Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Miloš René

Source compositions and melting temperatures of the main granitic suites from the Moldanubian Batholith

Journal of Geosciences, volume 61 (2016), issue 4, 355 - 370

DOI: http://doi.org/10.3190/jgeosci.223



Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, pp 63-114
http://doi.org/10.1016/B978-0-444-42148-7.50008-3

Brandmayr M, Dallmeyer RD, Handler R, Wallbrecher E (1995) Conjugate shear zones in the Southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity. Tectonophysics 248: 97-116
http://doi.org/10.1016/0040-1951(95)00003-6

Brandmayr M, Loizenbauer J, Wallbrecher E (1999) Contrasting P-T conditions during conjugate shear zone development in the Southern Bohemian Massif, Austria. Mitt Österr Geol Ges 90: 11-29

Breiter K (2010) Geochemical classification of Variscan granitoids in the Moldanubicum (Czech Republic, Austria). Abh Geol B-A 65: 19-25

Breiter K, Koller F (1999) Two-mica granites in the central part of the South Bohemian Pluton. Abh Geol B-A 56: 201-212

Büttner SH (2007) Late Variscan stress-field rotation initiating escape tectonics in the south-western Bohemian Massif: a far field response to late-orogenic extension. J Geosci 52: 29-43
http://doi.org/10.3190/jgeosci.004

Chappell BW, Hine R (2006) The Cornubian Batholith: an example of magmatic fractionation on a crustal scale. Res Geol 56: 203-244
http://doi.org/10.1111/j.1751-3928.2006.tb00281.x

Clemens JD (2003) S-type granitic magmas - petrogenetic issues, models and evidence. Earth Sci Rev 61: 1-18
http://doi.org/10.1016/S0012-8252(02)00107-1

Condie KC (1993) Chemical composition and evolution of the upper continental crust, contrasting results from surface samples and shales. Chem Geol 104: 1-37
http://doi.org/10.1016/0009-2541(93)90140-E

Finger F, Clemens J (1995) Migmatization and “secondary” granitic magmas: effects of emplacement and crystallization of “primary” granitoids in southern Bohemian Massif, Austria. Contrib Mineral Petrol 120: 311-326
http://doi.org/10.1007/BF00306510

Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61: 67-96
http://doi.org/10.1007/BF01172478

Finger F, Gerdes A, René M, Riegler G (2009) The Saxo-Danubian granite belt: magmatic response to post-collisional delamination of mantle lithosphere below the south-western sector of the Bohemian Massif (Variscan Orogen). Geol Carpath 60: 205-212
http://doi.org/10.2478/v10096-009-0014-3

Frasl G, Finger F (1988) Führer zur Exkursion der Österreichischen Geologischen Gesellschaft ins Mühlviertel und in den Sauwald am 22. und 23. September 1988. Exkursionsführer Österr. Geol Ges 8: 1-29

Friedl G (1990) Geologisch-petrographische Untersuchungen in der Gegend nordöstlich von Freistadt (Oberösterreich) mit besonderer Berücksichtigung des „Grabengranits“. Unpublished MSc. thesis, University of Salzburg, pp 1-242

Fuchs G (1964) Exkursion III/4: Kristallin Mühlviertel und Sauwald, südliche Böhmische Masse. Mitt Geol Gesell 57: 281-289

Gerdes A (1997) Geochemische und thermische Modelle zur Frage der spätorogenen Granitgenese am Beispiel des Südböhmischen Batholiths: Basaltisches Underplating oder Krustenstapelung? Unpublished PhD. thesis, University of Göttingen, pp 1-113

Gerdes A (2001) Magma homogenisation during anatexis, ascent and/or emplacement? Constraints from the Variscan Weinsberg Granites. Terra Nova 13: 305-312
http://doi.org/10.1046/j.1365-3121.2001.00365.x

Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc, London 157: 577-587
http://doi.org/10.1144/jgs.157.3.577

Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement - the South Bohemian Batholith. J Czech Geol Soc 48: 53-54
Direct link

Guillot S, Le Fort P (1995) Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos 35: 221-234
http://doi.org/10.1016/0024-4937(94)00052-4

Holub F, Klečka M, Matějka D (1995) VII.C.3 Moldanubian Zone. Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 444-452

Janoušek V, Moyen JF, Martin H, Erban V, Farrow C (2016) Geochemical Modelling of Igneous Processes - Principles and Recipes in R language. Bringing the Power of R to a Geochemical Community. Springer Verlag, Berlin, pp 1--346
http://doi.org/10.1007/978-3-662-46792-3

Jung S, Pfänder JA (2007) Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur J Mineral 19: 859-870
http://doi.org/10.1127/0935-1221/2007/0019-1774

Klečka M, Matějka D, Jalovec J, Vaňková V (1991) Geochemical investigation of the Eisgarn type granitoids in the southern part of Central Massif of the Moldanubian Pluton. Zpr Geol Výzk v r 1989: 109-111 (in Czech)

Klötzli US, Parrish RR (1996) Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. Mineral Petrol 58: 19-21
http://doi.org/10.1007/BF01172096

Klob H (1971) Der Freistädter Granodiorit im österreichischen Moldanubikum. Verh Geol B-A 1971/1: 98-142

Köhler A (1931) Der Granit „Typus Eisgarn“ im nordwestlichen Waldviertel. Sitz-Ber Akad Wiss, math-naturwiss Kl 140: 847-861

Koutek J (1925) About granite from Mrákotín. Rozpr Čs Akad věd, II tř 34/18: 1-18 (in Czech)
http://doi.org/10.2307/451927

Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN, Vidal P (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics 134: 39-57
http://doi.org/10.1016/0040-1951(87)90248-4

Liew TC, Finger F, Höck V (1989) The Moldanubian granitoid plutons of Austria: chemical and isotopic studies bearing on their environmental setting. Chem Geol 78: 41-55
http://doi.org/10.1016/0009-2541(89)90126-5

Matějka D, Janoušek V (1998) Whole-rock geochemistry and petrogenesis of granites from the northern part of the Moldanubian Batholith (Czech Republic). Acta Univ Carol, Geol 42: 73-79

Mattern F (2001) Permo-Silesian movements between Baltica and Western Europe: tectonics and “basin families”. Terra Nova 13, 368-375
http://doi.org/10.1046/j.1365-3121.2001.00368.x

Miller CF (1985) Are strongly peraluminous magmas derived from pelitic sedimentary sources? J Geol 93: 673-689
http://doi.org/10.1086/628995

Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31: 529-532
http://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

Montel JM (1993) A model for monazite/melt equilibrium and applications to the generation of granitic magmas. Chem Geol 110: 127-146
http://doi.org/10.1016/0009-2541(93)90250-M

Ott WD (1988) Geologische Karte von Bayern 1 : 25 000. Erläuterungen zum Blatt Nr. 7149 Freyung und zum Blatt Nr. 7148 Bischofsreut. Bayrisches Geol Landesamt, München, pp 1-144

Patino Douce AE (1995) Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. J Geophys Res 100: 15623-15639
http://doi.org/10.1029/94JB03376

Patino Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernández C, Vigneresse JL (eds) Understanding Granites: Integrating New and Classical Techniques. Geological Society of London, Special Publications 168: 55-75
http://doi.org/10.1144/GSL.SP.1999.168.01.05

Pouchou JL, Pichoir F (1985) “PAP” (φ-ρ-Z) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104-106

René M (2003) Ti-rich granodiorite porphyries from the northeastern margin of the Klenov Massif (Moldanubian Zone of the Bohemian Massif). Acta Montana, Ser A, 23: 77-84

René M (2012) Two-mica granites of the Moldanubian batholith. Sbor Jihočes Muz v Čes Budějovicích, Přír Vědy 52: 5-25 (in Czech)

René M (2013) Muscovite-biotite granite from the Kalvárie hill in the Jihlava town. Geol Výzk Mor Slez 142-144 (in Czech)

René M, Hájek P (2010) Petrography and geochemistry of granitoids of the Strážný (Finsterau) granite body. Sbor Jihočes Muz v Čes Budějovicích, Přír Vědy 50: 51-57 (in Czech)

René M, Hájek P (2011) Petrography and geochemistry of the Šumava Mts. granites. Sbor Jihočes Muz v Čes Budějovicích, Přír Vědy 51: 27-37 (in Czech)

René M, Holtz F, Luo Ch, Beermann O, Stelling J (2008) Biotite stability in peraluminous granitic melts: compositional dependence and application to the generation of two-mica granites in the South Bohemian Batholith (Bohemian Massif, Czech Republic). Lithos 102: 538-553
http://doi.org/10.1016/j.lithos.2007.07.022

Richard LR (1995) MinPet: mineralogical and petrological data processing system, version 2.02. MinPet Geological Software. Québec, Canada

Siebel W, Shang CK, Reitter E, Rohrmüller J, Breiter K (2008) Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement: constraints from geochemistry an zircon 207Pb/206Pb chronology. J Petrol 49: 1853-1872
http://doi.org/10.1093/petrology/egn049

Stöbich DM (1992) Trachtstudien und den akzessorischen Zirkonen des Weinsberger Granits im östlichen Mühlviertel und westlichen Waldviertel. Unpublished MSc. thesis, University of Salzburg, pp 1-59

Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45: 29-44
http://doi.org/10.1016/S0024-4937(98)00024-3

Vellmer C, Wedepohl KH (1994) Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria. Contrib Mineral Petrol 118: 13-32
http://doi.org/10.1007/BF00310608

Verner K, Žák J, Nahodilová R, Holub FV (2008) Magmatic fabrics and emplacement of the core-sheet-bearing Knížecí Stolec durbachitic pluton (Moldanubian Unit, Bohemian Massif): implications for mid-crustal reworking of granulitic lower crust in the Central European Variscides. Int J Earth Sci 97: 19-33
http://doi.org/10.1007/s00531-006-0153-z

Verner K, Žák J, Šrámek J, Paclíková J, Zavřelová A, Machek M, Finger F, Johnson K (2014) Formation of elongated granite-migmatite domes as isostatic accommodation structures in collisional orogens. J Geodyn 73: 100-117
http://doi.org/10.1016/j.jog.2013.10.002

Verner K, René M, Žák J, Janoušek V (2015) A brief introduction to the geology of the Moldanubian Batholith. In: Janoušek V, Žák J (eds) Eurogranites 2015: Variscan plutons of the Bohemian Massif. Post-conference field trip following the 26th IUGG General Assembly in Prague. Czech Geological Survey, Prague, pp 103-109

Watson EB (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib Mineral Petrol 70: 407-419
http://doi.org/10.1007/BF00371047

Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64: 295-304
http://doi.org/10.1016/0012-821X(83)90211-X

Williamson BJ, Shaw A, Downes H, Thirlwall MF (1996) Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chem Geol 127: 25-42
http://doi.org/10.1016/0009-2541(95)00105-0

Zoubek V (1949) Report on geological mapping on the sheet Jindřichův Hradec (sheet 4354). Věst Geol Úst ČSR 24: 193-195 (in Czech)

Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121: 25-40
http://doi.org/10.1016/j.lithos.2010.10.002

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943