Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Dariusz Malczewski, Agnieszka Grabias, Maria Dziurowicz

Activation energy of annealed, partially metamict davidite by 57Fe Mössbauer spectroscopy

Journal of Geosciences, volume 65 (2020), issue 1, 37 - 44

DOI: http://doi.org/10.3190/jgeosci.298


  Abstract References Affiliations

Branagan D (2007) Davidite and other early events in Australia’s uranium story. J Proc Roy Soc New South Wales 140: 1-9

Gatehouse BM, Grey IE, Kelly PR (1979) The crystal structure of davidite. Amer Miner 64: 1010-1017

Hawthorne FC (1988) Mössbauer spectroscopy. In: Hawthorne FC (ed) Spectroscopic Methods in Mineralogy and Geology. Mineralogical Society of America Reviews in Mineralogy 18: 255-340

Hawthorne FC, Groat LA, Rausepp M, Ball NA, Kimata M, Spike FD, Gaba R, Halden NM, Lumpkin GR, Ewing RC, Greegor RB, Lytle FW, Ercit TS, Rossman GR, Wicks FJ, Ramik RA, Sherriff BL, Fleet ME, McCammon C (1991) Alpha-decay damage in titanite. Amer Miner 76: 370-396

Janeczek J, Eby RK (1993) Annealing in radiation damage in allanite and gadolinite. Phys Chem Miner 19: 343-356
http://doi.org/10.1007/BF00202971

Lima de Faria J (1956) The standard thermal treatment in the identification of metamict minerals by X-ray powder patterns. Bol Mus Lab Mineral Geol Fac Ciênc Univ Lisb 7(24): 125-131

Lumpkin GR, Blackford MG, Colella M (2013) Chemistry and radiation effects of davidite. Amer Miner 98: 275-278
http://doi.org/10.2138/am.2013.4236

Lumpkin GR, Gao Y, Gieré R, Williams CT, Mariano AN, Geisler T (2014) The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineral Mag 78: 1071-1095
http://doi.org/10.1180/minmag.2014.078.5.01

Malczewski D (2010) Recrystallization in fully metamict gadolinite from Ytterby (Sweden), annealed in air and studied 57Fe Mössbauer spectroscopy. Amer Miner 95: 463-471
http://doi.org/10.2138/am.2010.3253

Malczewski D, Dziurowicz M (2015) 222Rn and 220Rn emanations as a function of the absorbed alpha-doses from select metamict minerals. Amer Miner 100: 1378-1385
http://doi.org/10.2138/am-2015-4917

Malczewski D, Janeczek J (2002) Activation energy of annealed metamict gadolinite from 57Fe Mössbauer spectroscopy. Phys Chem Miner 29: 226-232
http://doi.org/10.1007/s00269-001-0221-7

Malczewski D, Molak A (2011) Electrical properties of annealed, fully metamict REE2Fe2+Be2Si2O10. J Nucl Mater 412: 239-249
http://doi.org/10.1016/j.jnucmat.2011.03.011

Malczewski D, Dziurowicz M, Krzykawski T, Grabias A (2018) Spectroscopic characterization and thermal recrystallization study of an unknown metamict phase from Tuften quarry, southern Norway. Canad Mineral 56: 365-373
http://doi.org/10.3749/canmin.1800015

Meldrum A, Boatner LA, Ewing RC (1997) Displacive radiation effects in the monazite- and zircon-structure orthophosphates. Phys Rev B 56: 13805-13814
http://doi.org/10.1103/PhysRevB.56.13805

Modgil SK, Virk HS (1985) Annealing of fission fragment tracks in inorganic solids. Nucl Instrum Methods Phys Res B 12: 212-218
http://doi.org/10.1016/0168-583X(85)90053-9

Neumann H, Sverdrup TL (1960) Contributions to the mineralogy of Norway. No. 8. Davidite from Tuftan, Iveland. Nor Geol Tidsskr 40: 277-288

Orlandi P, Pasero M, Rotiroti N, Olmi F, Demartin F, Moëlo Y (2004) Gramaccioliite-(Y), a new mineral of the crichtonite group from Stura Valley, Piedmont, Italy. Eur J Mineral 16: 171-175
http://doi.org/10.1127/0935-1221/2004/0016-0171

Pabst A (1961) X-ray crystallography of davidite. Amer Miner 46: 700-718

Primak W (1955) Kinetics of processes distributed in activation energy. Phys Rev 100: 1677-1689
http://doi.org/10.1103/PhysRev.100.1677

Primak W (1960) Large temperature range annealing. J Appl Phys 31: 1524-1533
http://doi.org/10.1063/1.1735886

Rouse RC, Peacor DR (1968) The relationship between senaite, magnetoplumbite and davidite. Amer Miner 53: 869-879

Saini HS, Nand L, Nagpaul KK (1975) Annealing studies of fission tracks in allanite. Contrib Mineral Petrol 52: 143-145
http://doi.org/10.1007/BF00395010

Sandhu SA, Singh S, Virk HS (1987) Annealing of fission fragment tracks in micaceous minerals. Mineral J 13: 254-259
http://doi.org/10.2465/minerj.13.254

Seydoux-Guillaume AM, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29: 240-253
http://doi.org/10.1007/s00269-001-0232-4

Singh Y, Saxena A, Bhatt AK, Viswanathan R, Shaji TS, Nanda LK (2018) Crystallochemical studies on davidite from Bichun, Jaipur District, Rajasthan, India. J Earth Syst Sci 127: 1-14
http://doi.org/10.1007/s12040-017-0905-0

Virk HS (1995) Single activation energy model of radiation damage in solid state nuclear track detectors. Radiat Eff Defect Solids 133: 87-95
http://doi.org/10.1080/10420159508225760

Weber WJ (1991) Self-radiation damage and recovery in Pu-doped zircon. Radiat Eff Defect Solids 115: 341-349
http://doi.org/10.1080/10420159108220580

Weber WJ, Wald JW, Matzke HJ (1986) Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaZrTi2O7. J Nucl Mater 138: 196-209
http://doi.org/10.1016/0022-3115(86)90006-1

Whittle AWG (1959) The nature of davidite. Econ Geol 54: 64-81
http://doi.org/10.2113/gsecongeo.54.1.64

Wülser PA, Brugger J, Meisser N (2004) The crichtonite group of minerals: a review of the classification. Bull Soc Fr Minéral Cristallogr 16: 76-77

Zietlow P, Beirau T, Mihailova B, Groat LA, Chudy T, Shelyug A, Navrotsky A, Ewing RC, Schlüter J, Škoda R, Bismayer U (2017) Thermal annealing of natural, radiation-damaged pyrochlore. Z Kristallogr 232: 25-38
http://doi.org/10.1515/zkri-2016-1965

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943