Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

< previous | issue |       
 
Received: 31 May 2013
Accepted: 7 February 2014
Online: 1 March 2014
H. Editor: F. V. Holub
 
  full text (PDF, 0.84 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 

Original Paper

Lukáš Krmíček, Michaela Halavínová, Rolf L Romer, Michaela Vašinová Galiová, Tomáš Vaculovič

Phlogopite/matrix, clinopyroxene/matrix and clinopyroxene/phlogopite trace-element partitioning in a calc-alkaline lamprophyre: new constrains from the Křižanovice minette dyke (Bohemian Massif)

Journal of Geosciences, volume 59 (2014), issue 1, 87 - 96

DOI: http://doi.org/10.3190/jgeosci.160


  Abstract References Map Affiliations

Abdel-Rahman AM (1993) Nature of biotites from alkaline, calcalkaline, and peraluminous magmas. J Petrol 35: 525-541
http://doi.org/10.1093/petrology/35.2.525

Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210: 381-398
http://doi.org/10.1016/S0012-821X(03)00129-8

Blundy JD, Robinson JAC, Wood B (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160: 493-504
http://doi.org/10.1016/S0012-821X(98)00106-X

Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51: 431-435
http://doi.org/10.1180/minmag.1987.051.361.10

Foley SF, Jenner GA (2004) Trace element partitioning in lamproitic magmas - the Gaussberg olivine leucitite. Lithos 75:19-38
http://doi.org/10.1016/j.lithos.2003.12.020

Foley SF, Jackson SE, Fryer BJ, Greenough JD, Jenner GA (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim Cosmochim Acta 60: 629-638
http://doi.org/10.1016/0016-7037(95)00422-X

Foley SF, Prelević D, Rehfeldt T, Jacob D (2013) Minor and trace elements in olivine as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363: 181-191
http://doi.org/10.1016/j.epsl.2012.11.025

Fritschle T, Prelević D, Foley SF, Jacob DE (2013) Petrological characterization of the mantle source of Mediterranean lamproites: indications from major and trace elements of phlogopite. Chem Geol 353: 267-279
http://doi.org/10.1016/j.chemgeo.2012.09.006

Gümbel CW (1874) Die paläolithischen Eruptivgesteine des Fichtelgebirges. Königlichen Ludwig-Maximilians-Universität, München, pp 1-50

Götze J (2012) Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microsc Microanal 18: 1270-1284
http://doi.org/10.1017/S1431927612001122

Hájek J., Špaček J, Drozen J (1997) The Železné Hory Pluton and its mantle rocks. Sbor Geol Věd, Ložisk Geol Mineral 31: 51-66

Klimm K, Blundy JD, Green TH (2008) Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol 49: 523-553
http://doi.org/10.1093/petrology/egn001

Klomínský J, Jarchovský T, Rajpoot GS (2010) Atlas of Plutonic Rocks and Orthogneisses in the Bohemian Massif - 1. Bohemicum. Czech Geological Survey, Prague, pp 1-100.

Krmíček L (2011) Pre-Mesozoic dyke lamprophyres from the eastern part of the Bohemian Massif. Unpublished Ph.D. Thesis, Masaryk University, Brno, pp 1-133 (in Czech)

Krmíček L, Romer RL (2013) Are mafic microgranular enclaves in durbachites plutonic equivalents of common minettes? Mineral Mag 77: 1514

Krmíček L, Přichystal A, Timmerman MJ, Halavínová M (2008) Lower Carboniferous ultrapotassic lamprophyres near the Bohemicum/Moldanubicum boundary: an example from the Železné hory Mts. (Czech Republic). In: Breitkreuz Ch, Hoffmann U, Renno AD, Stanek K (eds) Third VENTS Field Workshop, Abstract Volume and Field Guide on the Late Paleozoic Magmatic Evolution of Saxony. Wissenschaftliche Mitteilungen, Technische Universität Bergakademie Freiberg, pp 8-10

Liégeois JP, Navez J, Hertogen J, Black R (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45: 1-28
http://doi.org/10.1016/S0024-4937(98)00023-1

Mitchell RH, Bergman SC (1991) Petrology of Lamproites. Plenum Press, New York, pp 1-447

Morimoto CN (1988) Nomenclature of pyroxenes. Mineral Mag 52: 535-550
http://doi.org/10.1180/minmag.1988.052.367.15

Němec D (1991) Minettes of the Železné hory mountains (Iron Mts.), Eastern Bohemia. Scr Univ Masaryk Brun, Geol 21: 63-90

Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58: 63-81
http://doi.org/10.1007/BF00384745

Plá Cid J, Nardi LVS, Enrique P, Merlet C, Boyer B (2005) SIMS analyses on trace and rare earth elements in coexisting clinopyroxene and mica from minette mafic enclaves in potassic syenites crystallized under high pressures. Contrib Mineral Petrol 148: 675-688
http://doi.org/10.1007/s00410-004-0626-7

Pouchou JL, Pichoir F (1985) “PAP” ϕ(ρZ) procedure for improved quantitative microanalysis. Microbeam Analysis 20: 104-106

Prelević D, Jacob DE, Foley SF (2013) A new recipe for the formation of Alpine-Himalayan orogenic mantle lithosphere. Earth Planet Sci Lett 362: 187-197
http://doi.org/10.1016/j.epsl.2012.11.035

Rieder M, Cavazzini G, D’Yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Müller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of micas. Canad Mineral 36: 905-912
http://doi.org/10.1346/CCMN.1998.0460513

Rock NMS (1991) Lamprophyres. Blackie, Glasgow and London, pp 1-285

Scarrow JH, Bea F, Montero P, Molina JF (2008) Shoshonites, vaugnerites and potassic lamprophyres: similarities and differences between ‘ultra’-high-K rocks. Trans Roy Soc Edinb, Earth Sci 99: 159-175
http://doi.org/10.1017/S1755691009008032

Seifert W, Kramer W (2003) Accessory titanite: an important carrier of zirconium in lamprophyres. Lithos 71: 81-98
http://doi.org/10.1016/j.lithos.2003.07.002

Schmidt KH, Bottazzi P, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168: 287-299
http://doi.org/10.1016/S0012-821X(99)00056-4

Shand SJ (1943) Eruptive Rocks: Their Genesis, Composition, and Classification, with a Chapter on Meteorites. John Wiley and Sons, New York, pp 1-444

Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32: 751-767
http://doi.org/10.1107/S0567739476001551

Simon S, Wilke M, Chernikov R, Klemme S, Hennet L (2013) The influence of composition on the local structure around yttrium in quenched silicate melts - insights from EXAFS. Chem Geol 346: 3-13
http://doi.org/10.1016/j.chemgeo.2012.09.017

Słaby E, Götze J (2004) Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling - a case study from the Karkonosze Pluton (SW Poland). Mineral Mag 68: 561-577
http://doi.org/10.1180/0026461046840205

Tommasini S, Avanzinelli R, Conticelli S (2011) The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth Planet Sci Lett 301: 469-478
http://doi.org/10.1016/j.epsl.2010.11.023

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943