Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Emily D. Scribner, Lee A. Groat, Jan Cempírek

Mineralogy of Ti-bearing, Al-deficient tourmaline assemblages associated with lamprophyre dikes near the O’Grady Batholith, Northwest Territories, Canada

Journal of Geosciences, volume 63 (2018), issue 2, 123 - 135

DOI: http://dx.doi.org/10.3190/jgeosci.259



Calc-alkaline lamprophyre dikes are hosted by tourmalinized metasedimentary rocks in the Northwest Territories, Canada. Some of these lamprophyre dikes are cross-cut by aplite and pegmatite dikes, as well as tourmaline-bearing quartz veins that were all derived from the nearby granitic O’Grady Batholith.
The lamprophyre dikes are composed of actinolite to magnesio-hornblende, plagioclase, K-feldspar and quartz with minor phlogopite (up to 4.13 wt. % TiO2), titanite, apatite, pyrite, allanite-(Ce), and zircon. A zone near the margin of one of the dikes has been altered to tourmaline associated with actinolite to magnesio-hornblende, clinochlore, titanite and quartz, with minor clinopyroxene and apatite. Two generations of tourmaline are recognized: Tur I occurs in quartz at the margin of the dike and Tur II forms a massive aggregate with common inclusions of other minerals in an altered lamprophyre zone near the margin of the dike. The vast majority of the analyzed tourmaline is Al-deficient, with less than 6 apfu Al at the Z site (on average 5.691 apfu in Tur I and 5.601 apfu in Tur II). Tur I is mostly dravite with uvite, plus minor feruvite and fluor-uvite, while Tur II contains a greater proportion uvite, feruvite, and fluor-uvite. The most evolved tourmaline compositions observed are feruvite with up to 2.17 wt. % TiO2, and fluor-uvite with up to 0.84 wt. % F. The tourmaline composition reflects the unique geochemical environment in which it crystallized; from Tur I to Tur II, tourmaline becomes richer in Ca-, Fe-, and Ti, presumably due to the reaction of boron-bearing fluids with the Al-poor, Ca-, Mg-Fe-, and Ti-bearing minerals in the lamprophyre dike. The high F contents of some tourmaline species suggest that it crystallized from fluids derived from the aplite and pegmatite dikes.

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2017): 1.120

IF (ISI, 2017): 1.415

5 YEAR IF (ISI, 2017): 1.738

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943