Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Lars Scharfenberg, Anette Regelous, Helga De Wall

Radiogenic heat production of Variscan granites from the Western Bohemian Massif, Germany

Journal of Geosciences, volume 64 (2019), issue 4, 251 - 269

DOI: http://doi.org/10.3190/jgeosci.293



Adams C, Auld A, Gluyasm J, Hogg SI (2015) Geothermal energy - the global opportunity. Proc Instit Mech Eng, Pt A: J Power Energy 229: 747-754
http://doi.org/10.1177/0957650915590704

Artemieva IA, Thybo, Jakobson K, Sorensen NK, Nielsen LSK (2017) Heat production in granitic rocks: global analysis based on a new data compilations GRANITE2017. Earth Sci Rev 172: 1-26
http://doi.org/10.1016/j.earscirev.2017.07.003

Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37: 521-552
http://doi.org/10.1093/petrology/37.3.521

Bea F (2012) The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153: 278-291
http://doi.org/10.1016/j.lithos.2012.01.017

Bea F, Montero P, Zinger T (2003) The nature, origin, and thermal influence of the granite source layer of Central Iberia. J Geol 111: 579-595
http://doi.org/10.1086/376767

Beamish D, Busby J (2016) The Cornubian geothermal province: heat production and flow in SW England: estimates from boreholes and airborne gamma-ray measurements. Geotherm Energy 4: 4, DOI 10.1186/s40517-016-0046-8
http://doi.org/10.1186/s40517-016-0046-8

Beardsmore G (2004) The influence of basement on surface heat flow in the Cooper Basin. Explor Geophys 35: 223-235
http://doi.org/10.1071/EG04223

Breiter K (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 151: 105-121
http://doi.org/10.1016/j.lithos.2011.09.022

Bültemann HW (1979) Die Uranvorkommen im ostbayerischen Grundgebirge Raum Mähring, Krs. Tirschenreuth/Opf. Z Dtsch Geol Gesell 130: 575-596

Casini L, Cuccuru S, Puccini A, Oggiano G, Rossi P (2015) Evolution of the Corsica-Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysics 646: 65-78
http://doi.org/10.1016/j.tecto.2015.01.017

Carl C, Wendt I (1993) Radiometrische Datierung der Fichtelgebirgsgranite. Z geol Wiss 21: 49-72

Chandrasekharam D, Varun C, Garg G, Singh, HK, Trupi G (2014) High heat generating granites of Siwana, Rajasthan. Geoth Res T 38: 625 - 627

Chen F, Siebel W (2004) Zircon and titanite geochronology of the Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif: pulses of the late Variscan magmatic activity. Eur J Mineral 16: 777-778
http://doi.org/10.1127/0935-1221/2004/0016-0777

Chen F, Siebel W, Satir M (2003) Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of two Variscan S-type granites in the NW Bohemian Massif. Int J Earth Sci 92: 173-184
http://doi.org/10.1007/s00531-003-0310-6

de Wall H, Pandit MK, Donhauser I, Schöbel S, Wang W, Sharma KK (2018) Evolution and tectonic setting of the Malani-Nagarparkar Igneous Suite: a Neoproterozoic silicic-dominated large igneous province in NW India-SE Pakistan. J Asian Earth Sci 160: 136-158
http://doi.org/10.1016/j.jseaes.2018.04.016

de Wall H, Schaarschmidt A, Kämmlein M, Gabriel G, Bestmann M, Scharfenberg L (2019) Subsurface granites in the Franconian Basin as the source of enhanced geothermal gradients: a key study from gravity and thermal modeling of the Bayreuth granite. Int J Earth Sci 108: 1913-1936
http://doi.org/10.1007/s00531-019-01740-8

Dietl C, Koyi HA, de Wall H, Gößmann M (2006) Centrifuge modelling of plutons intruding shear zones: application to the Fürstenstein Intrusive Complex (Bavarian Forest, Germany). Geodin Acta 19: 165-184
http://doi.org/10.3166/ga.19.165-184

Dill H, Weiser T (1981) Eine Molybdänsulfid-Impsonit Mineralisation aus dem Uranvorkommen Wäldel/Mähring (Oberpfalz). Neu Jb für Mineral, Mh: 452-458

Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99: 299-325
http://doi.org/10.1007/s00531-008-0389-x

Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20: 641 - 644
http://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

Eby GN, Kochhar N (1990) Geochemistry and petrogenesis of the Malani Igneous Suite, northern India. J Geol Soc India 36: 109-130

Edwards JW F (1984) Interpretations of seismic and gravity surveys over the eastern part of the Cornubian platform. In: Hutton DHW, Sanderson DJ (eds) Variscan Tectonics of the North Atlantic Region. Geological Society of London Special Publications 14: 119-124
http://doi.org/10.1144/GSL.SP.1984.014.01.11

Faccenda M, Gerya TV, Chakraborty S, (2008) Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103: 257-287
http://doi.org/10.1016/j.lithos.2007.09.009

Fernández M, Marzán I, Correia A, Ramalho E (1998) Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophysics 291: 29-
http://doi.org/10.1016/S0040-1951(98)00029-8

Finger F, Gerdes A, René M, Riegler G (2009) The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the south-western sector of the Bohemian Massif (Variscan Orogen). Geol Carpath 60: 205-212
http://doi.org/10.2478/v10096-009-0014-3

Floyd PA (1972) Geochemistry, origin and tectonic environment of the basic and acidic rocks of Cornubia, England. Proc Geol Assoc 83: 385-404
http://doi.org/10.1016/S0016-7878(72)80012-9

Förster A, Förster H-J (2000) Crustal composition and mantle heat flow: implications from surface heat flow and radiogenic heat production in the Variscan Erzgebirge (Germany). J Geophys Res 105/B12: 27.917-27.938
http://doi.org/10.1029/2000JB900279

Förster H-J (2000) On the origin of the Kösseine granites and their enclaves (Fichtelgebirge, Germany), implications from the composition and age of REE-bearing accessory minerals. Münch Geol H A28: 35-51

Förster H-J, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia - From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 287-308

Förster H-J, Rhede D, Hecht L (2008) Chemical composition of radioactive accessory minerals: implications for the evolution, alteration, age and uranium fertility of the Fichtelgebirge granites (NE Bavaria, Germany). Neu Jb Mineral, Abh 185: 161-182
http://doi.org/10.1127/0077-7757/2008/0117

Frattini P, De Vivo B, Lima A, Cicchella D (2006) Elemental and gamma-ray surveys in the volcanic soils of Ischia Island, Italy. Geochem Explor Environ Anal 6: 325-339
http://doi.org/10.1144/1467-7873/06-105

Gard M, Hasterok D, Hand M, Cox G (2019). Variations in continental heat production from 4 Ga to the present: evidence from geochemical data. Lithos 342-343: 391-406
http://doi.org/10.1016/j.lithos.2019.05.034

Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc, London 157: 577-587
http://doi.org/10.1144/jgs.157.3.577

Gerya T, Perchuk LL, Maresch WV, Willner AP, van Reenen DD, Smit CA (2002) Thermal regime and gravitational instability of multi-layered continental crust: implications for the buoyant exhumation of high-grade metamorphic rocks. Eur J Min 14: 687-699
http://doi.org/10.1127/0935-1221/2002/0014-0687

Gnojek I, Sedlák J, Rapprich V, Skácelová Z, Mlčoch B, Krentz O., Casas-García R (2018) Structure of the Carboniferous Altenberg-Teplice Caldera (eastern part of the Krušné hory/Erzgebirge Mts.) revealed by combined airborne and ground gamma-ray spectrometry. J Geosci 63: 3-20
http://doi.org/10.3190/jgeosci.251

Grasty RL, Holman PB, Blanchard YB (1991) Transportable calibration pads for ground and airborne gamma-ray spectrometers. Geological Survey of Canada Special Papers 90-23, pp 1-25

Haack U, Gohn E, Laschtowitz K, Becker KH (1991) Uran, Thorium und Kalium in Gesteinen des Schwarzwaldes und der Oberpfalz. In: Emmermann R, Lauterjung J (eds) KTB Report 91-1 - Forschungsergebnisse im Rahmen des DFG-Schwerpunktprogrammes “KTB”. Niedersächsisches Landesamt für Bodenforschung, Hannover, pp 269-298

Hansen BT, Teufel S, Ahrendt H (1989) Geochronologie of the Moldanubian-Saxothuringian transition zone, northeast Bavaria. In: Emmermann R, Wohlenberg J (eds) The German Continental Deep Drilling Program (KTB). Springer, Heidelberg, pp 55-65
http://doi.org/10.1007/978-3-642-74588-1_4

Harley TL, Westaway R, McCay AT (2017) Gamma-ray spectrometry in the field: radioactive heat production in the Central Slovakian Volcanic Zone. J Volcanol Geotherm Res 338: 1-24
http://doi.org/10.1016/j.jvolgeores.2017.03.009

Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307: 59-70
http://doi.org/10.1016/j.epsl.2011.04.034

Hasterok D, Gard M (2016) Utilizing thermal isostasy to estimate sub-lithospheric heat flow and anomalous crustal radioactivity. Earth Planet Sci Lett 450: 197-207
http://doi.org/10.1016/j.epsl.2016.06.037

Hasterok D, Webb J (2017) On the radiogenic heat production of igneous rocks. Geosci Front 8: 919-940
http://doi.org/10.1016/j.gsf.2017.03.006

Hasterok D, Gard M, Webb J (2018) On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geosci Front 9: 1777-1794
http://doi.org/10.1016/j.gsf.2017.10.012

Hecht L, Vigneresse JL, Morteani G (1997) Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. Geol Rundsch 86 (Suppl 1): 93-109
http://doi.org/10.1007/PL00014669

Hecht L, Thuro K, Plinninger R, Cuney M (1999) Mineralogical and geochemical characteristics of hydrothermal alteration and episyenitization in the Königshain granites, northern Bohemian Massif, Germany. Int J Earth Sci 88: 236-252
http://doi.org/10.1007/s005310050262

Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society of London Special Publications 179: 387-399
http://doi.org/10.1144/GSL.SP.2000.179.01.23

Huston DL (ed) (2010) An Assessment of the Uranium and Geothermal Potential of North Queensland. Geoscience Australia. Record 2010/14, pp 1-108

Irber W, Förster HJ, Hecht L, Möller P, Morteani G (1997) Experimental, geochemical, mineralogical and O-isotope constraints on the late-magmatic history of the Fichtelgebirge granites (Germany). Geol Rundsch 86 (Suppl 1): S110-124
http://doi.org/10.1007/PL00014647

Jaupart C., Mareschal J-C (2003) Constraints on crustal heat production from heat flow data. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, Volume 4, The Crust (Rudnick RL ed). Elsevier-Pergamon, Oxford, 65-84
http://doi.org/10.1016/B0-08-043751-6/03017-6

Jaupart C, Mareschal J-C, Iarowsky L (2016) Radiogenic heat production in the continental crust. Lithos 262: 398-427
http://doi.org/10.1016/j.lithos.2016.07.017

Kalt A, Berger A, Blümel P (1999) Metamorphic evolution of cordierite-bearing migmatites from the Bayerische Wald (Variscan Belt, Germany). J Petrol 40: 601-627
http://doi.org/10.1093/petroj/40.4.601

Kalt A, Corfu F, Wijbrans JR (2000) Time calibration of a P-T path from a Variscan high-temperature low-pressure metamorphic complex (Bavarian Forest, Germany) and the detection of inherited monazite. Contrib Mineral Petrol 138: 143-163
http://doi.org/10.1007/s004100050014

Kirkland C, Smithies R, Taylor R, Evans N, McDonald B (2015) Zircon Th/U ratios in magmatic environs. Lithos 212-215, 397-414
http://doi.org/10.1016/j.lithos.2014.11.021

Klein T, Kiehm S, Siebel S, Shang CK, Rohrmüller J, Dörr W, Zulauf G (2008) Age and emplacement of late-Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). Lithos 102: 478-507
http://doi.org/10.1016/j.lithos.2007.07.025

Klomínský J, Jarchovský T, Rajpoot G (2010) Atlas of Plutonic Rocks and Orthogneisses in the Bohemian Massif. 1. Introduction. Czech Geological Survey, Prague, pp 1-96

Kováříková P, Siebel W, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V, (2007) Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. Chem Erde - Geochem 67: 151-174
http://doi.org/10.1016/j.chemer.2007.04.002

Krešl M, Vaňková V, Janáčková A (1978) Radioactivity and heat production data from several boreholes in the Bohemian Massif. Stud Geophys Geod 22: 165-176
http://doi.org/10.1007/BF01614041

Kříbek B, Žák K, Dobeš P, Leichmann J, Pudilová M, René M, Scharm B, Scharmová M, Hájek A, Holeczy D, Hein UF, Lehmann B (2009) The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Miner Depos 44: 99-128
http://doi.org/10.1007/s00126-008-0188-0

Ledésert B, Hébert RL (2012) The soultz-sous-forêts enhanced geothermal system: a granitic basement used as a heat exchanger to produce electricity. In Mitrovic K (ed) Heat Exchangers: Basics Design Applications. InTech, London, pp 477-504

Lexa O, Schulmann K, Janoušek V, Štípská P, Guy A, Racek M (2011) Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J Metamorph Geol 29: 79-102
http://doi.org/10.1111/j.1525-1314.2010.00906.x

Loiselle MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs 11: No 7, 468

Lüschen E, Görne S, von Hartmann H, Thomas R, Schulz R (2015) 3D seismic survey for geothermal exploration in crystalline rocks in Saxony, Germany. Geophys Prospect 63: 975-989
http://doi.org/10.1111/1365-2478.12249

Mareschal JC, Jaupart J (2013) Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics 609: 524-534
http://doi.org/10.1016/j.tecto.2012.12.001

McCay A, Harley T, Younger P, Sanderson D, Cresswell A (2014) Gamma-ray spectrometry in geothermal exploration: state of the art techniques. Energies 7: 4757-4780
http://doi.org/10.3390/en7084757

McLaren S, Sandiford M, Hand M, Neumann N, Wyborn L, Bastrakova I (2003) The hot southern continent, Heat flow and heat production in Australian Proterozoic terranes. In: Hillis, RR Muller D (eds) Evolution and Dynamics of the Australian Plate. Geological Society of Australia Special Publications 22: 151-161

McLaren S, Sandiford M, Powell R. (2005) Contrasting styles of Proterozoic crustal evolution: a hot-plate tectonic model for Australian terranes. Geology 33: 673-676
http://doi.org/10.1130/G21544AR.1

McLennan SM, Taylor SR (1996) Heat flow and the chemical composition of continental crust. J Geol 104: 369-377
http://doi.org/10.1086/629834

Meixner AJ, Kirkby AL, Horspool N (2014) Using constrained gravity inversions to identify high-heat-producing granites beneath thick sedimentary cover in the Cooper Basin region of central Australia. Geothermics 51: 483-495
http://doi.org/10.1016/j.geothermics.2013.10.010

Miller CF, Mittlefehldt DW (1982) Depletion of light rare-earth elements in felsic magmas. Geology 10: 129-133
http://doi.org/10.1130/0091-7613(1982)10<129:DOLREI>2.0.CO;2

Neumann N, Sandiford M, Foden J (2000) Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly. Earth Planet Sci Lett 183: 107-120
http://doi.org/10.1016/S0012-821X(00)00268-5

O’Brien PJ, Duyster J, Grauert B, Schreyer W, Stöchert B, Weber K (1997) Crustal evolution of the KTB drill site: from oldest relics to the Late Hercynian granites. J Geophys Res 102: 18203-18220
http://doi.org/10.1029/96JB03397

Puccini A, Xhixha G, Cuccuru S, Oggiano G, Xhixha MK, Mantovani F, Alvarez CR, Casini L (2014) Radiological characterization of granitoid outcrops and dimension stones of the Variscan Corsica-Sardinia Batholith. Environ Earth Sci 71: 393-405
http://doi.org/10.1007/s12665-013-2442-8

Radiation Solutions (2007) RS-125 Assay Analysis - Comments, Reprecision - preliminary. Unpublished RSI Technical Bote 2007-1251, pp 1-2

Radiation Solutions (2008) CALIBRATION of the RS-125/RS-230 Spectrometers . Unpublished RSI Technical Note RSG-102, pp 1-2

Radiation Solutions (2009) Spectrum Stabilization and Calibration for the RSI RS-125 and RS-230 Handheld Spectrometers. Unpublished RSI Technical Note RSG 703, pp 1-6 p

Richter P, Stettner G (1979) Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geol Bavarica 78: pp 1-144

Romer RL, Cuney M (2018) Phanerozoic uranium mineralization in Variscan Europe - more than 400 Ma of tectonic, supergene, and climate-controlled uranium redistribution. Ore Geol Rev 102: 474-504
http://doi.org/10.1016/j.oregeorev.2018.09.013

Röttger B, Fluche B, Voß W, Rehli HJ (1991) Aerogeophysikalische Hubschrauber-Messungen im Umfeld der Kontinentalen Tiefbohrung (KTB) Windisch-Eschenbach (Oberpfalz). Unpublished Technical Report, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 1-48

Rudnick RR, McDonough FW, O’Connell RJ (1998). Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145: 395-411
http://doi.org/10.1016/S0009-2541(97)00151-4

Rybach L (1988) Determination of heat producing rate. In: Hänel R, Rybach L, Stegena L (eds) Handbook for Terrestrial Heat-Flow Density Determination. Kluwer, Dordrecht, pp 125-141

Sandiford M, McLaren S (2002) Tectonic feedback and the ordering of heat producing elements within the continental lithosphere. Earth Planet Sci Lett 204: 133-150
http://doi.org/10.1016/S0012-821X(02)00958-5

Schaltegger U (1997) Magma pulses in the Central Variscan Belt: episodic melt generation and emplacement during lithospheric thinning. Terra Nova 9: 242-245
http://doi.org/10.1111/j.1365-3121.1997.tb00021.x

Scharfenberg L, de Wall H (2016) Natürliche Gammastrahlung von Graniten in der Oberpfalz (Nordost-Bayern) - Vergleich von aerogeophysikalischen und in situ-gammasprectroskopischen Messungen. Geol Bl Nordost-Bayern 66: 205-227

Scharfenberg L, de Wall H, Bauer W (2016) In situ gamma radiation measurements on Variscan granites and inferred radiogenic heat production, Fichtelgebirge, Germany. Z Dtsch Ges Geowiss 167: 19-32
http://doi.org/10.1127/zdgg/2016/0051

Scharfenberg L, de Wall H, Schöbel S, Minor A, Maurer M, Pandit M.K, Sharma KK (2015) In situ gamma radiation measurements in the Neoproterozoic rocks of Sirohi region, NW India. J Earth Syst Sci 124: 1223-1234
http://doi.org/10.1007/s12040-015-0601-x

Scharfenberg L, Jandausch S, Anetzberger L, Regelous A, Sharma KK, de Wall H (2019) Differences in natural gamma radiation characteristics of Erinpura and Malani granite in NW India. J Earth Syst Sci 128: 137, DOI 10.1007/s12040-019-1166-x
http://doi.org/10.1007/s12040-019-1166-x

Scheuvens D, Zulauf G (2000) Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). Int J Earth Sci 89: 617-630
http://doi.org/10.1007/s005310000108

Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341: 266-286
http://doi.org/10.1016/j.crte.2008.12.006

Siebel W, Chen F (2010) Zircon Hf isotope perspective on the origin of granitic rocks from eastern Bavaria, SW Bohemian Massif. Int J Earth Sci 99: 993-1005
http://doi.org/10.1007/s00531-009-0442-4

Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition , age relations and phase concept. Geol Rundsch 86: 45-63
http://doi.org/10.1007/PL00014665

Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci (Geol. Rundsch) 92: 36-53

Siebel W, Blaha U, Chen F, Rohrmüller J (2005) Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. Int J Earth Sci 94: 8-23
http://doi.org/10.1007/s00531-004-0445-0

Siebel W, Shang CK, Reitter E, Rohrmüller J; Breiter K (2008) Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement: constraints from geochemistry and zircon 207Pb/206Pb chronology, J Petrol 49: 1853-1872
http://doi.org/10.1093/petrology/egn049

Siebel W, Shang CK, Thern E, Danišík M, Rohrmüller J (2012) Zircon response to high-grade metamorphism as revealed by U-Pb and cathodoluminescence studies. Int J Earth Sci 101: 2105-2123
http://doi.org/10.1007/s00531-012-0772-5

Siégel C, Bryan S, Purdy D, Gust D, Allen C, Uysal T, Champion D (2012) A new database compilation of whole-rock chemical and geochronological data of igneous rocks in Queensland: a new resource for HDR geothermal resource exploration. Proceedings of the 2011 Australian Geothermal Energy Conference, Melbourne. Geoscience Australia: 239-244

Singh LS, Vallinayagam G (2012) High heat producing volcano-plutonic rocks of the Siner area, Malani Igneous Suite, Western Rajasthan, India. Int J Geosci 3: 1137-1141
http://doi.org/10.4236/ijg.2012.35115

Stettner G (1979) Der Grenzbereich Saxothuringikum-Moldanubische Region im Raum Tirschenreuth-Mähring (Oberpfalz) und die Situation des Uran-führenden Präkambriums. Z Dtsch geoln Gesell 130: 561-574

Šimíček D, Bábek O, Leichmann J (2012) Outcrop gamma-ray logging of siliciclastic turbidites: separating the detrital provenance signal from facies in the foreland-basin turbidites of the Moravo-Silesian basin, Czech Republic. Sediment Geol 261-262: 50-64
http://doi.org/10.1016/j.sedgeo.2012.03.003

Tasáryová Z, Janoušek V, Frýda J (2018) Failed Silurian continental rifting at the NW margin of Gondwana: evidence from basaltic volcanism of the Prague Basin (Teplá-Barrandian Unit, Bohemian Massif). Int J Earth Sci 107: 1231-1266
http://doi.org/10.1007/s00531-017-1530-5

Thomas R, Klemm W (1994) Microthermometric study of silicate melt in inclusions in Variscan granites from SE Germany: volatile contents and entrapment conditions. J Petrol 38:1753-1765
http://doi.org/10.1093/petroj/38.12.1753

Tiwari SK, Biswal TK (2019). Paleostress and magma pressure measurement of granite veins in the Neoproterozoic Ambaji granulite, South Delhi Terrane, Aravalli Delhi Mobile Belt, NW India: implications towards the extension-driven exhumation of the middle-lower crustal rocks. J Earth Syst Sci 128: 150
http://doi.org/10.1007/s12040-019-1187-5

Tropper P, Deibl I, Finger F, Kaindl R (2006) P-T-t evolution of spinel-cordierite-garnet gneisses from the Sauwald Zone (southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit? Int J Earth Sci 95: 1019-1037
http://doi.org/10.1007/s00531-006-0082-x

Trzebski R; Behr H-J, Conrad W (1997) Subsurface distribution and tectonic setting of the late-Variscan granites in the northwestern Bohemian Massif. Geol Rundsch 86 (Suppl 1): 64-78
http://doi.org/10.1007/PL00014666

Van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Nitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Pet Geol 17: 43-59
http://doi.org/10.1016/S0264-8172(99)00052-5

Vilà M, Fernández M, Jiménez-Munt I (2010) Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 490: 152-164
http://doi.org/10.1016/j.tecto.2010.05.003

von Seckendorff V (2012) Der Magmatismus in und zwischen den spätvariscischen permokarbonen Sedimentbecken in Deutschland. SDGG 61: 743-860
http://doi.org/10.1127/sdgg/61/2012/743

Závada P, Schulmann K, Racek M, Hasalová P, Jeřábek P, Weinberg RF, Štípská P, Roberts A (2018) Role of strain localization and melt flow on exhumation of deeply subducted continental crust. Lithosphere 10: 217-238
http://doi.org/10.1130/L666.1

Zulauf G, Maier M, Stöckhert B (1997) Depth of intrusion and thermal modeling of the Falkenberg granite (Oberpfalz, Germany). Geol Rundsch 86 (Suppl 1): 87-92
http://doi.org/10.1007/PL00014668

Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geological Society of London Special Publications 405: 169-196
http://doi.org/10.1144/SP405.9

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943