Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

           | issue | next >
 
Received: 19 November 2019
Accepted: 28 April 2020
Online: 8 July 2020
H. Editor: J. Konopásek
 
  full text (PDF, 9.07 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 

Original paper

Fuat Yavuz, Demet Kiran Yildirim

WinGrt, a Windows program for garnet supergroup minerals

Journal of Geosciences, volume 65 (2020), issue 2, 71 - 95



Ai Y (1994) A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer. Contrib Mineral Petrol 115: 467-473
http://doi.org/10.1007/BF00320979

Antao SM (2014) Schorlomite and morimotoite: what’s in a name? Powder Diffr 29: 346-351
http://doi.org/10.1017/S0885715614000529

Antao SM, Cruickshank LA (2018) Crystal structure refinements of tetragonal (OH,F)-rich spessartine and henritermierite garnets. Acta Cryst B74: 104-114

Aubrecht R, Méres Š, Sýkora M, Mikus T (2009) Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia). Geol Carpath 60: 463-483
http://doi.org/10.2478/v10096-009-0034-z

Baxter EF, Caddick MJ, Ague JJ (2013) Garnet: common mineral, uncommonly useful. Elements 9: 415-419
http://doi.org/10.2113/gselements.9.6.415

Bhattacharya A, Krishnakumar KR, Raith M, Sen SK (1991) An improved set off a-X parameters for Fe-Mg-Ca garnets and refinements of the orthopyroxene-garnet thermometer and the orthopyroxene-garnet-plagioclase-quartz barometer. J Petrol 32: 629-656
http://doi.org/10.1093/petrology/32.3.629

Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M (1992) Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib Mineral Petrol 111: 87-93
http://doi.org/10.1007/BF00296580

Bohlen SR, Essene EJ (1980) Evaluation of coexisting garnet-biotite, garnet-clinopyroxene, and other Mg-Fe exchange thermometers in Adirondack granulites: summary. Geol Soc Am Bull 91: 107-109
http://doi.org/10.1130/0016-7606(1980)91<107:EOCGGA>2.0.CO;2

Bucher K, Grapes R (2011) Petrogenesis of Metamorphic Rocks, 8th Edition. Springer, Berlin, pp 1-428

Dahl PS (1980) The thermal-compositional dependence of Fe2+-Mg distributions between coexisting garnet and pyroxene: applications to geothermometry. Amer Miner 65: 854-866

Dasgupta S, Sengupta P, Guha D, Fukuoka M (1991) A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites. Contrib Mineral Petrol 109: 130-137
http://doi.org/10.1007/BF00687206

Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineral Mag 51: 431-435
http://doi.org/10.1180/minmag.1987.051.361.10

Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 71: 13-22
http://doi.org/10.1007/BF00371878

Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66: 113-117
http://doi.org/10.1007/BF00372150

Friberg LM (1989) Garnet stoichiometry program using a Lotus 1-2-3 spreadsheet. Comput Geosci 15: 1169-1172
http://doi.org/10.1016/0098-3004(89)90129-5

Galuskina IO, Galuskin EV, Armbruster T, Lazic B, Kusz J, Dzıerżanowskı P, Gazeev VM, Pertsev NN, Prusık K, Zadov AE, Wınıarskı A, Wrzalık R, Gurbanov AG (2010) Elbrusite-(Zr) - a new uranian garnet from the Upper Chegem Caldera, Kabardino-Balkaria, northern Caucasus, Russia. Amer Miner 95: 1172-1181
http://doi.org/10.2138/am.2010.3507

Galuskina IO, Galuskin EV, Prusık K, Gazeev VM, Pertsev NN, Dzıerżanowskı P (2013) Irinarassite Ca3Sn2SiAl2O12 - new garnet from the Upper Chegem Caldera, northern Caucasus, Kabardino-Balkaria, Russia. Mineral Mag 77: 2857-2866
http://doi.org/10.1180/minmag.2013.077.6.11

Ganguly J (1979) Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient. Geochim Cosmochim 43: 1021-1029
http://doi.org/10.1016/0016-7037(79)90091-7

Ganguly J, Saxena SK (1984) Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermo-barometry. Amer Miner 69: 88-97

Ganguly J, Cheng W, Tirone M (1996) Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contrib Mineral Petrol 126: 137-151
http://doi.org/10.1007/s004100050240

Geiger C (2013) Garnet: a key phase in nature, the laboratory, and technology. Elements 9: 447-452
http://doi.org/10.2113/gselements.9.6.447

Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U (2013) Nomenclature of the garnet supergroup. Amer Miner 98: 785-811
http://doi.org/10.2138/am.2013.4201

HACKLER RT, Wood BJ (1989) Experimental determination of Fe and Mg exchange between garnet and olivine and estimation of Fe-Mg garnet mixing properties. Amer Mineral 74: 994-999

Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86: 359-373
http://doi.org/10.1007/BF01187140

Henry DJ, Dutrow BL (2018) Tourmaline studies through time: contributions to scientific advancements. J Geosci 63: 77-98
http://doi.org/10.3190/jgeosci.255

Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezozotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Amer Mineral 96: 895-913
http://doi.org/10.2138/am.2011.3636

Hodges KV, Spear FS (1982) Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. Amer Miner 67: 1118-l134

Hoınkes G (1986) Effect of grossular-content in garnet on the partitioning of Fe and Mg between garnet and biotite. An empirical investigation on staurolite-zone samples from the Austroalpine Schneeberg Complex. Contrib Mineral Petrol 92: 393-399
http://doi.org/10.1007/BF00572168

Hora JM, Kronz A, Möller-McNett S, Wörner G (2013) An Excel-based tool for evaluating and visualizing geothermobarometry data. Comput Geosci 56: 178-185
http://doi.org/10.1016/j.cageo.2013.02.008

Indares A, Martignole J (1985) Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. Amer Miner 70: 272-278

Knierzinger W, Wagreich M, Kiraly F, Lee EV, Ntaflos T (2019) TETGAR_C: a novel three-dimensional (3D) provenance plot and calculation tool for detrital garnets. J Geosci 64: 127-148
http://doi.org/10.3190/jgeosci.284

Knowles CR (1987) A BASIC program to recast garnet end-members. Comput Geosci 13: 655-658
http://doi.org/10.1016/0098-3004(87)90034-3

Krippner A, Meinhold G, Morton AC, von Eynatten H (2014) Evaluation of garnet discrimination diagrams using geochemical data derived from various host rocks. Sediment Geol 306: 36-52
http://doi.org/10.1016/j.sedgeo.2014.03.004

Krogh EJ (1988) The garnet-clinopyroxene Fe-Mg geothermometer - a reinterpretation of existing experimental data. Contrib Mineral Petrol 99: 44-48
http://doi.org/10.1007/BF00399364

Krogh-Ravna E (2000) The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. J Metamorph Geol 18: 211-219
http://doi.org/10.1046/j.1525-1314.2000.00247.x

Lal RK (1993) Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet-orthopyroxene-plagioclase-quartz assemblages and their application to the South Indian granulites. J Metamorph Geol 11: 855-866
http://doi.org/10.1111/j.1525-1314.1993.tb00195.x

Lanari P, Vidal O, De Andre V, Dubacq B, Lewin E, Grosch EG, Schwartz S (2014) XMapTools: a MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput Geosci 62: 227-240
http://doi.org/10.1016/j.cageo.2013.08.010

Lee HY, Ganguly J (1984) Fe, Mg fractionation between garnet and orthopyroxene: experimental data and application. Geological Society of America Abstract No. 52733

Lee HY, Ganguly J (1988) Equilibrium compositions of coexisting garnet and orthopyroxene: experimental determinations in the system FeO-MgO-Al2O3-SiO2, and applications. J Petrol 29: 93-113
http://doi.org/10.1093/petrology/29.1.93

Liu J (1998) Assessment of the garnet-clinopyroxene thermometer. Int Geol Rev 40: 579-608
http://doi.org/10.1080/00206819809465226

Locock AJ (2008) An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34: 1769-1780
http://doi.org/10.1016/j.cageo.2007.12.013

Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62: 1-14
http://doi.org/10.1016/j.cageo.2013.09.011

Ma C, Krot AN (2014) Hutcheonite, Ca3Ti2(SiAl2)O12, a new garnet mineral from the Allende meteorite: an alteration phase in a Ca-Al-rich inclusion. Amer Miner 99: 667-670
http://doi.org/10.2138/am.2014.4761

Mange MA, Morton AC (2007) Geochemistry of heavy minerals. In: Mange MA, Wright DT (eds) Heavy Minerals in Use. Elsevier, Amsterdam, pp 345-391

Méres Š (2008) Garnets - an important information resource about source area and parent rocks of siliciclastic sedimentary rocks. In: Jurkovič Ľ (ed) Conference “Cambelové dni 2008”, Abstract Book. Comenius University, Bratislava, pp 37-43 (in Slovak with English summary)

Morton AC (1985) A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology 32: 553-566
http://doi.org/10.1111/j.1365-3091.1985.tb00470.x

Morton A, Hallsworth C, Chalton B (2004) Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Mar Petrol Geol 21: 393-410
http://doi.org/10.1016/j.marpetgeo.2004.01.001

Muhling JR, Griffin BJ (1991) On recasting garnet analyses into end-member molecules - revisited. Comput Geosci 17: 161-170
http://doi.org/10.1016/0098-3004(91)90084-Q

Munno R, Rossi G, Tadini C (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, ltaly. Amer Mineral 65: 188-191

Nagashima M, Armbruster T (2012) Palenzonaite, berzeliite, and manganberzeliite: (As5+,V5+,Si4+)O4 tetrahedra in garnet structures. Mineral Mag 76: 1081-1097
http://doi.org/10.1180/minmag.2012.076.5.02

Nakamura D (2009) A new formulation of garnet-clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. J Metamorph Geol 27: 495-508
http://doi.org/10.1111/j.1525-1314.2009.00828.x

Nakamura D, Hırajıma T (2005) Experimental evaluation of garnet-clinopyroxene geothermometry as applied to eclogites. Contrib Mineral Petrol 150: 581-588
http://doi.org/10.1007/s00410-005-0023-x

Perchuk LL, Lavrent’eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed) Kinetics and Equilibrium in Mineral Reactions. Springer, New York, pp 1-273
http://doi.org/10.1007/978-1-4612-5587-1_7

Perchuk LL, Lavrent’eva IV (1990) Garnet-orthopyroxene and garnet-amphibole geothermobarometry: experimental data and thermodynamics. Int Geol Rev 32: 486-507
http://doi.org/10.1080/00206819009465793

Perchuk LL, Aranovich LYa, Podlesskii KK, Lavrent’eva IV, Gerasimov VyU, Fed’kın VV, Kıtsul VI, Karsakov LP, Berdnikov NV (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J Metamorph Geol 3: 265-310
http://doi.org/10.1111/j.1525-1314.1985.tb00321.x

Powell R (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J Metamorph Geol 3: 231-243
http://doi.org/10.1111/j.1525-1314.1985.tb00319.x

Preston J, Hartley A, Mange-Rajetzky M, Hole M, May G, Buck S, Vaughan L (2002) The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: mineralogical, geochemical, and sedimentological constraints. J Sediment Res 72: 18-29
http://doi.org/10.1306/042201720018

Putırka K (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley III FJ (eds) Minerals, Inclusions And Volcanic Processes. Mineralogical Society of America and Geochemical Society Reviews in Mineralogy and Geochemistry 69, Washington, pp 61-120
http://doi.org/10.1515/9781501508486-004

Raith M, Raase P, Ackermand D, Lal RK (1983) Regional geothermobarometry in the granulite facies terrane of South India. Trans Roy Soc Edinb, Earth Sci 73: 221-244
http://doi.org/10.1017/S026359330000969X

Schingaro E, Lacalamita M, Mesto E, Ventruti G, Pedrazzi G, Ottolini L, Scordari F (2016) Crystal chemistry and light elements analysis of Ti-rich garnets. Amer Miner 101: 371-384
http://doi.org/10.2138/am-2016-5439

Råheim A, Green DH (1974) Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene. Contrib Mineral Petrol 48: 179-203
http://doi.org/10.1007/BF00383355

Raıth M, Raase P, Ackermand D, Laı RK (1983) Regional geothermobarometry in the granulite facies terrane of South India. Trans Roy Soc Edinb, Earth Sci 73: 221-244
http://doi.org/10.1017/S026359330000969X

Rickwood PC (1968) On recasting analyses of garnet into end-member molecules. Contrib Mineral Petrol 18: 175-198
http://doi.org/10.1007/BF00371808

Schönig J, Meınhold G, Von Eynattena H, Lünsdorf NK (2018) Provenance information recorded by mineral inclusions in detrital garnet. Sediment Geol 376: 32-49
http://doi.org/10.1016/j.sedgeo.2018.07.009

Sen SK, Bhattacharya A (1984) An orthopyroxene-garnet thermometer and its application to the Madras charnockites. Contrib Mineral Petrol 88: 64-71
http://doi.org/10.1007/BF00371412

Suggate SM, Hall R (2014) Using detrital garnet compositions to determine provenance: a new compositional database and procedure. In: Scott RA, Smyth HR, Morton AC, Richardson N (eds) Sediment Provenance Studies in Hydrocarbon Exploration and Production. Geological Society of London Special Publications 386, pp 373-393
http://doi.org/10.1144/SP386.8

Teraoka Y, Suzukı M, Hayashı T, Kawakamı K (1997) Detrital garnets from Paleozoic and Mesozoic sandstones in the Onogawa area, East Kyushu, southwest Japan. Bull Fac Sch Educ, Hiroshima University, Part II 19: 87-101 (in Japanese with English abstract)

Teraoka Y, Suzukı M, Kawakamı K (1998) Provenance of Cretaceous and Paleogene sediments in the Median Zone of southwest Japan. Bull Geol Soc Japan 49: 395-411 (in Japanese with English abstract)

Thoenen T (1989) A Comparative Study of Garnet-Biotite Geothermometers. Unpublished PhD. thesis, University of Basel, pp 1-118

Thompson AB (1976) Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations. Amer J Sci 276: 425-454
http://doi.org/10.2475/ajs.276.4.425

Tolosana-Delgado R, Von Eynatten H, Krippner A, Meinhold G (2018) A multivariate discrimination scheme of detrital garnet chemistry for use in sedimentary provenance analysis. Sediment Geol 375: 14-26
http://doi.org/10.1016/j.sedgeo.2017.11.003

Wright WI (1938) The composition and occurrence of garnets. Amer Miner 23: 436-449

Yang J (1991) A new scheme for calculating mineral end-members with reference to clinopyroxene and garnet. Acta Geol Sin 65: 360-366

Yavuz F (2001) PYROX: a computer program for the IMA pyroxene classification and calculation scheme. Comput Geosci 27: 97-107
http://doi.org/10.1016/S0098-3004(00)00059-5

Yavuz F (2003a) Evaluating micas in petrologic and metallogenic aspect: I - definitions and structure of the computer program MICA+. Comput Geosci 29: 1203-1213
http://doi.org/10.1016/S0098-3004(03)00142-0

Yavuz F (2003b) Evaluating micas in petrologic and metallogenic aspect: II - applications using the computer program MICA+. Comput Geosci 29: 1215-1228
http://doi.org/10.1016/S0098-3004(03)00143-2

Yavuz F (2007) WinAmphcal: a Windows program for the IMA-04 amphibole classification. Geochem Geophys Geosyst 8: Q01004
http://doi.org/10.1029/2006GC001391

Yavuz F (2013) WinPyrox: a Windows program for pyroxene calculation classification and thermobarometry. Amer Miner 98: 1338-1359
http://doi.org/10.2138/am.2013.4292

Yavuz F, Döner Z (2017) WinAmptb: a Windows program for calcic amphibole thermobarometry. Period Mineral 86: 135-167

Yavuz F, Yildirim DK (2018) A Windows program for calculation and classification of epidote-supergroup minerals. Period Mineral 87: 269-285

Yavuz F, Yavuz V, Sasmaz A (2006) WinClastour - a Visual Basic program for tourmaline formula calculation and classification. Comput Geosci 32: 1156-1168
http://doi.org/10.1016/j.cageo.2005.10.021

Yavuz F, Karakaya N, Yildirim DK, Karakaya MC, Kumral M (2014) A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011). Comput Geosci 63: 70-87
http://doi.org/10.1016/j.cageo.2013.10.012

Yavuz F, Kumral M, Karakaya N, Karakaya MC, Yildirim DK (2015) A Windows program for chlorite calculation and classification. Comput Geosci 81: 101-113
http://doi.org/10.1016/j.cageo.2015.04.011

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943