Original paper
Astrophyllite-alkali amphibole rhyolite, an evidence of early Permian A-type alkaline volcanism in the western Mongolian Altai
Journal of Geosciences, volume 61 (2016), issue 1, 93 - 103
DOI: http://doi.org/10.3190/jgeosci.205
Baatarhuyag A, Gansukh L (1999) Geological map 1:200 000, L-46-IX, L-46-II-G. Unpublished Manuscript, Geofond, Ulaanbaatar
Badarch G, Cunningham CW, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21: 87-110
Balogh K (1985) K/Ar dating of Neogene volcanic activity in Hungary: experimental technique, experiences and methods of chronologic studies. ATOMKI Rep. D/1: 277-288
Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123: 323-333
Blight JHS, Crowley QG, Petterson MG, Cunningham D (2010a) Granites of the southern Mongolia Carboniferous arc: new geochronological and geochemical constraints. Lithos 116: 35-52
Blight JHS, Petterson MG, Crowley QG, Cunningham D (2010b) The Oyut Ulaan volcanic group: stratigraphy, magmatic evolution and timing of Carboniferous arc development in SE Mongolia. J Geol Soc, London 167: 491-509
Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97: 1-29
Bonin B (2008) Death of super-continents and birth of oceans heralded by discrete A-type granite igneous events: the case of the Variscan-Alpine Europe. J Geosci 53: 237-252
Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 63-114
Buriánek D, Hanžl P, Budil P, Gerdes A (2012) Evolution of the early Permian volcanic-plutonic complex in the western part of the Permian Gobi-Altay rift (Khar Argalant Mts., SW Mongolia). J Geosci 57: 105-126
Buslov MM, Safonova IY, Watanabe T, Obut OT, Fujiwara Y, Iwata K, Semakov NN, Sugai Y, Smirnova LV, Kazansky AY (2001) Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian Continent. Geosci J 5: 203
Chen B, Arakawa Y (2005) Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochim Cosmochim Acta 69: 1307-1320
Chen B, Jahn BM (2004) Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotopic and trace element evidence. J Asian Earth Sci 23: 691-703
Cox AV, Dalrymple GB (1967) Statistical analysis of geomagnetic reversal data and the precision of potassium-argon dating. J Geophys Res 72: 2603-2614
Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20: 641-644
Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52: 39-53
Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42: 2033-2048
Grebennikov AV (2014) A-type granites and related rocks: petrogenesis and classification. Russ Geol Geophys 55: 1354-1356
Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63: 489-508
Jahn BM (2004) The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC (eds) Aspects of the Tectonic Evolution of China. Geological Society of London Special Papers 226: 73-100
Jahn BM, Wu FY, Chen B (2000) Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans Roy Soc Edinb, Earth Sci 91: 181-193
Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47: 1255-1259
Jiang YD, Sun M, Zhao GC, Yuan C, Xiao W, Xia XP, Long XP, Wu FY (2010) The ˜390 Ma high-T metamorphic event in the Chinese Altai: a consequence of ridge-subduction? Amer J Sci 310: 1421-1452
Jiang YD, Sun M, Kröner A, Tumurkhuu D, Long XP, Zhao GC, Yuan C, Xiao WJ (2012) The high-grade Tseel Terrane in SW Mongolia: an Early Paleozoic arc system or a Precambrian sliver? Lithos 142-143: 95-115
Kapustin YL (1972) Zircophyllite - the zirconium analogue of astrophyllite. Zap Vses Mineral Obshch 101: 459-463 (in Russian)
Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB (1996) Sources of Phanerozoic granitoids in Central Asia: Sm-Nd isotope data. Geochem Int 34: 628-640
Kröner A, Lehmann J, Schulmann K, Demoux A, Lexa O, Tomurkhuu D, Štípská P, Liu D, Wingate MTD (2010) Lithostratigraphic and geochronological constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion. Amer J Sci 310: 523-574
Litvinovsky BA, Jahn BM, Zanvilevich AN, Saunders A, Poulain S, Kuzmin DV, Reichow MK, Titov AV (2002) Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas. Chem Geol 189: 105-133
Liu W, Liu XJ, Liu LJ (2013) Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes. Lithos 179: 293-319
Long X, Yuan C, Sun M, Xiao W, Zhao G, Wang Y, Cai K, Xia X, Xie L (2009) Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: new constrains on depositional age, provenance and tectonic evolution. Tectonophysics 480: 213-231
Mao QG, Xiao WJ, Fang TH, Windley BF, Sun M, Ao SJ, Zhang JE, Huang XK (2014) Geochronology, geochemistry and petrogenesis of Early Permian alkaline magmatism in the Eastern Tianshan: implications for tectonics of the Southern Altaids. Lithos 190-191: 37-51
Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchim Acta 114/115: 363-376
McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120: 223-253
Piilonen PC, Lalonde AE, McDonald AM, Gault RA (2000) Niobokupletskite, a new astrophyllite-group mineral from Mont Saint-Hilaire, Quebec, Canada: description and crystal structure. Canad Mineral 38: 627-639
Piilonen PC, Lalonde AE, McDonald AM, Gault RA, Larsen AO (2003) Insights into the astrophyllite group I. Nomenclature, composition and development of a standardized general formula. Canad Mineral 41: 1-26
Şengör A, Natal‘in B, Burtman V (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364: 299-307
Sokolova E (2012) Further developments in the structure topology of the astrophyllite-group minerals. Mineral Mag 76: 863-882
Soejono I, Buriánek D, Svojtka M, Žáček V, Čáp P, Janoušek V (2016) Mid-Ordovician and Late Devonian magmatism in the Togtokhinshil Complex: new insight into the formation and accretional evolution of the Lake Zone (Western Mongolia). J Geosci 61: 5-23
Steiger RH, Jäger E (1977) Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36: 359-362
Sun M, Yuan C, Xiao W, Long Xia X, Zhao G, Lin S, Wu F, Kröner A (2008) Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chem Geol 247: 352-383
Sylvester PJ (1989) Post-collisional alkaline granites. J Geol 97: 261-280
Tomurtogoo O (1997) A new tectonic scheme of the Paleozoides in Mongolia. Mongolian Geoscientist 3: 12-17
Wang Q, Wyman DA, Zhao ZH, Xu JF, Zheng HB, Xiong XL, Dai DX, Li HC, Chu ZY (2007) Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan range (western China): implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt. Chem Geol 236: 42-64
Wang ZG, Chen YL, Dong ZS, Wu MQ, Zhang J (1993) The high-alkaline intrusive rock belts in northern Xinjiang: their geology, geochemistry and genesis. In: Tu GZ (ed) Progress of Solid-Earth Sciences in Northern Xinjiang, China. Science Publishing House, Beijing, 163-172 (in Chinese)
Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95: 407-419
Wu FY, Sun DY, Li HM, Jahn BM, Wilde SA (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187: 143-173
Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin K, Wang Z (2004) Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of central Asia. J Geol Soc, London 161: 1-4
Yang W-B, Niu HC, Shan Q, Sun WD, Zhang H, Li NB, Jiang YH, Yu XY (2014) Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr-REE-Nb mineralization. Miner Depos 49: 451-470
Zhang X, Yuan L, Xue F, Yan X, Mao Q (2015) Early Permian A-type granites from central Inner Mongolia, north China: magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Res 28: 311-327
Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: A Plate-Tectonic Synthesis. American Geophysical Union, Geodynamics Series V 21, Washington, DC, pp 1 -242
IF (WoS, 2022): 1.4
5 YEAR IF (WoS, 2022): 1.8
Policy: Open Access
ISSN: 1802-6222
E-ISSN: 1803-1943