Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

< previous | issue |       
 
Received: 5 March, 2016
Accepted: 30 September, 2016
Online: 17 October 2016
H. Editor: E. Jelínek
 
  full text (PDF, 2.38 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 

Original Paper

Gábor Kovács, Balász Géza Radovics, Tivadar M. Tóth

Petrologic comparison of the Gyód and Helesfa serpentinite bodies (Tisia Mega Unit, SW Hungary)

Journal of Geosciences, volume 61 (2016), issue 3, 255 - 279

DOI: http://doi.org/10.3190/jgeosci.218


  Abstract References Map Affiliations

Andreani M, Mével C, Boullier AM, Escartín J (2007) Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem Geophys Geosyst, doi: 10.1029/2006GC001373
http://doi.org/10.1029/2006GC001373

Árkai P (1984) Polymetamorphism of the crystalline basement of the Somogy-Dráva Basin (southwestern Transdanubia, Hungary). Acta Mineral-Petrogr (Szeged) 26: 129-153

Árva-Sós E, Balogh K (1979) Study of the granites of the Mecsek Mountains and metamorphic rocks in their surrounding by K-Ar method. Földt Kut 22: 33-36 (in Hungarian)

Balla Z (1981) Plate tectonics interpretation of South Transdanubia ultramafics. Acta Mineral-Petrogr (Szeged) 25: 3-24

Balla Z (1983) Plate tectonics interpretation of South Transdanubian ultramafics. Földt Közl 113: 39-56 (in Hungarian)

Balla Z (1985) Pre-Upper Carboniferous mafic and ultramafic rocks in Hungary. In: Dobretsov NL (ed) Riphean-Lower Carboniferous Ophiolites of Northern Eurasia. Nauka, Novosibirsk, pp 136-148 (in Russian)

Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107: 27-40
http://doi.org/10.1007/BF00311183

Balogh K, Árva-Sós E, Buda G (1983) Chronology of granitoid and metamorphic rocks of Transdanubia (Hungary). Anuarul Institutului de Geologie şi Geofizică 61: 359-364

Bashir E, Naseem S, Kaleem M, Khan Y, Hamza S (2012) Study of serpentinized ultramafic rocks of Bela ophiolite, Balochistan, Pakistan. J Geogr Geol 4: 79-89
http://doi.org/10.5539/jgg.v4n1p79

Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29: 445-522
http://doi.org/10.1093/petrology/29.2.445

Boillot G, Féraud GMR, Girardeau J (1989) Undercrusting by serpentinite beneath rifted margins. Nature 341: 523-525
http://doi.org/10.1038/341523a0

Boillot G, Beslier M-O, Comas M (1992) Seismic image of undercrusted serpentinite beneath a rifted margin. Terra Nova 4: 25-33
http://doi.org/10.1111/j.1365-3121.1992.tb00447.x

Bonatti E, Michael PJ (1989) Mantle peridotite from continental rifts to ocean basins to subduction zones. Earth Planet Sci Lett 91: 297-311
http://doi.org/10.1016/0012-821X(89)90005-8

Boschi C, Früh-Green GL, Delacour A, Karsin J A, Kelley DS (2006) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem Geophys Geosyst, doi: 10.1029/2005GC010174
http://doi.org/10.1029/2005GC010174

Brown G E (1980) Olivine and silicate spinels. In: Ribbe PH (ed) Orthosilicates. Mineralogical Society of America Reviews in Mineralogy 5: pp 275-381

Buda Gy (1981) Genesis of the Hungarian granitoid rocks. Acta Geol Hung 24: 309-318

Buda Gy (1985) The genesis of the Hungarian, West Carpathian, Central Bohemian Variscan collision-type granitoids. Unpublished Dissertation. Eötvös Loránd University, Budapest, pp 1-148 (in Hungarian)

Buda Gy, Lovas Gy, Klötzli U, Cousen BI (1999) Variscan granitoids of the Mórágy Hills (South Hungary). Beih Eur J Mineral 11: 21-32

Buda Gy, Koller F, Ulrych J (2004) Petrochemistry of Variscan granitoids of Central Europe: correlation of Variscan granitoids of the Tisia and Pelsonia terranes with granitoids of the Moldanubicum, Western Carpathian and Southern Alps. A review: part I. Acta Geol Hung 47: 17-138

Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E, Reynolds J (1995) Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid Atlantic Ridge (22°-24° N). Geology 23: 49-52
http://doi.org/10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2

Coleman RG (1977) Ophiolites. Springer-Verlag, Berlin, Heidelberg, New York, pp 1-229
http://doi.org/10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2

Csontos L, Nagymarosy A, Horváth F, Kovác M (1992) Tertiary evolution of the intra-Carpathian areas: a model. Tectonophysics 208: 221-241
http://doi.org/10.1016/0040-1951(92)90346-8

Cymerman Z (1990) Structural evolution of the Sowie Góry unit in the area of northern part of the Bielawa Hills, Sudetes Mts. Geo. Sudet 24: 191-283

de Capitani C (1994) Gleichgewichts-Phasendiagramme: Theorie und Software. Beih Eur J Mineral 6: 48

de Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51: 2639-2652
http://doi.org/10.1016/0016-7037(87)90145-1

de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Amer Miner 95: 1006-1016
http://doi.org/10.2138/am.2010.3354

Demartin B, Hirth G (2002) Experimental constraints on thermal cracking of peridotite at slow spreading ridges: implications for fluid flow. InterRidge Theoretical Institute: Thermal regime of ocean ridges and dynamics of hydrothermal circulation. Abstracts Volume, Pavia/Sestri Levante, Italy

Demartin B, Hirth G, Evans B (2004) Experimental constraints on thermal cracking of peridotites at oceanic spreading centres. In: German CR, Lin J, Parson LM (eds) Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Geophysical Monograph Series 148: pp 167-185

Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86: 54-76
http://doi.org/10.1007/BF00373711

Droop GTR (1987) A general equation estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Miner Mag 51: 431-435
http://doi.org/10.1180/minmag.1987.051.361.10

Dubińska E, Gunia P (1997) The Sudetic ophiolite: current view on its geodynamic model. Geol Q 41: 1-20

Dubińska E, Jelitto J, Kozłowski A (1995) Origin and evolution of the granite/serpentine reaction zones at Wiry, Lower Silesia. Acta Geol Polonica 45: 41-82

Dungan MA (1979) A microprobe study of antigorite and some serpentine pseudomorphs. Canad Mineral 17: 771-784

Dungan MA (1979) Bastite pseudomorphs after orthopyroxene, clinopyroxene and tremolite. Canad Mineral 17: 729-740

Erdélyi J (1974) Mineral investigations of Hungarian serpentinites. Földt Kut 17: 97-100 (in Hungarian)

Escartín J, Hirth G, Evans B (2004) Permeability of serpentinite and the rheology of talc localization of deformation and subduction process. Geophys Res Abstr 6: 07599

Faryad SW, Kachlík V (2013) New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. J Metamorph Geol 31: 63-82
http://doi.org/10.1111/jmg.12009

Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69: 329-336
http://doi.org/10.1007/BF00372258

Francis G H (1956) The serpentine mass in Glen Urquhart, Inverness-shire, Scotland. Amer J Sci 254: 201-226
http://doi.org/10.2475/ajs.254.4.201

Fülöp J (1994) Geology of Hungary Paleozoic II. Akadémiai Kiadó, Budapest, pp 1-455

Géresi Gy, Elek I, Baranyai I (1971) Complex aero-spectrometric and magnetic investigations in Hungary. Magy Geofiz XI: 41-51 (in Hungarian)

Ghoneim MF (1978) Petrogenesis of the Eugeosynclinal Metamorphites and Related Rocks, Mecsek Mountains, Hungary. Unpublished PhD. Thesis, Hungarian Academy of Sciences, Budapest, pp 1-157

Ghoneim MAE, Ravasz-Baranyai L (1969) Petrographic study of the crystalline basement rocks, Mecsek Mts., Hungary. Acta Geol Hung 13: 191-219

Ghoneim MF, Szederkényi T (1979) Petrological review of the Ófalu serpentinite, Mecsek Mountains, Hungary. Acta Mineral-Petrogr (Szeged) 24: 5-18

Grant JA (1986) The isocon diagram - a simple solution to Gresens’ equation for metasomatic alteration. Econ Geol 81: 1976-1982
http://doi.org/10.2113/gsecongeo.81.8.1976

Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2: 47-65
http://doi.org/10.1016/0009-2541(67)90004-6

Groppo C, Rinaudo C, Cairo S, Gastaldi D, Compagnoni R (2006) Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur J Mineral 18: 319-329
http://doi.org/10.1127/0935-1221/2006/0018-0319

Gunia P (2000) The petrology and geochemistry of mantle-derived basic and ultrabasic rocks from the Szklary Massif in the Fore-Sudetic Block (SW Poland). Geol Sudetica 33: 71-83

Gunia P, Szczepański J (1994) Metamorphic assemblages in ultramafic rocks from Central part of Sowie Mts gneisses (Lower Silesia, Poland). B Pol Acad Sci-Earth 42: 89-98

Gunia P, Ziółkowska-Kozdrój M, Kozdrój W (1998) New geochemistry data of ultrabasic rocks from eastern surroundings of the Karkonosze granite intrusion (Sudetes, SW Poland). B Pol Acad Sci-Earth 46: 94-108

Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242: 19-40
http://doi.org/10.1016/0040-1951(94)00157-5

Haidinger W (1845) Naturwissenschaftliche Abhandlungen. Vols 1-4, Wien

Hermann J, Müntener O, Scambelluri M (2000) The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics 327: 225-238
http://doi.org/10.1016/S0040-1951(00)00171-2

Horváth P, Kovács G, Szakmány Gy (2003) Eclogite and garnetiferous amphibolite gravels from Miocene conglomerates: new results for the Variscan metamorphic evolution of the Tisza Unit (Pannonian Basin, Hungary). Geol Carpath 54: 1-12

Höck V, Montag O, Leichmann J (1997) Ophiolite remnants at the eastern margin of the Bohemian Massif and their bearing on the tectonic evolution. Mineral Petrol 60: 267-287
http://doi.org/10.1007/BF01173712

Janoušek V, Holub FV (2007) The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118: 75-86
http://doi.org/10.1016/S0016-7878(07)80049-6

Jantsky B (1979) Geology of granitized crystalline basement in Mecsek Mts. MÁFI Évkönyv 60: pp 1-365 (in Hungarian)

Jaques AL, Chappell BW (1980) Petrology and trace element geochemistry of the Papuan Ultramafic Belt. Contrib Mineral Petrol 75: 55-70
http://doi.org/10.1007/BF00371889

Kloprogge JT, Frost RL, Rintoul L (1999) Single crystal Raman microscopic study of the asbestos mineral chrysotile. Phys Chem Chem Phys 1: 2559-2564
http://doi.org/10.1039/a809238i

Klötzli US, Buda Gy, Koller F (1999) Geochronological evidence for the derivation of the Mecsek Mountains, South Hungary from Variscan Central Europe. Beih Eur J Mineral 11: 126

Klötzli US, Buda Gy, Skiöld T (2004) Zircon typology, geochronology and whole rock Sr-Nd isotope systematics of the Mecsek Mountain granitoids in the Tisia Terrane (Hungary). Mineral Petrol 81: 113-134
http://doi.org/10.1007/s00710-003-0026-0

Konrád Gy, Sebe K, Halász A, Halmai Á (2010) Geologic evolution of SE Transdanubia - recent analogies. Földr Közl 134: 251-265 (in Hungarian)

Kovács G (2000) Petrographical characteristics of the Gyód Serpentinite Body, south-eastern Transdanubia. Acta Mineral-Petrogr (Szeged) XLI: 79-91

Kovács G, Raucsik B, Horváth P (2003) Minerals of Gyód serpentinite body, Hungary. Acta Mineral-Petrogr (Szeged), Abstract series 1: 54

Kovács G, M. Tóth T, Schubert F (2009) Petrology of the Gyód serpentinite. In: M. Tóth T (ed) Magmatic and Metamorphic Rocks in the Tisia Unit. GeoLitera, Szeged, pp 65-80

Kretz R (1983) Symbols for rock-forming minerals. Amer Miner 68: 277-279

Kryza R (2011) Early Carboniferous (˜337 Ma) granite intrusion in Devonian (˜400 Ma) ophiolite of the Central-European Variscides. Geol Q 55: 213-222

Kryza R, Pin C (2010) The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Res 17: 292-305
http://doi.org/10.1016/j.gr.2009.11.001

Lagabrielle Y, Cannat M (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18: 319-322
http://doi.org/10.1130/0091-7613(1990)018<0319:AJORTM>2.3.CO;2

Lemoine M, Tricart P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): in search of a genetic model. Geology 15: 622-625
http://doi.org/10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2

M. Tóth T (2014) Geochemistry of the Görcsöny Ridge amphibolites (Tiszia Unit, SW Hungary) and its geodynamic consequences. Geol Croatica 67: 17-32
http://doi.org/10.4154/GC.2014.02

Majerowicz A (1979) The Ślęża Mt. group and ophiolite problem. Vol. of Sci. Session in Nowa Ruda, 9-10 Wrocław University (in Polish)

Majerowicz A (1984) Petrography and origin of rodingitic rocks from serpentinites of Ślęża ophiolitic sequence. Geol Sudetica 18: 109-132 (in Polish)

Majerowicz A, Pin C (1989) Recent progress in petrologic study of the Ślęża Mt. ophiolite complex, Lower and Upper Paleozoic metabasites and ophiolites of the Polish Sudetes. In: Multilateral Cooperation of Academies of Sciences of Socialist Countries, Guidebook of Excursion in Poland. University of Wrocław, Wrocław, pp 34-72

Márton E (2000) The Tisza Megatectonic Unit in the light of paleomagnetic data. Acta Geol Hung 43: 329-343

Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan Orogen in Poland. Geol Q 50: 89-118

Medaris G, Wang H, Jelínek E, Mihaljevič M, Jakeš P (2005) Characteristics and origins of diverse Variscan peridotites in the Gföhl nappe, Bohemian Massif, Czech Republic. Lithos 82: 1-23
http://doi.org/10.1016/j.lithos.2004.12.004

Melcher F, Meisel T, Puhl T, Koller F (2002) Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos 65: 69-112
http://doi.org/10.1016/S0024-4937(02)00161-5

Mercier JCC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16: 454-487
http://doi.org/10.1093/petrology/16.2.454

Monnier C, Girardeau J, Pubbellier M, Polvé M, Permana H, Bellon H (1999) Petrology and geochemistry of the Cyclops ophiolites (Irian Jaya, East Indonesia): consequences for the Cenozoic evolution of the north Australian margin. Mineral Petrol 65: 1-28
http://doi.org/10.1007/BF01161574

Nagy Á, M. Tóth T (2009) Relict textural elements in the garnetiferous gneiss unit of the Görcsöny Unit. In: M. Tóth T (ed) Magmatic and Metamorphic Formations in Tisia Unit. GeoLitera, Szeged, pp 65-79

Niida K (1997) Mineralogy of MARK peridotites: replacement through magma channelling examined from hole 920D, MARK area. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the Ocean Drilling Program, Scientific Results 53: 265-275

O’Hanley DS (1991) Fault-related phenomena associated with hydration and serpentine recrystallization during serpentinization. Canad Mineral 29: 21-35

O’Hanley DS (1996) Serpentinites: Records of Tectonic and Petrological History. Oxford University Press, New York and Oxford, pp 1-277

O’Hanley DS, Offler R (1992) Characterization of multiple serpentinization, Woodsreef, New South Wales. Canad Miner 30: 1113-1126

Oliver GJH, Corfu F, Krogh TE (1993) U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J Geol Soc, London 150: 355-369
http://doi.org/10.1144/gsjgs.150.2.0355

Papp G (1989) Investigations on serpentine minerals mostly in Hungarian occurrences. Unpublished Ph.D. Thesis, Eötvös Loránd University, Budapest, pp 1-148 (in Hungarian)

Parkinson IJ, Pearce JA (1998) Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and mantle-melt interaction in a supra-subduction zone setting. J Petrol 39: 1577-1618
http://doi.org/10.1093/petroj/39.9.1577

Pearce JA, Baker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139: 36-53
http://doi.org/10.1007/s004100050572

Piccardo GB, Cimmino F, Messiga B (1980) Antigorite serpentinites and rodingites from the Voltri Massif: some petrological evidence for their evolutive history. Ofioliti 5: 111-114

Pietranik A, Storey C, Kierczak J (2013) The Niemcza diorites and monzodiorites (Sudetes, SW Poland): a record of changing geotectonic setting at ca. 340 Ma. Geol Q 57: 325-334

R. Varga A, Szakmány Gy, Máthé Z, Józsa S (2003) Petrology and geochemistry of Upper Carboniferous siliciclastic rocks (Téseny Sandstone Formation) from the Slavonian-Drava Unit (Tisza Megaunit, S Hungary) - summarized results. Acta Geol Hung 46: 95-113
http://doi.org/10.1556/AGeol.46.2003.1.7

Ravasz-Baranyai L (1969) Eclogite of the Mecsek Mountains, Hungary. Acta Geol Hung 13: 315-322

Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Canad Mineral 41: 883-890
http://doi.org/10.2113/gscanmin.41.4.883

Rónaky L (1996) Exploration history of granite outcrops in the W-Mecsek Mts. Földt Közl 126: 313-317 (in Hungarian)

Sobolev N D (1952) Ultramafic Rocks of the Greater Caucasus. Gosgeolizdat, Moscow, pp 1-240 (in Russian)

Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12: 1-33
http://doi.org/10.1016/0012-8252(76)90052-0

Svingor É, Kovách Á (1981) Rb-Sr isotopic studies on granodioritic rocks from the Mecsek Mountains, Hungary. Acta Geol Hung 24: 295-307

Szederkényi T (1974) Paleozoic magmatism and tectogenesis in South-East Transdanubia. Acta Geol Hung 18: 305-313

Szederkényi T (1976) Barrow-type metamorphism in the crystalline basement of Southeast Transdanubia. Acta Geol Hung 13: 27-34

Szederkényi T (1976) Cr, Ni, As, Pt, Os, Ir and Au contents of ultramafic rocks and their derivatives in the South Transdanubia. Hungarian Geological Society, South Transdanubia Regional Branch, Pécs, pp 1-77 (in Hungarian)

Szederkényi T (1977) Geological evolution of South Transdanubia (Hungary) in Paleozoic time. Acta Mineral-Petrogr (Szeged) 23: 3-14

Szederkényi T (1979) Origin of amphibolites and metavolcanics of crystalline complexes of south Transdanubia, Hungary. Acta Geol Hung 26: 103-136

Szederkényi T (1984) Crystalline basement and geological relations of the Great Plain. Unpublished D.Sc. Thesis, MTA Library, Budapest, pp 1-170 (in Hungarian)

Szederkényi T (1996) Metamorphic formations and their correlation in the Hungarian part of the Tisza Megaunit (Tisia Composite Terrane). Acta Mineral-Petrogr (Szeged) 37: 143-160

Szederkényi T (1998) Lithostratigraphy of South Transdanubia and crystalline basement of Great Hungarian Plain. In: Bérczi I, Jámbor Á (eds) Lithostratigraphy of Hungarian Geological Formations. Mol Rt. and MÁFI, Budapest, pp 93-106

Szederkényi T, Grasselly GY (1977) Complex processing of the Precambrian-Paleozoic geologic base sections in Mecsek Mts. Unpublished Report, Hungarian Geological Society, Budapest, T6801 pp 1-108 (in Hungarian)

Takahashi E, Uto K, Schilling J-G (1987) Primary magma compositions and Mg/Fe ratios of their mantle residues along Mid Atlantic Ridge 29°N to 73°N. Tech Rep ISEI, Okayama Univ, Ser A, 9: 1-14

Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweiz Mineral Petrogr Mitt 54: 333-352

Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction related magmatism. Science 268: 858-861
http://doi.org/10.1126/science.268.5212.858

von Raumer JF, Finger F, Veselá P, Stampfli GM (2014) Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen. Terra Nova 26: 85-95
http://doi.org/10.1111/ter.12071

Wicks FJ, Whittaker EJW (1977) Serpentine textures and serpentinization. Canad Mineral 15: 459-488

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943