Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original Paper

Tomáš Hrstka, Paul Gottlieb, Roman Skála, Karel Breiter, David Motl

Automated mineralogy and petrology - applications of TESCAN Integrated Mineral Analyzer (TIMA)

Journal of Geosciences, volume 63 (2018), issue 1, 47 - 63

DOI: http://doi.org/10.3190/jgeosci.250



Ackerman L, Magna T, Rapprich V, Upadhyay D, Krátký O, Čejková B, Erban V, Kochergina YV, Hrstka T (2017) Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India. Lithos 284: 257-275
http://doi.org/10.1016/j.lithos.2017.03.029

Altree-Williams A, Pring A, Ngothai Y, Brugger J (2015) Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials. Earth Sci Rev 150: 628-651
http://doi.org/10.1016/j.earscirev.2015.08.013

Andersen JCØ, Rollinson GK, Snook B, Herrington R, Fairhurst RJ (2009) Use of QEMSCAN® for the characterization of Ni-rich and Ni-poor goethite in laterite ores. Miner Eng 22: 1119-1129
http://doi.org/10.1016/j.mineng.2009.03.012

Berrezueta E, Ordóñez-Casado B, Bonilla W, Banda R, Castroviejo R, Carrión P, Puglla S (2016) Ore petrography using optical image analysis: application to Zaruma-Portovelo Deposit (Ecuador). Geosciences 6: DOI 10.3390/geosciences6020030
http://doi.org/ 10.3390/geosciences6020030

Breiter K, Ďurišová J, Hrstka T, Korbelová Z, Vaňková M, Galiová MV, Kanický V, Rambousek P, Knésl I, Dobeš P, Dosbaba M (2017) Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Lithos 292/293: 198-217

Breiter K, Ďurišová J, Hrstka T, Korbelová Z, Vaňková M, Galiová MV, Müller A, Simons B, Shail RK, Williamson BJ, Davies JA (2018) The transition from granite to banded aplite-pegmatite sheet complexes: an example from Megiliggar Rocks, Tregonning topaz granite, Cornwall. Lithos 302/303: 370-388
http://doi.org/10.1016/j.lithos.2018.01.010

Donskoi E, Suthers SP, Fradd SB, Young JM, Campbell JJ, Raynlyn TD, Clout JMF (2007) Utilization of optical image analysis and automatic texture classification for iron ore particle characterisation. Miner Eng 20: 461-471
http://doi.org/10.1016/j.mineng.2006.12.005

Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Miner Process 84: 310-320
http://doi.org/10.1016/j.minpro.2006.07.018

Glagolev AA (1934) Quantitative analysis with the microscope by the point method. Eng Min J 135: 399-400

Gottlieb P (2008) The revolutionary impact of automated mineralogy on mining and mineral processing. In: Wang DZ, Sun CY, Wang FL, Zhang LC, Hang L (eds) 24th International Mineral Processing Congress. Science Press, Beijing, pp 165-174

Gottlieb P, Wilkie G, Sutherland D, Ho-Tun E, Suthers S, Perera K, Jenkins B, Spencer S, Butcher A, Rayner J (2000) Using quantitative electron microscopy for process mineralogy applications. JOM 52: 24-25
http://doi.org/10.1007/s11837-000-0126-9

Haberlah D, Williams MAJ, Halverson G, McTainsh GH, Hill SM, Hrstka T, Jaime P, Butcher AR, Glasby P (2010) Loess and floods: high-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges, semi-arid South Australia. Quat Sci Rev 29:2 673-2693
http://doi.org/10.1016/j.quascirev.2010.04.014

Haluzová E, Ackerman L, Pašava J, Jonášová Š, Svojtka M, Hrstka T, Veselovský F (2015) Geochronology and characteristics of Ni-Cu-(PGE) mineralization at Rožany, Lusatian Granitoid Complex, Czech Republic. J Geosci 60: 219-236
http://doi.org/10.3190/jgeosci.204

Harding DP (2002) Mineral identification using a scanning electron microscope. Miner Metall Process 19: 215-219
http://doi.org/10.1007/BF03403272

Harvey PJ, Rouillon M, Dong C, Ettler V, Handley HK, Taylor MP, Tyson E, Tennant P, Telfer V, Trinh R (2017) Geochemical sources, forms and phases of soil contamination in an industrial city. Sci Total Environ 584-585: 505-514
http://doi.org/10.1016/j.scitotenv.2017.01.053

Higgs KE, Haese RR, Golding SD, Schacht U, Watson MN (2015) The Pretty Hill Formation as a natural analogue for CO2 storage: an investigation of mineralogical and isotopic changes associated with sandstones exposed to low, intermediate and high CO2 concentrations over geological time. Chem Geol 399: 36-64
http://doi.org/10.1016/j.chemgeo.2014.10.019

Hoal KO, Stammer JG, Appleby SK, Botha J, Ross JK, Botha PW (2009) Research in quantitative mineralogy: examples from diverse applications. Miner Eng 22: 402-408
http://doi.org/10.1016/j.mineng.2008.11.003

Hrstka T (2008) Preliminary results on the reproducibility of sample preparation and QEMSCAN® measurements for heavy mineral sands samples. Ninth International Congress for Applied Mineralogy, proceedings: ICAM 2008. Australasian Institute of Mining and Metallurgy, Carlton (Vic), pp 107-111

Hrstka T (2012) Paleofluid Chemistry of Orogenic Gold Deposits: Novel Analytical Methods and Case Studies from the Bohemian Massif. Unpublished PhD thesis, Faculty of Science, Charles University in Prague, pp 1-151

Hrstka T, Gottlieb P, Moravec J, Lokoc J (2017a) The future of SEM-based automated mineralogy and artificial intelligence in applied mineralogy. Sci Res Abstr 6: Digilabs, pp 42

Hrstka T, Motl D, Gottlieb P, Hladil J (2017b) Using an automated approach in building a dust particle atlas for research and environmental monitoring. Sci Res Abstr 6: Digilabs pp 43

Johnson C, Pownceby MI, Wilson NC (2015) The application of automated electron beam mapping techniques to the characterisation of low grade, fine-grained mineralisation; potential problems and recommendations. Miner Eng 79: 68-83
http://doi.org/10.1016/j.mineng.2015.05.005

Jordens A, Marion C, Grammatikopoulos T, Waters KE (2016) Understanding the effect of mineralogy on muscovite flotation using QEMSCAN. Int J Miner Process 155: 6-12
http://doi.org/10.1016/j.minpro.2016.08.003

Knappett C, Pirrie D, Power MR, Nikolakopoulou I, Hilditch J, Rollinson GK (2011) Mineralogical analysis and provenancing of ancient ceramics using automated SEM-EDS analysis (QEMSCAN®): a pilot study on LB I pottery from Akrotiri, Thera. J Archaeolog Sci 38: 219-232
http://doi.org/10.1016/j.jas.2010.08.022

Kwitko-Ribeiro R (2012) New sample preparation developments to minimize mineral segregation in process mineralogy. In: Broekmans MATM (ed) Proceedings of the 10th International Congress of Applied Mineralogy. Springer Berlin, Heidelberg, pp 411-417
http://doi.org/10.1007/978-3-642-27682-8_49

Lane GR, Martin C, Pirard E (2008) Techniques and applications for predictive metallurgy and ore characterization using optical image analysis. Miner Eng 21: 568-577
http://doi.org/10.1016/j.mineng.2007.11.009

Larrea ML, Castro SM, Bjerg EA (2014) A software solution for point counting. Petrographic thin section analysis as a case study. Arabian J Geosci 7: 2981-2989
http://doi.org/10.1007/s12517-013-1032-0

Lastra R (2007) Seven practical application cases of liberation analysis. Int J Miner Process 84: 337-347
http://doi.org/10.1016/j.minpro.2006.07.017

Lastra R, Paktunc D (2016) An estimation of the variability in automated quantitative mineralogy measurements through inter-laboratory testing. Miner Eng 95: 138-145
http://doi.org/10.1016/j.mineng.2016.06.025

Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc, London, 148: 825-833
http://doi.org/10.1144/gsjgs.148.5.0825

Le Maitre RW (2002) Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, Cambridge, pp 1-236
http://doi.org/10.1017/CBO9780511535581

Lloyd GE (1987) Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineral Mag 51: 3-19
http://doi.org/10.1180/minmag.1987.051.359.02

London D (2008) Pegmatites. Canad Mineral, Spec Publ 10: pp 1-347

Lotter NO, Kormos LJ, Oliveira J, Fragomeni D, Whiteman E (2011) Modern process mineralogy: two case studies. Miner Eng 24: 638-650
http://doi.org/10.1016/j.mineng.2011.02.017

Mineralogical database (2017) Mineralogical database. Accessed on May 10, 2017 at http://www.webmineral.com

Motl D, Filip V (2013) Method and apparatus for material analysis by a focused electron beam using characteristic X-rays and back-scattered electrons. (Patent no. WO2017050303 A1)

Müller A, Breiter K, Seltmann R, Pécskay Z (2005) Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos 80: 201-227
http://doi.org/10.1016/j.lithos.2004.05.011

Neumannová K, Thér R, Květina P, Hrstka T (2016) Perception of technological variability on the example of Neolithic settlement site in Bylany. Praehistorica 33: 291-306 (in Czech)
http://doi.org/10.14712/25707213.2017.24

Nie J, Peng W (2014) Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau. Aeolian Res 13: 71-75
http://doi.org/10.1016/j.aeolia.2014.03.005

Pérez-Barnuevo L, Pirard E, Castroviejo R (2013) Automated characterisation of intergrowth textures in mineral particles. A case study. Miner Eng 52: 136-142
http://doi.org/10.1016/j.mineng.2013.05.001

Pirard E (2004) Multispectral imaging of ore minerals in optical microscopy. Mineral Mag 68: 323-333
http://doi.org/10.1180/0026461046820189

Pirrie D, Rollinson GK (2011) Unlocking the applications of automated mineral analysis. Geol Today 27: 226-235
http://doi.org/10.1111/j.1365-2451.2011.00818.x

Poliakov A, Donskoi E (2014) Automated relief-based discrimination of non-opaque minerals in optical image analysis. Miner Eng 55: 111-124
http://doi.org/10.1016/j.mineng.2013.09.014

Pooler R, Dold B (2017) Optimization and quality control of automated quantitative mineralogy analysis for acid rock drainage prediction. Minerals 7: DOI 10.3390/min7010012
http://doi.org/10.3390/min7010012

Rollinson GK, Andersen JCØ, Stickland RJ, Boni M, Fairhurst R (2011) Characterisation of non-sulphide zinc deposits using QEMSCAN®. Miner Eng 24: 778-787
http://doi.org/10.1016/j.mineng.2011.02.004

Sandmann D, Gutzmer J (2013) Use of mineral liberation analysis (MLA) in the characterization of lithium-bearing micas. J Miner Mater Charact Eng 1: 285-292
http://doi.org/10.4236/jmmce.2013.16043

Sandmann D, Gutzmer J (2015) Nature and distribution of PGE mineralization in gabbroic rocks of the Lusatian Block, Saxony, Germany. Z Geol Wiss 166: 35-53

Sánchez E, Deluigi MT, Castellano G (2012) Mean atomic number quantitative assessment in backscattered electron imaging. Microsc Microanal 18: 1355-1361
http://doi.org/10.1017/S1431927612013566

Santoro L, Boni M, Rollinson GK, Mondillo N, Balassone G, Clegg AM (2014) Mineralogical characterization of the Hakkari nonsulfide Zn(Pb) deposit (Turkey): the benefits of QEMSCAN®. Miner Eng 69: 29-39
http://doi.org/10.1016/j.mineng.2014.07.002

Santoro L, Rollinson GK, Boni M, Mondillo N (2015) Automated Scanning Electron Microscopy QEMSCAN®-based mineral identification and quantification of the Jabali Zn-Pb-Ag nonsulphide deposit (Yemen). Econ Geol 110: 1083-1099
http://doi.org/10.2113/econgeo.110.4.1083

Slavík L, Valenzuela-Ríos JI, Hladil J, Chadimová L, Liao JC, Hušková A, Calvo H, Hrstka T (2016) Warming or cooling in the Pragian? Sedimentary record and petrophysical logs across the Lochkovian-Pragian boundary in the Spanish Central Pyrenees. Palaeogeogr Palaeoclimatol Palaeoecol 449: 300-320
http://doi.org/10.1016/j.palaeo.2016.02.018

Smith DGW, Nickel EH (2008) Codification of unnamed minerals. J Petrol 49: 581-583
http://doi.org/10.1093/petrology/egn003

Smythe DM, Lombard A, Coetzee LL (2013) Rare Earth Element deportment studies utilising QEMSCAN technology. Miner Eng 52: 52-61
http://doi.org/10.1016/j.mineng.2013.03.010

Stone M (1969) Nature and origin of banding in the granitic sheets Tremearne, Porthleven, Cornwall. Geol Mag 106: 142-158
http://doi.org/10.1017/S0016756800051955

Svojtka M, Ackerman L, Medaris LG, Hegner E, Valley JW, Hirajima T, Jelínek E, Hrstka T (2016) Petrological, geochemical and Sr-Nd-O isotopic constraints on the origin of garnet and spinel pyroxenites from the Moldanubian Zone of the Bohemian Massif. J Petrol 57: 897-920
http://doi.org/10.1093/petrology/egw025

Štemprok M (2016) Drill hole CS-1 penetrating the Cinovec/Zinnwald granite cupola (Czech Republic): an A-type granite with important hydrothermal mineralization. J Geosci 61: 395-423
http://doi.org/10.3190/jgeosci.226

Štemprok M, Šulcek Z (1969) Geochemical profile through an ore-bearing lithium granite. Econ Geol 64: 392-404
http://doi.org/10.2113/gsecongeo.64.4.392

Ward I, Merigot K, McInnes BIA (2018) Application of Quantitative Mineralogical Analysis in archaeological micromorphology: a case study from Barrow Is., Western Australia. J Archaeol Method Theory 25: 45-68
http://doi.org/10.1007/s10816-017-9330-6

Whitney JA, Stormer JC (1977) The distribution of NaAlSi3O8 between coexisting microcline and plagioclase and its effect on geothermometric calculations. Amer Miner 62: 687-691

Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Amer Miner 95: 185-187
http://doi.org/10.2138/am.2010.3371

Žák K, Skála R, Řanda Z, Mizera J, Heissig K, Ackerman L, Ďurišová J, Jonášová Š, Kameník J, Magna T (2016) Chemistry of Tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited. Geochim Cosmochim Acta 179: 287-311
http://doi.org/10.1016/j.gca.2016.01.025

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943