Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

L. Gordon Jr. Medaris, Martin Svojtka, Lukáš Ackerman, Spencer J. Cotkin

Petrogenetic evolution of a Late Jurassic calc-alkaline plutonic complex, Klamath Mountains Province, U.S.A.: quantification by major- and trace-element modelling

Journal of Geosciences, volume 64 (2019), issue 2, 81 - 103

DOI: http://dx.doi.org/10.3190/jgeosci.285



This investigation illustrates the use of major and trace elements to evaluate the petrogenetic evolution of the Late Jurassic Russian Peak Plutonic Complex in the Klamath Mountains Province, northern California, U.S.A. The two principal plutons in the complex consist of quartz diorite and granodiorite, both of which were most likely derived by partial melting of amphibolitic oceanic crustal sources and ultimately emplaced at a shallow level of ~10 km (Ptotal ~ 3 kbar). The major-element compositional variations in quartz diorite are consistent with crystallization of plagioclase (45 %) and amphibole (69 %) and resorption of clinopyroxene (-14 %). Major-element variations in granodiorite could have resulted from crystallization of plagioclase (60 %), amphibole (26 %), and biotite (14 %). Trace elements in whole-rocks and amphibole record different degrees of fractional crystallization, whole-rocks reflecting differentiation on a plutonic scale, and amphibole crystals reflecting differentiation on the scale of an individual sample. Quartz diorite experienced 10% fractional crystallization for the suite as a whole and 45% for individual samples; in contrast, granodiorite experienced 40% crystallization for the suite and 80% for individual samples. For both quartz diorite and granodiorite, comparisons of whole-rock REE patterns with those for melts calculated to be in equilibrium with amphibole demonstrate that the whole-rock REE compositions represent a combination of crystals and melts from evolving magmas, rather than melts alone.

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2018): 0675

IF (ISI, 2018): 1.275

5 YEAR IF (ISI, 2018): 1.785

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943