Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

           | issue | next >
 
Received: 13 March, 2016
Accepted: 7 March, 2017
Online: 25 March 2017
H. Editor: V. Kachlík
 
  full text (PDF, 1 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 
More articles on Evolved felsic igneous systems and granitic pegmatites
 

Original paper

David Buriánek, Stanislav Houzar, Lukáš Krmíček, Jaroslav Šmerda

Origin of the pegmatite veins within the skarn body at Vevčice near Znojmo (Gföhl Unit, Moldanubian Zone)

Journal of Geosciences, volume 62 (2017), issue 1, 1 - 23

DOI: http://doi.org/10.3190/jgeosci.234


  Abstract References Map Affiliations

Ackerman L, Zachariáš J, Pudilová M (2007) P-T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. Int J Earth Sci (Geol Rundsch) 96: 623- 638
http://doi.org/10.1007/s00531-006-0133-3

Anderson J, Smith D (1995) The effect of temperature and oxygen fugacity on Al-in-hornblende barometry. Amer Miner 80: 549-559
http://doi.org/10.2138/am-1995-5-614

Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths: Implications for the chemistry of crustal melts. J Petrol 37: 521-552
http://doi.org/10.1093/petrology/37.3.521

Berger A, Burri T, Alt-Epping P, Engi M (2008) Tectonically controlled fluid flow and water-assisted melting in the middle crust: An example from the Central Alps. Lithos 102: 598-615
http://doi.org/10.1016/j.lithos.2007.07.027

Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 63-114
http://doi.org/10.1016/B978-0-444-42148-7.50008-3

Brown M, Korhonen FJ, Siddoway CS (2011) Organizing melt flow through the crust. Elements 7: 261-266
http://doi.org/10.2113/gselements.7.4.261

Bubal J (2013) Geochemistry and Origin of Skarns of the Bohemian Massif. Unpublished MSci thesis, Charles University, Prague, pp 1-147 (in Czech with English abstract)

Cempírek J, Houzar S, Novák M (2008) Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitutions Al(Nb,Ta)Ti--2, Al(F, OH)(TiO)-1 and SnTi-1. Mineral Mag 76: 1293-1305
http://doi.org/10.1180/minmag.2008.072.6.1293

Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236: 524-541
http://doi.org/10.1016/j.epsl.2005.04.033

Connolly JAD, Cesare B (1993) C-O-H-S fluid composition and oxygen fugacity in graphite metapelites. J Metamorph Geol 11: 379-388
http://doi.org/10.1111/j.1525-1314.1993.tb00155.x

Cooke RA, O’Brien PJ (2001) Resolving the relationship between high P-T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss-granulite association in the Moldanubian Zone, Austria. Lithos 58: 33-54
http://doi.org/10.1016/S0024-4937(01)00049-4

Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347: 662-665
http://doi.org/10.1038/347662a0

Drahota P, Pertold Z, Pudilová M (2005) Three types of skarn in the northern part of the Moldanubian Zone, Bohemian Massif - implications for their origin. J Czech Geol Soc 50: 19-33
http://doi.org/10.3190/JCGS.972

Drummond MS, Defant MJ, Kepezhinskas PK (1996) Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans Roy Soc Edinb, Earth Sci 87: 205-215
http://doi.org/10.1017/S0263593300006611

Dudek A, Matějovská O, Suk M (1974) Gföhl orthogneiss in the Moldanubicum of Bohemia and Moravia. Krystalinikum 10: 67-78

Erdmann S, London D, Morgan GB VI, Clarke DB (2007) The contamination of granitic magma by metasedimentary country-rock material: an experimental study. Canad Mineral 45: 43-61
http://doi.org/10.2113/gscanmin.45.1.43

Fiala J, Fuchs G, Wendt JI (1995) Stratigraphy of the Moldanubian Zone. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, pp 417-428
http://doi.org/10.1007/978-3-642-77518-5_42

Filip J, Houzar S, Sulovský P (2002) Allanite and its decay products in the skarn and pegmatite from Rešice. Acta Mus Moraviae, Sci Geol 87: 87-101 (in Czech with English abstract)

Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U/Pb zircon ages. Int J Earth Sci 93: 802-823
http://doi.org/10.1007/s00531-004-0420-9

Fritz H (1995) The Raabs Series, a probable Variscan suture in the SE Bohemian Massif. Jb Geol B-A 138: 639-653

Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jb Geol B-A 119: 1-43

Gadas P, Novák M, Cempírek J, Filip J, Vašinová Galiová M, Groat LA, Všianský D (2014) Mineral assemblages, compositional variation and crystal structure of feruvitic tourmaline from contaminated anatectic pegmatite in Mirošov near Strážek, Moldanubian Zone, Czech Republic. Canad Mineral 52: 285-301
http://doi.org/10.3749/canmin.52.2.285

Gaspar M, Knaack C, Meinert LD, Moretti R (2008) REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim Cosmochim Acta 72: 185-205
http://doi.org/10.1016/j.gca.2007.09.033

Goliáš V (2002) Thorium occurrences in the Czech Republic and their mineralogy. In: Kříbek B, Zeman J (eds) Uranium Deposits - From Their Genesis to the Environmental Aspects. Czech Geological Survey, Prague, pp 53-56

Green TH (1982) Anatexis of mafic crust and high pressure crystallization of andesite. In: Thorpe RS (ed) Andesites. Wiley, Chichester, pp 465-487

Gulyaeva TY, Gorelikova NV Karabtsov AA (1986) High potassium-chlorine-bearing hastingsites in skarn from Primorye, Far East USSR. Mineral Mag 50: 724-728
http://doi.org/10.1180/minmag.1986.050.358.21

Hacker BR (1990) Amphibolite-facies-to-granulite-facies reactions in experimentally deformed, unpowdered amphibolite. Amer Miner 75: 1349-1361

Hasalová P, Janoušek V, Schulmann K, Štípská P, Erban V (2008) From orthogneiss to migmatite: geochemical assessment of the melt infiltration model in the Gföhl Unit (Moldanubian Zone, Bohemian Massif). Lithos 102: 508-537
http://doi.org/10.1016/j.lithos.2007.07.021

Holdaway MJ (1972) Thermal stability of Al-Fe-epidote as a function of ƒO2 and Fe content. Contrib Mineral Petrol 37: 307-340
http://doi.org/10.1007/BF00371011

Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116: 433-447
http://doi.org/10.1007/BF00310910

Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16: 309-43

Homola V, Müller K, Smrkovská V (1968) Geologisch-geophysikalische Studien im Gebiet des westmährischen Moldanubikums. Freiberg Forsch H C C 227: 1-71

Hongo Y, Nozaki Y (2001) Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya Ridge vent field, Okinawa Trough. Geochem J 35: 347-354.
http://doi.org/10.2343/geochemj.35.347

Hongo Y, Obata H, Gamo T, Nakasema M, Ishibashi J, Konno U, Saegusa S, Ohkubo S, Tsunogai U (2007) Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin. Geochem J 41: 1-15
http://doi.org/10.2343/geochemj.41.1

Houzar S, Šmerda J, Buriánek D (2014) A new occurrence of skarn in the Gföhl Unit at Vevčice near Jevišovice: the mineral assemblage of skarn and contaminated amphibole-bearing pegmatites. Geol Výzk Mor Slez 20: 62-70 (in Czech with English abstract)

Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47: 1255-1259
http://doi.org/10.1093/petrology/egl013

Johnson TE, Fischer S, White RW, Brown M, Rollinson HR (2012) Archaean intracrustal differentiation from partial melting of metagabbro - field and geochemical evidence from the Central Region of the Lewisian Complex, NW Scotland. J Petrol 53: 2115-2138
http://doi.org/10.1093/petrology/egs046

Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos Trans Roy Soc London, Ser A 355: 283-318
http://doi.org/10.1098/rsta.1997.0010

Klinkhammer GP, Elderfield H, Edmond JM, Mitra A (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim Cosmochim Acta 58: 5105-5113
http://doi.org/10.1016/0016-7037(94)90297-6

Krmíček L, Cempírek J, Havlín A, Přichystal A, Houzar S, Krmíčková M, Gadas P (2011) Mineralogy and petrogenesis of a Ba-Ti-Zr-rich peralkaline dyke from Šebkovice (Czech Republic): recognition of the most lamproitic Variscan intrusion. Lithos 121: 74-86
http://doi.org/10.1016/j.lithos.2010.10.005

Krogh Ravna EJ (2000a) Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe-Mg geothermometer. Lithos 53: 265-277
http://doi.org/10.1016/S0024-4937(00)00029-3

Krogh Ravna EJ (2000b) The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. J Metamorph Geol 2: 211-219
http://doi.org/10.1046/j.1525-1314.2000.00247.x

Kusbach V, Janoušek V, Hasalová P, Schulmann K, Fanning CM, Erban V, Ulrich S (2015) Importance of crustal relamination in origin of the orogenic mantle peridotite-high-pressure granulite association: example from the Náměšť Granulite Massif (Bohemian Massif, Czech Republic). J Geol Soc, London 172: 479-490
http://doi.org/10.1144/jgs2014-070

Lambert IB, Wyllie PJ (1972) Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications. J Geol 80: 693-708
http://doi.org/10.1086/627795

Langmuir C, Vocke R, Hanson G, Hart S (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37: 380-392
http://doi.org/10.1016/0012-821X(78)90053-5

Leake BE, Wooley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith J C, Stephenson NCN, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral Mag 61: 295-321
http://doi.org/10.1180/minmag.1997.061.405.13

Liou JG (1973) Synthesis and stability relations of epidote Ca2Al2FeSi3O12(OH). J Petrol 14: 381-413
http://doi.org/10.1093/petrology/14.3.381

López S, Castro A (2001) Determination of the fluid-absent solidus curve and supersolidus phase relationships of MORB-derived amphibolites in the range 4-14 kbar. Amer Miner 86: 1396-1403
http://doi.org/10.2138/am-2001-11-1208

Martinec P (1977) Erlans and skarns in the complex so called Gföhl gneisses in Moldanubicum southwest of Moravia. In: Pouba Z (ed) Correlation of Proterozoic and Paleozoic Stratabound Deposits V. Faculty of Science, Charles University, Prague, pp 163-182 (in Czech with English abstract)

Massonne HJ, Willner AP (2008) Dehydration behaviour of metapelites and mid-ocean ridge basalt at very-low to low grade metamorphic conditions. Eur J Mineral 20: 867-879
http://doi.org/10.1127/0935-1221/2008/0020-1871

Matějovská O (1975) The Moldanubian gneiss series of south-western Moravia and its relation to granulites. Věst Ústř Úst Geol 50: 345-351

Matějovská O, Batík P, Dornič J, Havlíček P, Hazdrová M, Jenček V, Kadlec E, Líbalová J, Šalanský K, Volšan V (1987) Explanations to the geological map of ČSSR 1 : 25 000 sheet 34-111 Višňové. Czech Geological Survey, Prague, pp 1-54 (in Czech with English abstract)

Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177: 151-170
http://doi.org/10.1016/0040-1951(90)90279-H

Mazdab FK (2003) The diversity and occurrence of potassium-dominant amphiboles. Canad Mineral 41: 1329-1344
http://doi.org/10.2113/gscanmin.41.6.1329

McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120: 223-253
http://doi.org/10.1016/0009-2541(94)00140-4

McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95: 53-72
http://doi.org/10.1016/0012-821X(89)90167-2

Medaris G Jr, Fournelle JH, Ghent ED, Jelínek E, Mísař Z (1998) Prograde eclogite in the Gföhl Nappe, Czech Republic: new evidence on Variscan high-pressure metamorphism. J Metamorph Geol 16: 563-576
http://doi.org/10.1111/j.1525-1314.1998.00158.x

Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalyses. Microchim Acta 114-115: 363-376
http://doi.org/10.1007/BF01244563

Michard A (1989) Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta 53: 745-750
http://doi.org/10.1016/0016-7037(89)90017-3

Michard A, Albarède F (1986) The REE content of some hydrothermal fluids. Chem Geol 55: 51-60
http://doi.org/10.1016/0009-2541(86)90127-0

Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37: 215-224
http://doi.org/10.1016/0012-8252(94)90029-9

Mielke P, Winkler HGF (1979) Eine bessere Berechnung der Mesonorm fur granitische Gesteine. Neu Jb Mineral, Mh 1979: 471-480.

Mills RA, Elderfield H (1995) Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N mid-Atlantic Ridge. Geochim Cosmochim Acta 59: 3511-3524
http://doi.org/10.1016/0016-7037(95)00224-N

Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52: 535-550
http://doi.org/10.1180/minmag.1988.052.367.15

Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112: 556-574
http://doi.org/10.1016/j.lithos.2009.04.001

Mukhopadhyay B (1991) Garnet-clinopyroxene geobarometry. The problems, prospects and an approximate solution with some applications. Amer Miner 76: 512-529

Němec D (1963a) Eruptivgesteine in westmährischen Skarnen und ihre genetische Stellung. Neu Jb Mineral, Abh 100: 203-224

Němec D (1963b) Mg-Skarne des westmährischen Kristallins. Sitz-Ber Akad Wiss math-naturwiss KI 172: 263-308
http://doi.org/10.1007/978-3-662-25316-8_1

Němec D (1968) Die Stellung des Amphibols in der Mineralparagenese westmährischer Skarngesteine. Tschermaks Mineral Petrogr Mitt 12: 321-349
http://doi.org/10.1007/BF01128042

Němec D (1970) Chemische Zusammensetzung der Ca-Amphibole aus den regionalmetamorphen Skarnen Westmährens. Neu Jb Mineral, Abh 113: 50-67

Němec D (1991) Regional typization of the iron skarns of the Bohemian-Moravian Heights. Acta Mus Moraviae, Sci Nat 76: 51-82

Němec D (1993) Some exotic mineral assemblages of West-Moravian pegmatites. Acta Mus Moraviae, Sci Nat 78: 13-19

Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim Acta 44: 933-941
http://doi.org/10.1016/0016-7037(80)90283-5

Novák M (2005) Granitic pegmatites of the Bohemian Massif (Czech Republic); mineralogical, geochemical and regional classification and geological significance. Acta Mus Moraviae, Sci Geol 90: 3-74 (in Czech with English abstract)

Novák M, Škoda R, Gadas P, Krmíček L, Černý P (2012) Contrasting origins of the mixed signature in granitic pegmatites; examples from the Moldanubian Zone, Czech Republic. Canad Mineral 50: 1077-1094
http://doi.org/10.3749/canmin.50.4.1077

Novák M, Kadlec T, Gadas P (2013) Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastějovice region. J Geosci 58: 21-47
http://doi.org/10.3190/jgeosci.132

Pattison DRM (1991) Infiltration-driven anatexis in granulite facies metagabbro, Grenville Province, Ontario, Canada. J Metamorph Geol 9: 315-332
http://doi.org/10.1111/j.1525-1314.1991.tb00526.x

Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121: 227-244
http://doi.org/10.1016/0012-821X(94)90042-6

Pertold Z, Pertoldová J, Pudilová M (1997) Metamorphic history of skarns in the Gföhl Unit, Moldanubicum, Bohemian Massif, and implications for their origin. Acta Univ Carol, Geol 41: 157-166

Pertoldová J, Týcová P, Verner K, Košuličová M, Pertold Z, Košler J, Konopásek J, Pudilová M (2009) Metamorphic history of skarns, origin of their protolith and implications for genetic interpretation: an example from three units of the Bohemian Massif. J Geosci 54: 101-134
http://doi.org/10.3190/jgeosci.044

Pertoldová J, Košuličová M, Verner K, Žáčková E, Pertold Z, Konopásek J, Veselovský F, Košler J (2014) Geochronology and petrology of pyroxene-garnet skarns (eastern Bohemian Massif): implications for the source and evolution of the Variscan continental crust. J Geosci 59: 367-388
http://doi.org/10.3190/jgeosci.181

Poli S (1993) The amphibolite-eclogite transformation, an experimental study on basalt. Amer J Sci 293: 1061-1107
http://doi.org/10.2475/ajs.293.10.1061

Poli S, Schmidt MW (1995) H2O transport and release in subduction zones: experimental constraints on basaltic and andesitic systems. J Geophys Res 100: 22299-22314
http://doi.org/10.1029/95JB01570

Poli S, Schmidt MW (2004) Experimental subsolidus studies on epidote minerals. In: Liebscher A, Franz G (eds) Epidotes. Mineralogical Society of America Reviews in Mineralogy and Geochemistry 56: 171-195
http://doi.org/10.2138/gsrmg.56.1.171

Qian Q, Hermann J (2013) Partial melting of lower crust at 10-15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petrol 165: 1195-1224
http://doi.org/10.1007/s00410-013-0854-9

Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36: 891-931
http://doi.org/10.1093/petrology/36.4.891

Reiners PW (1998) Reactive melt transport in the mantle and geochemical signatures of mantle-derived magmas. J Petrol 39: 1039-1061
http://doi.org/10.1093/petroj/39.5.1039

Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107: 41-59
http://doi.org/10.1007/BF00311184

Sawyer EW (1991) Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. J Petrol 32: 701-738
http://doi.org/10.1093/petrology/32.4.701

Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. Amer J Sci 305: 407-448
http://doi.org/10.2475/ajs.305.5.407

Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J, Edel JB, Peschler A, Lehmann J (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26: 273-297
http://doi.org/10.1111/j.1525-1314.2007.00755.x

Simakov SK (2008) Garnet-clinopyroxene and clinopyroxene geothermobarometry of deep mantle and crust eclogites and peridotites. Lithos 106: 125-136
http://doi.org/10.1016/j.lithos.2008.06.013

Skjerlie K P, Johnston AD (1992) Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites. Geology 20: 263-266.
http://doi.org/10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

Slavík F (1951) Skarn and its resorption of pegmatite-aplite at Dolní Líšná near Nové Město. Sbor Ústř Úst Geol 18: 573-579 (in Czech with English abstract)

Staněk J (1977) Pegmatites from skarn near Líšná, western Moravia. Acta Univ Carol, Geol 1-2: 145-149

Stormer JC, Nicholls J (1978) XLFRAC: a program for interactive testing of magmatic differentiation models. Comput Geosci 4: 143-159
http://doi.org/10.1016/0098-3004(78)90083-3

Suwa K, Enami M, Horiuchi T (1987) Chlorine-rich potassium hastingsite from West Ongul Island, Lützow-Holm Bay, East Antarctica. Mineral Mag 51: 709-714
http://doi.org/10.1180/minmag.1987.051.363.11

Štípská P, Powell R (2005) Constraining the P-T path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: an example from the Bohemian Massif. J Metamorph Geol 23: 725-743
http://doi.org/10.1111/j.1525-1314.2005.00607.x

Tajčmanová L, Konopásek J, Schulmann K (2006) Thermal evolution of the orogenic lower crust during exhumation within a thickened Moldanubian root of the Variscan belt of Central Europe. J Metamorph Geol 24: 119-134
http://doi.org/10.1111/j.1525-1314.2006.00629.x

Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol 141: 251-267
http://doi.org/10.1007/s004100100237

Vrána S (1987) Garnet-fassaitic pyroxene skarn from the granulite complex of southern Bohemia. Věst Ústř Úst Geol 62: 193-206

Watkins JM, Clemens JD, Treloar PJ (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contrib Mineral Petrol 154: 91-110
http://doi.org/10.1007/s00410-007-0181-0

Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64: 295-304
http://doi.org/10.1016/0012-821X(83)90211-X

White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25: 511-527
http://doi.org/10.1111/j.1525-1314.2007.00711.x

Whitney DL, Evans BW (2010) Abbreviations for names of rock forming minerals. Amer Miner 95: 185-187
http://doi.org/10.2138/am.2010.3371

Winther KT (1996) An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem Geol 127: 43-59
http://doi.org/10.1016/0009-2541(95)00087-9

Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115: 369-383
http://doi.org/10.1007/BF00320972

Wones DR (1989) Significance of the assemblage titanite + magnetite + quartz in granitic magmas. Amer Miner 74: 744-749

Wyllie PJ, Wolf MB (1993) Amphibolite dehydration-melting: sorting out the solidus. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic Processes and Plate Tectonics. Geological Society of London Special Publications 76, pp 405-416

Xiong XL, Adam J, Green TH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem Geol 218: 339-359
http://doi.org/10.1016/j.chemgeo.2005.01.014

Xiong XL, Xia B, Xu JF, Niu HC Xiao WS (2006) Na depletion in modern adakites via melt ⁄ rock reaction within the sub-arc mantle. Chem Geol 219: 273-292
http://doi.org/10.1016/j.chemgeo.2005.11.008

Yoder HS, Jr (1968) Albite-anorthite-quartz-water at 5 kb. Carnegie Inst Wash Yearb 66: 477-478

Zhang ZM, Dong X, Xiang H, He Z, Liou JG (2014) Metagabbros of the Gangdese arc root, south Tibet: implications for the growth of continental crust. Geochim Cosmochim Acta 14: 3 268-284
http://doi.org/10.1016/j.gca.2014.01.045

Žáček V (1997) Compositional evolution of garnet in the regionally metamorphosed Moldanubian skarn, Vlastějovice, Bohemia - evidence of the preservation of early stages pre-dating regional metamorphism. Bull Czech Geol Surv 72: 37-48

Žáček K (2007) Potassian hastingsite and potassic hastingsite from garnet-hedenbergite skarn at Vlastějovice, Czech Republic. Neu Jb Mineral, Abh 184: 161-168
http://doi.org/10.1127/0077-7757/2007/0089

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943