boron in the generation of granitic melts. In: Atherton MP, Gribble CD (eds) Migmatites, Melting and Metamorphism, Shiva, Nantwich, pp 94-109

Menéndez LG, Bea F (2004) The Nisa-Alburquerque batholith. In: Vera JA (ed) Geology of Spain, IGME-SGE, Madrid, pp 120-122 (in Spanish)

Miller CF, Stoddar EF, Bradfish LJ, Dollase WA (1981) Composition of plutonic muscovite: genetic implications. Canad Mineral 19: 25-34

Moreno Ventas I, Rogers G, Castro A (1995) The role of hybridization in the genesis of Hercynian granitoids in the Gredos Massif, Spain: inferences from Sr-Nd isotopes. Contrib Mineral Petrol 120: 137-149
http://doi.org/10.1007/BF00287111

Nachit H, Razafimahefa N, Stussi JM, Carron JP (1985) Composition chimique des muscovites et feldspaths potassiques dans les leucogranite du massif de Millesvaches (Massif Central Français). Comptes Rendus Acad Sci Paris 301: 813-818

Neiva AMR (1998) Geochemistry of highly peraluminous granites and their minerals between Douro and Tamega valleys, northern Portugal. Chem Erde 58: 161-184

Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scotland. Amer Miner 86: 1414-1422
http://doi.org/10.2138/am-2001-11-1210

Pichavant M, Kontak DJ, Herrera JV, Clark AH (1988) The Miocene-Pliocene Macusani Volcanics, SE Peru. I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib Mineral Petrol 100: 300-324
http://doi.org/10.1007/BF00379741

Pichavant M, Montel JM, Richard LR (1992) Apatite solubility in peraluminous liquids: experimental data and extension of the Harrison-Watson model. Geochim Cosmochim Acta 56: 3855-3861
http://doi.org/10.1016/0016-7037(92)90178-L

Ramírez JA, Menéndez LG (1999) A geochemical study of two peraluminous granites from south-central Iberia: the Nisa-Alburquerque and Jalama batholiths. Canad Mineral 63: 85-104

Reyes J, Villaseca C, Barbero L, Quejido AJ, Santos Zalduegui JF (1997) Description of a Rb, Sr, Sm and Nd separation method for silicate rocks in isotopic studies. I Congr Iber Geoquim Abstract Vol, pp 46-55 (in Spanish)
http://doi.org/10.1016/S0024-4937(98)00002-4

Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminium silicate triple point. Amer J Sci 267, 259-272
http://doi.org/10.2475/ajs.267.3.259

Rodríguez-Alonso MD, Peinado M, López-Plaza M, Franco P, Carnicero A, Gonzalo JC (2004) Neoproterozoic-Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): geology, petrology and geodynamic significance. Int J Earth Sci 93: 897-920
http://doi.org/10.1007/s00531-004-0425-4

Rossi JN, Toselli AJ, Saavedra J, Sial AN, Pellitero E, Ferreira VP (2002) Common crustal sources for contrasting peraluminous facies in the early Paleozoic Capillitas Batholith, NW Argentina. Gondwana Res 5: 325-337
http://doi.org/10.1016/S1342-937X(05)70726-7

Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The Crust, vol. 3 Treatise of Geochemistry. Elsevier-Pergamon, Oxford, pp 1-64

Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (ed) Magmatism in the Ocean Basins. Geol Soc London Spec Publ 42: 313-345
http://doi.org/10.1144/GSL.SP.1989.042.01.19

Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45: 29-44
http://doi.org/10.1016/S0024-4937(98)00024-3

Ugidos JM, Valladares MI, Recio C, Rogers G, Fallick AE, Stephens WE (1997) Provenance of Upper Precambrian-Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study. Chem Geol 136: 55-70
http://doi.org/10.1016/S0009-2541(96)00138-6

Valladares MI, Barba P, Ugidos JM (2002) Precambrian. In: Gibbons W, Moreno T (eds) The Geology of Spain. Geol Soc London, pp 7-16
http://doi.org/10.1144/GOSPP.2

Villaseca C, Barbero L (1994) Chemical variability of Al-Ti-Fe-Mg minerals in peraluminous granitoid rocks from central Spain. Eur J Mineral 6: 691-710
http://doi.org/10.1127/ejm/6/5/0691

Villaseca C, Herreros V (2000) A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System. Trans Roy Soc Edinb, Earth Sci 91: 207-219
http://doi.org/10.1017/S0263593300007380

Villaseca C, Barbero L, Rogers G (1998a) Crustal origin of Hercynian peraluminous granitic batholiths of central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 43: 55-79
http://doi.org/10.1016/S0024-4937(98)00002-4

Villaseca C, Barbero L, Herreros V (1998b) A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Trans R Soc Edinb, Earth Sci 89: 113-119
http://doi.org/10.1017/S0263593300007045

Villaseca C, Downes H, Pin C, Barbero L (1999) Nature and composition of the lower continental crust in central Spain and the granulite-granite linkage: inferences from granulite xenoliths. J Petrol 40: 1465-1496
http://doi.org/10.1093/petrology/40.10.1465

Villaseca C, Orejana D, Paterson BA, Billstrom K, Pérez-Soba C (2007) Metaluminous pyroxene-bearing granulite xenoliths from the lower continental crust in central Spain: their role in the genesis of Hercynian I-type granites. Eur J Mineral 19: 463-477
http://doi.org/10.1127/0935-1221/2007/0019-1746

Visonà D, Lombardo B (2002) Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos 62: 125-150
http://doi.org/10.1016/S0024-4937(02)00112-3

Wolf MB, London D (1994) Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochim Cosmochim Acta 58: 4127-4145
http://doi.org/10.1016/0016-7037(94)90269-0

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943