Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original Paper

Argyrios N. Kapsiotis

Origin of mantle peridotites from the Vourinos Ophiolite Complex, Greece, as deduced from Cr-spinel morphological and chemical variations

Journal of Geosciences, volume 58 (2013), issue 3, 217 - 231

DOI: http://doi.org/10.3190/jgeosci.144


  Abstract References Affiliations

Ahmed AH, Arai S (2002) Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman Ophiolite and its tectonic implications. Contrib Mineral Petrol 143: 263-278
http://doi.org/10.1007/s00410-002-0347-8

Ahmed AH, Arai S, Attia AK (2001) Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic Ophiolite Complexes of Egypt. Miner Depos 36: 72-84
http://doi.org/10.1007/s001260050287

Andal ES, Arai S, Yumul GP (2005) Complete mantle section of a slow-spreading ridge-derived ophiolite: an example from the Isabela Ophiolite in the Philippines. Island Arc 14: 272-294
http://doi.org/10.1111/j.1440-1738.2005.00471.x

Arai S (1980) Dunite-harzburgite-chromitite complexes as refractory residue in the Sangun-Yamaguchi Zone, western Japan. J Petrol 21: 141-165
http://doi.org/10.1093/petrology/21.1.141

Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56: 173-184
http://doi.org/10.1180/minmag.1992.056.383.04

Arai S (1994a) Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem Geol 113: 191-204
http://doi.org/10.1016/0009-2541(94)90066-3

Arai S (1994b) Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. J Volcanol Geotherm Res 59: 279-293
http://doi.org/10.1016/0377-0273(94)90083-3

Arif M, Jan MQ (2006) Petrotectonic significance of the chemistry of chromite in the ultramafic-mafic complexes of Pakistan. J Asian Earth Sci 27: 628-646
http://doi.org/10.1016/j.jseaes.2005.06.004

Bailey EH, Kemp AJ, Ragnarsdottija KV (1993) Determination of uranium and thorium in basalts and uranium in aqueous solution by inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 8: 551-556
http://doi.org/10.1039/ja9930800551

Beccaluva L, Ohnenstetter D, Ohnenstetter M, Paupy A (1984) Two magmatic series with island arc affinities within the Vourinos Ophiolites. Contrib Mineral Petrol 85: 253-271
http://doi.org/10.1007/BF00378104

Beccaluva L, Coltorti M, Saccani E, Siena F (2005) Magma generation and crustal accretion as evidenced by supra-subduction ophiolite of the Albanide-Hellenide Subpelagonian Zone. Island Arc 14: 551-563
http://doi.org/10.1111/j.1440-1738.2005.00483.x

Bédard JH, Hébert R (1998) Formation of chromitites by assimilation of crustal pyroxenites and gabbros into peridotite intrusions: North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland, Canada. J Geophys Res 103: 5165-5184
http://doi.org/10.1029/97JB03291

Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165: 67-85
http://doi.org/10.1016/S0009-2541(99)00164-3

Brunn JH (1956) Contribution à l’ étude géologique du Pinde septentrional et d’ une partie de la Macédoine occidentale. Ann Géol Pays Hell 7: 358

Crawford AJ, Faloon TJ, Green TH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites and Related Rocks, Unwin Hyman, London, pp 1-49

Dai JG, Wang C-S, Hébert R, Santosh M, Li Y-L, Xu J-Y (2011) Petrology and geochemistry of peridotites in the Zongba Ophiolite, Yarlung Zangbo Suture Zone: implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chem Geol 288: 133-148
http://doi.org/10.1016/j.chemgeo.2011.07.011

De Hoog JCM, Janák M, Vrabec M, Froitzheim N. (2008) Serpentinised peridotites from an ultrahigh-pressure terrane in the Pohorje Mts. (Eastern Alps, Slovenia): geochemical constraints on petrogenesis and tectonic setting. Lithos 109: 209-222
http://doi.org/10.1016/j.lithos.2008.05.006

Delavari M, Amini S, Saccani E, Beccaluva L (2009) Geochemistry and petrogenesis of mantle peridotites from the Nehbandan Ophiolitic Complex, Eastern Iran. J Appl Sci 15: 2671-2687
http://doi.org/10.3923/jas.2009.2671.2687

Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86: 54-76
http://doi.org/10.1007/BF00373711

Dijkstra AH, Drury M, Mason PRD, Vissers RLM (2001) Structural petrology of plagioclase peridotites in the West Othris Mountains (Greece): melt impregnation in mantle lithosphere. J Petrol 42: 5-24
http://doi.org/10.1093/petrology/42.1.5

Dijkstra AH, Drury MR, Vissers RVM, Newman J (2002) On the role of melt-rock reaction in mantle shear zone formation in the Othris Peridotite Massif (Greece). J Struct Geol 24: 1431-1450
http://doi.org/10.1016/S0191-8141(01)00142-0

Ghikas C (2007) Structure and tectonics of a subophiolitic mélange (Zavordas mélange) of the Vourinos Ophiolite (Greece) and kinematics of ophiolite emplacement. Unpublished MSci thesis, Miami University, Oxford, Ohio, pp 1-121

Ghikas C, Dilek Y, Rassios AE (2009) Structure and tectonics of subophiolitic mélanges in the western Hellenides (Greece): implications for ophiolite emplacement tectonics. Int Geol Rev 52: 423-453
http://doi.org/10.1080/00206810902951106

Godard M, Jousselin D, Bodinier JL (2000) Relationships between geochemistry and structure beneath a paleo-spreading centre: a study of the mantle section in the Oman Ophiolite. Earth Planet Sci Lett 180: 133-148
http://doi.org/10.1016/S0012-821X(00)00149-7

Godard M, Lagabrielle Y, Alard O, Harvey J (2008) Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth Planet Sci Lett 267: 410-425
http://doi.org/10.1016/j.epsl.2007.11.058

González-Jimenéz JM, Proenza JA, Gervilla F, Melgarejo JC, Blanco-Moreno JA, Ruiz-Sánchez R, Griffin WL (2011) High-Cr and High-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal Ophiolitic Massif (eastern Cuba): constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 125: 101-121
http://doi.org/10.1016/j.lithos.2011.01.016

Grammatikopoulos TA, Kapsiotis A, Tsikouras B, Hatzipanagiotou K, Zaccarini F, Garuti G (2011) Spinel composition, PGE geochemistry and mineralogy of the chromitites from the Vourinos Ophiolite Complex, northwestern Greece. Canad Mineral 49: 1571-1598
http://doi.org/10.3749/canmin.49.6.1571

Grieco G, Merlini A (2011) Chromite alteration processes within Vourinos Ophiolite. Int J Earth Sci 101: 1523-1533
http://doi.org/10.1007/s00531-011-0693-8

Harkins M, Green H, Moores E (1980) Multiple intrusive events documented from the Vourinos Ophiolite Complex, northern Greece. Amer J Sci 280: 284-290

Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicator of the extent of melting in mid-ocean-ridge peridotites. Nature 410: 677-681
http://doi.org/10.1038/35070546

Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Mariana fore-arc, Leg 125. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of the Ocean Drilling Program, Scientific Results, College Station 125: 445-485

Ismail SA, Arai S, Ahmed AH, Shimizu Y (2009) Chromitite and peridotite from Rayat, northeastern Iraq, as fragments of Tethyan Ophiolite. Island Arc 18: 175-183
http://doi.org/10.1111/j.1440-1738.2008.00647.x

Juteau T, Berger E, Cannat M (1990) Serpentinized, residual mantle peridotites from the M.A.R. median valley, ODP hole 670A (21° 10'N, 45° 02'W): primary mineralogy and geothermometry. In: Detrick R, Honnorez J, Bryan WB, Juteau T (eds) Proceedings of the Ocean Drilling Program, Scientific Results, College Station 106 (109): 27-45

Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42: 655-671
http://doi.org/10.1093/petrology/42.4.655

Kapsiotis A (2009) PGM and chromite mineralization associated with the petrogenesis of the Vourinos and Pindos Ophiolite Complexes, northwestern Greece. Unpublished Ph.D. thesis, University of Patras, Patras, Greece, pp 1-891

Kapsiotis A, Tsikouras B, Karipi S, Grammatikopoulos T, Hatzipanagiotou K (2009) Petrogenesis and geotectonic significance of mantle peridotites from the Vourinos Ophiolite Complex (northern Greece). In: Montanini A, Piccardo GB, Tribuzio R (eds) Alpine Ophiolites and Modern Analogues, Continental Rifting to Oceanic Lithosphere: Insights from the Alpine Ophiolites and Modern Oceans. Abstracts, Parma, 37-38

Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358: 635-641
http://doi.org/10.1038/358635a0

Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean ridge basalt from the upwelling mantle by focused melt in dunite channels. Nature 375: 747-753
http://doi.org/10.1038/375747a0

Kelemen PB, Hirth G, Shimizu N, Spielgelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Trans Roy Soc Lond 355: 283-318
http://doi.org/10.1098/rsta.1997.0010

Khalil AES, Azer MK (2008) Supra-subduction affinity in the Neoproterozoic serpentinites in the Eastern Desert, Egypt: evidence from mineral composition. J Afr Earth Sci 49: 136-152
http://doi.org/10.1016/j.jafrearsci.2007.08.002

Kubo K (2002) Dunite formation processes in highly depleted peridotite: case study of the Iwanaidake peridotite, Hokkaido, Japan. J Petrol 43: 423-448
http://doi.org/10.1093/petrology/43.3.423

Leblanc M, Dupuy C, Cassard D, Moutte J, Nicolas A, Prinzhofer A, Rabinovitch M, Routhier P (1980) Essai sur la genèse des crops podiformes de chromitite dans les péridotites ophiolitiques: Étude des chromites de Nouvelle-Calédonie et comparaison avec celles de Méditerranée orientale. In: Panayiotou A (eds) Ophiolites. Geological Survey Department, Nicosia, Cyprus, pp 691-701

Le Roux V., Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259: 599-612
http://doi.org/10.1016/j.epsl.2007.05.026

Lewis AJ, Palmer MR, Sturchio NC, Kemp AJ (1997) The rare earth element geochemistry of acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta 61: 695-706
http://doi.org/10.1016/S0016-7037(96)00384-5

Li CN (1992) Trace-element petrology of igneous rocks. China University of Geosciences Press, Wuhan, pp 1-87

Liati A, Gebauer D, Fanning CM (2004) The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion microprobe (SHRIMP) zircon ages. Chem Geol 207:171-188
http://doi.org/10.1016/j.chemgeo.2004.02.010

Matsumoto I, Arai S (2001) Morphological and chemical variations of chromian spinel in dunite-harzburgite complexes from the Sangun Zone (SW Japan): implications for mantle/melt reaction and chromitite formation processes. Mineral Petrol 73: 305-323
http://doi.org/10.1007/s007100170004

Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Plan Sci Lett 203: 235-243
http://doi.org/10.1016/S0012-821X(02)00860-9

McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle; geochemical constraints. Geochim Cosmochim Acta 58: 4717-4738
http://doi.org/10.1016/0016-7037(94)90203-8

McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120: 223-253
http://doi.org/10.1016/0009-2541(94)00140-4

Mercier JCC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16: 454-487
http://doi.org/10.1093/petrology/16.2.454

Michibayashi K, Ohara Y, Stern RJ, Fryer P, Kimura JI, Tasaka M, Harigane Y, Ishii T (2009) Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana Trench: Results of a Shinkai 6500 dive. Geochem Geophys Geosyst 10: 1-17, doi: 10.1029/2008GC002197
http://doi.org/10.1029/2008GC002197

Mikuš T, Spišiak J (2007) Chemical composition and alteration of Cr-spinels from Meliata and Penninic serpentinized peridotites (Western Carpathians and Eastern Alps). Geol Quart 51: 257-270

Moores EM (1969) Petrology and Structure of the Vourinos Ophiolitic Complex of Northern Greece. Geological Society of America Special Papers 118: pp 3-66
http://doi.org/10.1130/SPE118-p3

Murray CG (2007) Devonian supra-subduction zone setting for the Princhester and Northumberland serpentinites: implications for the tectonic evolution of the northern New England Orogen. Aus J Earth Sci 54: 899-925
http://doi.org/10.1080/08120090701392747

Myhill R (2011) Constraints on the evolution of the Mesohellenic Ophiolite from subophiolitic metamorphic rocks. In: Wakabayashi J, Dilek Y (eds) Mélanges: Processes of Formation and Societal Significance. Geological Society of America Special Papers 480: 75-94
http://doi.org/10.1130/2011.2480(03)

Navon O, Stopler E (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95: 285-307
http://doi.org/10.1086/629131

Nicolas A (1989) Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Kluwer Academic, Dordrecht, pp 1-367

Nicolas A, Poirier J (1976) Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. Wiley, New York, pp 1-444

Ntaflos T, Bjerg EA, Labudia CH, Kurat G (2007) Depleted lithosphere from the mantle wedge beneath Tres Lagos, Southern Patagonia, Argentina. Lithos 94: 46-65
http://doi.org/10.1016/j.lithos.2006.06.011

O’Driscoll B, Day JMD, Walker RJ, Daly S, McDonough W, Piccoli PM (2012) Chemical heterogeneity in the upper mantle recorded by peridotites and chromitites from the Shetland Ophiolite Complex, Scotland. Earth Plan Sci Lett 333-334: 226-237
http://doi.org/10.1016/j.epsl.2012.03.035

Ohara Y, Ishii T (1998) Peridotites from the southern Mariana forearc: heterogeneous fluid supply in the mantle wedge. Island Arc 7: 541-558
http://doi.org/10.1111/j.1440-1738.1998.00209.x

Okamura H, Arai S, Kim YU (2006) Petrology of fore-arc peridotite from the Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical characteristics of chromian spinel. Mineral Mag 70: 15-26
http://doi.org/10.1180/0026461067010310

Ozawa K (1989) Stress-induced Al-Cr zoning of spinel in deformed peridotites. Nature 338: 141-144
http://doi.org/10.1038/338141a0

Parkinson IJ, Pearce JA (1998) Peridotites from the Izu-Bonin-Mariana fore-arc (ODP Leg125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J Petrol 39: 1577-1618
http://doi.org/10.1093/petroj/39.9.1577

Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu-Bonin-Mariana fore-arc, Leg 125. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of the Ocean Drilling Program, Scientific Results, College Station 125: 487-506

Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139: 36-53
http://doi.org/10.1007/s004100050572

Rassios A, Dilek Y (2009) Rotational deformation in the Jurassic Mesohellenic Ophiolites, Greece, and its tectonic significance. Lithos 108: 207-223
http://doi.org/10.1016/j.lithos.2008.09.005

Rassios A, Moores EM (2006) Heterogeneous mantle complex, crustal processes, and obduction kinematics in a unified Pindos-Vourinos Ophiolitic slab (northern Greece). In: Robertson AHF, Mountrakis D (eds) Tectonic Development of the Eastern Mediterranean Region. Geological Society of London, Special Publications, 260: 237-266
http://doi.org/10.1144/GSL.SP.2006.260.01.11

Rassios A, Smith AG (2000) Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos and Othris) inferred from deformation structures in peridotites. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and Ocean Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America, Special Papers 349: 473-483
http://doi.org/10.1130/0-8137-2349-3.473

Rassios A, Grivas E, Konstantopoulou G, Vacondios I (1994) The geometry of structures forming around the ductile-brittle transition in the Vourinos-Pindos-Othris oceanic slab. Geol Soc Greece Bull 2: 109-121

Roberts S, Rassios A, Wright L, Vacondios I, Vrachatis G, Grivas E, Nesbitt RW, Neary CR, Moat T, Konstantopolou G (1988) Structural controls on the location and form of the Vourinos chromite deposits. In: Boissonas J, Omenetto P (eds) Mineral Deposits Within the European Community. Springer-Verlag, Berlin, pp 249-266
http://doi.org/10.1007/978-3-642-51858-4_14

Ross JV, Zimmerman J (1996) Comparison of evolution and tectonic significance of the Pindos and Vourinos ophiolite suites, northern Greece. Tectonophysics 256: 1-15
http://doi.org/10.1016/0040-1951(95)00160-3

Saccani E, Photiades A, Beccaluva L (2008) Petro¬genesis and tectonic significance of Jurassic IAT magma types in the Hellenide Ophiolites as deduced from the Rhodiani ophiolites (Pelagonian Zone, Greece). Lithos 104: 71-84
http://doi.org/10.1016/j.lithos.2007.11.006

Seyler M, Lorand JP, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20´N: ODP Hole 1274A. Contrib Mineral Petrol 153: 303-319
http://doi.org/10.1007/s00410-006-0148-6

Spray JG, Roddick JC (1980) Petrology and 40Ar/39Ar geochronology of some Hellenic sub-ophiolite metamorphic rocks. Contrib Mineral Petrol 72: 43-55
http://doi.org/10.1007/BF00375567

Suhr G, Seck HA, Shimizu N, Gunther D (1998) Infiltration of refractory melts into the lowermost oceanic crust: evidence from dunite- and gabbro-hosted clinopyroxenes in the Bay of Islands Ophiolite. Contrib Mineral Petrol 131: 136-154
http://doi.org/10.1007/s004100050384

Takazawa E, Okayasu T, Satoh K (2003) Geochemistry and origin of the basal lherzolites from the northern Oman Ophiolite (northern Fizh Block). Geochem Geophys Geosyst 4: doi:10.1029/2001GC000232
http://doi.org/10.1029/2001GC000232

Tamura A, Arai S, Ishimaru S, Andal ES (2008) Petrology and geochemistry of peridotites from IODP site U1309 at Atlantis Massif, MAR 30°N: micro- and macro-scale melt penetrations into peridotites. Contrib Mineral Petrol 155: 491-509
http://doi.org/10.1007/s00410-007-0254-0

Uysal I, Sadiklar MB, Tarkian M, Karsli O, Aydin F (2005) Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Muğla - SW Turkey): evidence for ophiolitic chromitite genesis. Mineral Petrol 83: 219-242
http://doi.org/10.1007/s00710-004-0063-3

Uysal I, Kaliwoda M, Karsli O, Tarkian M, Sadiklar MB, Ottley CJ (2007) Compositional variations as a result of partial melting and melt-peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Canad Mineral 45: 1471-1493
http://doi.org/10.3749/canmin.45.6.1471

Uysal I, Ersoy EY, Karsli O, Dilek Y, Sadiklar MB, Ottley CJ, Tiepolo M, Meisel T (2012) Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope systematics. Lithos132-133: 50-69
http://doi.org/10.1016/j.lithos.2011.11.009

Vils F, Pelletier L, Kalt A, Müntener O (2005) The Pindos and Vourinos Ophiolites (northern Greece): mineral compositions and geothermometry. In: Geophysical Research Abstracts, EGU05-A-01986

Wiechert U, Ivanov DA, Wedepohl KH (1997) Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle. Contrib Mineral Petrol 126: 345-364
http://doi.org/10.1007/s004100050255

Xu YG, Menzies M, Thirlwall F, Huang XL, Liu Y, Chen XM (2003) “Reactive” harzburgites from Huinan, NE China: products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta 3: 487-505

Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L (2005) REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, southern Tibet. J Petrol 46: 615-639
http://doi.org/10.1093/petrology/egh091

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943