Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

           | issue | next >
 
Received: 21 April, 2015
Accepted: 2 December, 2015
Online: 16 January 2016
H. Editor: V. Janoušek
 
  full text (PDF, 1.68 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 
More articles on Granitic magmatism in collisional orogens
 

Original paper

Surendra P. Verma, Rene Cruz-Huicochea, Lorena Díaz-Gonzáles, Sanjeet K. Verma

A new computer program TecDIA for multidimensional tectonic discrimination of intermediate and acid magmas and its application to the Bohemian Massif, Czech Republic

Journal of Geosciences, volume 60 (2015), issue 4, 203 - 218

DOI: http://doi.org/10.3190/jgeosci.201



Agrawal S (1999) Geochemical discrimination diagrams: a simple way of replacing eye-fitted boundaries with probability based classifier surfaces. J Geol Soc India 54: 335-346

Agrawal S, Verma SP (2007) Comment on “Tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006). Geochim Cosmochim Acta 71: 3388-3390
http://doi.org/10.1016/j.gca.2007.03.036

Agrawal S, Guevara M, Verma SP (2004) Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks. Int Geol Rev 46: 575-594
http://doi.org/10.2747/0020-6814.46.7.575

Agrawal S, Guevara M, Verma SP (2008) Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. Int Geol Rev 50: 1057-1079
http://doi.org/10.2747/0020-6814.50.12.1057

Aitchison J (1981) A new approach to null correlations of proportions. Math Geol 13: 175-189
http://doi.org/10.1007/BF01031393

Aitchison J (1984) The statistical analysis of geochemical compositions. Math Geol 16: 531-564
http://doi.org/10.1007/BF01029316

Aitchison J (1986) The Statistical Analysis of Compositional Data. Chapman and Hall, London, UK, pp 1-416
http://doi.org/10.1007/978-94-009-4109-0

Aitchison J (1999) Logratios and natural laws in compositional data analysis. Math Geol 31: 563-580
http://doi.org/10.1023/A:1007568008032

Armstrong-Altrin JS (2015) Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int Geol Rev 57: 1446-1461
http://doi.org/10.1080/00206814.2014.936055

Bailey JC (1981) Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chem Geol 32: 139-154
http://doi.org/10.1016/0009-2541(81)90135-2

Buccianti A (2013). Is compositional data analysis a way to see beyond the illusion? Comput Geosci 50: 165-173
http://doi.org/10.1016/j.cageo.2012.06.012

Butler JC, Woronow A (1986) Discrimination among tectonic settings using trace element abundances of basalts. J Geophys Res 91: 10289-10300
http://doi.org/10.1029/JB091iB10p10289

Cabanis B, Lecolle M (1989) Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. C R Acad Sci Paris 309: 2023-2029

Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65: 4185-4193
http://doi.org/10.1029/JZ065i012p04185

Chayes F (1971) Ratio correlation. A manual for students of petrology and geochemistry. The University of Chicago Press, Chicago and London, pp 1-99

Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35: 279-300
http://doi.org/10.1023/A:1023818214614

Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Canad Mineral 38: 1065-1073
http://doi.org/10.2113/gscanmin.38.5.1065

Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In Coward MP, Alison C (eds) Collision Tectonics. Geological Society of London Special Publications 19: 67-81
http://doi.org/10.1144/GSL.SP.1986.019.01.04

Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000a) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41: 511-543
http://doi.org/10.1093/petrology/41.4.511

Janoušek V, Bowes DR, Braithwaite CJR, Rogers G (2000b) Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic. Trans Roy Soc Edinb, Earth Sci 91: 15-26
http://doi.org/10.1017/S0263593300007264

Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78: 67-99
http://doi.org/10.1016/j.lithos.2004.04.046

Janoušek V, Wiegand BA, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U-Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc, London 167: 347-360
http://doi.org/10.1144/0016-76492009-008

Laurent A, Janoušek V, Magna T, Schulmann K, Míková J (2014) Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: the Žulová Pluton, Bohemian Massif. J Geosci 59: 415-440
http://doi.org/10.3190/jgeosci.176

Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27: 745-750
http://doi.org/10.1093/petrology/27.3.745

Le Maitre RW (1976) Some problems of the projection of chemical data into mineralogical classifications. Contrib Mineral Petrol 56: 181-189
http://doi.org/10.1007/BF00399603

Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Schmid R, Sørensen H, Woolley AR (2002) Igneous rocks. A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks. Second ed., Cambridge University Press, Cambridge, pp 1-236
http://doi.org/10.1017/CBO9780511535581

McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120: 223-253
http://doi.org/10.1016/0009-2541(94)00140-4

Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56: 207-218
http://doi.org/10.1016/0009-2541(86)90004-5

Middlemost EAK (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77: 19-26
http://doi.org/10.1016/0009-2541(89)90011-9

Mullen ED (1983) MnO/TiO2/P2O5: a minor element discrimination for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet Sci Lett 62: 53-62
http://doi.org/10.1016/0012-821X(83)90070-5

Pandarinath K (2014) Testing of the recently developed tectonomagmatic discrimination diagrams from hydrothermally altered igneous rocks of 7 geothermal fields. Turkish J Earth Sci 23: 412-426
http://doi.org/10.3906/yer-1401-27

Pawlowsky-Glahn V, Egozcue JJ (2006) Compositional data and their analysis: an introduction. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V (eds) Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Society of London Special Publications 264: 1-10
http://doi.org/10.1144/GSL.SP.2006.264.01.01

Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. John Wiley & Sons, Chichester, pp 525-548

Pearce JA (1983) The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth CJ, Norry MJ (eds) Continental Basalts and Mantle Xenoliths. Shiva, Nantwich, pp 230-249

Pearce JA, Cann JR (1971) Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth Planet Sci Lett 12: 339-349
http://doi.org/10.1016/0012-821X(71)90220-2

Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19: 290-300
http://doi.org/10.1016/0012-821X(73)90129-5

Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69: 33-47
http://doi.org/10.1007/BF00375192

Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956-983
http://doi.org/10.1093/petrology/25.4.956

Pearson K (1897) Mathematical contribution to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc Royal Soc London 60: 489-502
http://doi.org/10.1098/rspl.1896.0076

Rivera-Gómez MA, Verma SP (2016) Testing of 55 multidimensional tectonomagmatic discrimination diagrams from fresh and altered rocks. Geol Carpath 67: 195-208
http://doi.org/10.1515/geoca-2016-0013

Rollinson HR (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, London, pp 1-344

Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42: 275-278
http://doi.org/10.1130/G35290.1

Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59: 101-118
http://doi.org/10.1016/0012-821X(82)90120-0

Sheth HC (2008). Do major oxide tectonic discrimination diagrams work? Evaluating new log-ratio and discriminant-analysis-based diagrams with Indian Ocean mafic volcanics and Asian ophiolites. Terra Nova 20: 229-236.
http://doi.org/10.1111/j.1365-3121.2008.00811.x

Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society of London Special Publications 42: 313-345
http://doi.org/10.1144/GSL.SP.1989.042.01.19

Ulrych J, Fediuk F, Lang M, Martinec P (2004) Late Paleozoic volcanic rocks of the Intra-Sudetic Basin, Bohemian Massif: petrological and geochemical characteristics. Chem Erde 64: 127-153.
http://doi.org/10.1016/j.chemer.2003.11.002

Ulrych J, Pešek J, Štĕpánková-Svobodová J, Bosák P, Lloyd FE, von Seckendorff V, Lang M, Novák JK (2006) Permo-Carboniferous volcanism in late Variscan continental basins of the Bohemian Massif (Czech Republic): geochemical characteristic. Chem Erde 66: 37-56.
http://doi.org/10.1016/j.chemer.2004.02.001

Velikoslavinsky SD, Krylov DP (2014) Geochemical discrimination of basalts formed in major geodynamic settings. Geotectonics 48: 427-439
http://doi.org/10.1134/S0016852114060077

Verma SP (2010) Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish J Earth Sci 19: 185-238

Verma SP (2012) Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain. Comunic Geol 99: 79-93

Verma SP (2015a) Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochem J 49: 393-412
http://doi.org/10.2343/geochemj.2.0364

Verma SP (2015b) Origin, evolution, and tectonic setting of the eastern part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc from conventional multielement normalized and new multidimensional discrimination diagrams and discordancy and significance tests. Turkish J Earth Sci 24: 111-164
http://doi.org/10.3906/yer-1412-31

Verma SP (2015c) Present state of knowledge and new geochemical constraints on the central part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc in terms of near and far trench magmas. Turkish J Earth Sci 24: 399-460
http://doi.org/10.3906/yer-1504-20

Verma SP, Agrawal S (2011) New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Rev Mex Cienc Geol 28: 24-44

Verma SP, Rivera-Gómez MA (2013) Computer programs for the classification and nomenclature of igneous rocks. Episodes 36: 115-124
http://doi.org/10.18814/epiiugs/2013/v36i2/005

Verma SP, Verma SK (2013) First 15 probability-based multi-dimensional discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turkish J Earth Sci 22: 931-995
http://doi.org/10.3906/yer-1204-6

Verma SP, Torres-Alvarado IS, Sotelo-Rodríguez ZT (2002) SINCLAS: standard igneous norm and volcanic rock classification system. Comput Geosci 28: 711-715
http://doi.org/10.1016/S0098-3004(01)00087-5

Verma SP, Guevara M, Agrawal S (2006) Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. J Earth Syst Sci 115: 485-528
http://doi.org/10.1007/BF02702907

Verma SK, Pandarinath K, Verma SP (2012) Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. Int Geol Rev 54: 325-347
http://doi.org/10.1080/00206814.2010.543784

Verma SP, Pandarinath K, Verma SK, Agrawal S (2013) Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos 168-169: 113-123
http://doi.org/10.1016/j.lithos.2013.01.014

Verma SP, Verma SK, Oliveira EP (2015a) Application of 55 multi-dimensional tectonomagmatic discrimination diagrams to Precambrian belts. Int Geol Rev 57: 1363-1386
http://doi.org/10.1080/00206814.2014.921125

Verma SK, Oliveira EP, Verma SP (2015b) Plate tectonic settings for Precambrian basic rocks from Brazil by multi-dimensional tectonomagmatic discrimination diagrams and their limitations. Int Geol Rev 57: 1566-1581
http://doi.org/10.1080/00206814.2014.961975

Winchester JA, The PACE TMR Network Team (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360: 5-21
http://doi.org/10.1016/S0040-1951(02)00344-X

Wood DA (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet Sci Lett 50: 11-30
http://doi.org/10.1016/0012-821X(80)90116-8

Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds), The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geological Society of London Special Publications 405: 169-196
http://doi.org/10.1144/SP405.9

Žák K, Svojtka M, Breiter K, Ackerman L, Zachariáš J, Pašava J, Veselovský F, Litochleb J, Ďurišová J, Haluzová E (2014) Padrť Stock (Teplá-Barrandian Unit, Bohemian Massif): petrology, geochemistry, U-Pb zircon dating of granodiorite, and Re-Os age and origin of related molybdenite mineralization. J Geosci 59: 351-366
http://doi.org/10.3190/jgeosci.177

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943