Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

           | issue | next >
 
Received: 3 December 2020
Accepted: 30 March 2021
Online: 23 July 2021
H. Editor: V. Janoušek
 
  full text (PDF, 15.07 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 

Original paper

Lukáš Ackerman, Vladislav Rapprich, Ladislav Polák, Tomáš Magna, Virginia T. Mclemore, Ondřej Pour, Bohuslava Čejková

Petrogenesis of silica-rich carbonatites from continental rift settings: a missing link between carbonatites and carbonated silicate melts?

Journal of Geosciences, volume 66 (2021), issue 2, 71 - 87

DOI: http://doi.org/10.3190/jgeosci.320



Ackerman L, Magna T, Rapprich V, Upadhyay D, Krátký O, Čejková B, Erban V, Kochergina YV, Hrstka T (2017) Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India. Lithos 284-285: 257-275
http://doi.org/10.1016/j.lithos.2017.03.029

Ackerman L, Žák K, Skála R, Rejšek J, Křížová Š, Wimpenny J, Magna T (2020) Sr-Nd-Pb isotope systematics of Australasian tektites: Implications for the nature and composition of target materials and possible volatile loss of Pb. Geochim Cosmochim Acta 276: 135-150
http://doi.org/10.1016/j.gca.2020.02.025

Andersen T (1987) Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite magma: REE and isotopic evidence from the Fen Complex, southeast Norway. Chem Geol 65: 147-166
http://doi.org/10.1016/0168-9622(87)90070-4

Bell K, Blenkinsop J (1987) Nd and Sr isotopic compositions of East African carbonatites: Implications for mantle heterogeneity. Geology 15: 99-102
http://doi.org/10.1130/0091-7613(1987)15<99:NASICO>2.0.CO;2

Bell K, Doyle RJ (1971) K-Rb relationships in some continental alkalic rocks associated with the East African Rift Valley System. Geochim Cosmochim Acta 35: 903-915
http://doi.org/10.1016/0016-7037(71)90004-4

Bell K, Keller J (1995) Carbonatite Volcanism. Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. IAVCEI Proceedings in Volcanology Series 4: pp 1-210
http://doi.org/10.1007/978-3-642-79182-6_1

Bell K, Simonetti A (1996) Carbonatite magmatism and plume activity: Implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J Petrol 37: 1321-1339
http://doi.org/10.1093/petrology/37.6.1321

Bell K, Simonetti A (2010) Source of parental melts to carbonatites - Critical isotopic constraints. Mineral Petrol 98: 77-89
http://doi.org/10.1007/s00710-009-0059-0

Benkó Z, Molnár K, Magna T, Rapprich V, Palcsu L, Pour O, Čejková B, Futó I, Czuppon G (2021) Combined petrography, noble gas, stable isotope and fluid inclusion chemistry of carbonatites from Uganda: Implications for the origin of the carbonatite melt in continental rift setting. Chem Geol: 10.1016/j.chemgeo.2021.120213

Bizzarro M, Simonetti A, Stevenson RK, David J (2002) Hf isotope evidence for a hidden mantle reservoir. Geology 30: 771-774
http://doi.org/10.1130/0091-7613(2002)030<0771:HIEFAH>2.0.CO;2

Bloomfield K (1973) Economic aspects of Uganda carbonatite complexes. Overseas Geol Miner Resour 41: 139-167

Brooker RA, Kjarsgaard BA (2011) Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0.1-2.5 GPa with applications to carbonatite genesis. J Petrol 52: 1281-1305
http://doi.org/10.1093/petrology/egq081

Chandra J, Paul D, Stracke A, Chabaux F, Granet M (2019) The origin of carbonatites from Amba Dongar within the Deccan Large Igneous Province. J Petrol 60: 1119-1134
http://doi.org/10.1093/petrology/egz026

Davies KA (1965) The Geology of Part of South-East Uganda, with Special Reference to the Alkaline Complexes, Geological Survey of Uganda, Memoirs 8: 1-76

Dempírová L, Šikl J, Kašičková R, Zoulková V, Kříbek B (2010) The evaluation of precision and relative error of the main components of silicate analyses in Central Laboratory of the Czech Geological Survey. Zprávy Geol Výzk 2009 27: 326-330 (in Czech with English summary)

Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98: 55-76
http://doi.org/10.1007/s00710-009-0074-1

Fan HR, Yang KF, Hu FF, Liu S, Wang KY (2016) The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geosci Front 7: 335-344
http://doi.org/10.1016/j.gsf.2015.11.005

Gittins J (1989) The origin and evolution of carbonatite magmas. In: Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, Winchester, Mass., pp 580-600

Gittins J, Harmer RE, Barker DS (2005) The bimodal composition of carbonatites: Reality or misconception? Lithos 85: 129-139
http://doi.org/10.1016/j.lithos.2005.03.023

Halama R, Vennemann T, Siebel W, Markl G (2005) The Grønnedal-Ika Carbonatite-Syenite Complex, South Greenland: carbonatite formation by liquid immiscibility. J Petrol 46: 191-217
http://doi.org/10.1093/petrology/egh069

Harte B (1988) Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90: 273-296
http://doi.org/10.1016/0012-821X(88)90131-8

Jago BC, Gittins J (1991) The role of fluorine in carbonatite magma evolution. Nature 349: 56-58
http://doi.org/10.1038/349056a0

Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). J Petrol 47: 1255-1259
http://doi.org/10.1093/petrology/egl013

Jones AP, Genge M, Carmody L (2013) Carbonate melts and carbonatites. In: Hazen K, Jones AP, Baross AJ (eds) Carbon in Earth. Reviews in Mineralogy and Geochemistry 75: 289-322
http://doi.org/10.2138/rmg.2013.75.10

Kjarsgaard BA (1989) Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. J Petrol 39: 2061-2075
http://doi.org/10.1093/petroj/39.11-12.2061

Kyser TK (1990) Stable isotopes in the continental lithospheric mantle. In: Menzies MA (ed) The Continental Lithosphere. Oxford University Press, Oxford, pp 127-156

Lee WJ, Willey PJ (1994) Experimental data bearing on liquid immiscibility, crystal fractionation, and the origin of calciocarbonatites and natrocarbonatites. Int Geol Rev 36: 797-819
http://doi.org/10.1080/00206819409465489

Lee WJ, Willey PJ (1998) Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. J Petrol 39: 2005-2013
http://doi.org/10.1093/petroj/39.11-12.2005

Le Maitre, RW (ed) (2002) Igneous rocks. A Classification and Glossary of Terms, 2nd Edition. Cambridge University Press, Cambridge, pp 1-236
http://doi.org/10.1017/CBO9780511535581

Leggo PJ (1974) A geochronological study of the basement complex of Uganda. J Geol Soc, London 130: 263-277
http://doi.org/10.1144/gsjgs.130.3.0263

Link K, Koehn D, Barth MG, Tiberindwa JV, Barifaijo E, Aanyu K, Foley SF (2010) Continuous cratonic crust between the Congo and Tanzania blocks in western Uganda. Int J Earth Sci 99: 1559-1573
http://doi.org/10.1007/s00531-010-0548-8

Lustrino M, Luciani N, Stagno V (2019) Fuzzy petrology in the origin of carbonatitic/pseudocarbonatitic Ca-rich ultrabasic magma at Polino (central Italy). Sci Rep 9: 1-14
http://doi.org/10.1038/s41598-019-45471-x

Lustrino M, Ronca S, Caracausi A, Ventura Bordenca C, Agostini S, Faraone DB (2020) Strongly SiO2-undersaturated, CaO-rich kamafugitic Pleistocene magmatism in Central Italy (San Venanzo volcanic complex) and the role of shallow depth limestone assimilation. Earth-Sci Rev 208: 103256
http://doi.org/10.1016/j.earscirev.2020.103256

Magna T, Viladkar S, Rapprich V, Pour O, Hopp J, Čejková B (2020) Nb-V-enriched sövites of the northeastern and eastern part of the Amba Dongar carbonatite ring dike, India - a reflection of post-emplacement hydrothermal overprint? Chem Erde 80: 125534
http://doi.org/10.1016/j.chemer.2019.125534

McCrea JM (1950) On the isotope chemistry of carbonates and a paleotemperature scale. J Chem Phys 18: 849-857
http://doi.org/10.1063/1.1747785

McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120: 223-253
http://doi.org/10.1016/0009-2541(94)00140-4

McLemore VT (1982) Geology and geochemistry of the Ordovician carbonatite dikes in Lemitar Mountains, Socorro County, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open File Reports 158: 1-104

McLemore VT (1987) Geology and regional implications of carbonatites in the Lemitar Mountains, central New Mexico. J Geol 95: 255-270
http://doi.org/10.1086/629123

McLemore VT, Moderski J (1990) Mineralogy and geochemistry of altered rocks associated with Lemitar carbonatites, central New Mexico, U.S.A. Lithos 26: 99-113
http://doi.org/10.1016/0024-4937(90)90042-Y

McMillan NJ, McLemore VT (2004) Cambrian-Ordovician magmatism and extension in New Mexico and Colorado. New Mexico Bureau of Geology and Mineral Resources Bulletin 160: 1-12

Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Canad Mineral 43: 2049-2068
http://doi.org/10.2113/gscanmin.43.6.2049

Mitchell RH (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64: 626-641
http://doi.org/10.1016/j.oregeorev.2014.03.010

Morimoto N (1988) Nomenclature of pyroxenes. Mineral Mag 52: 535-550
http://doi.org/10.1180/minmag.1988.052.367.15

Nash WP (1972) Mineralogy and petrology of the Iron Hill Carbonatite Complex, Colorado. Geol Soc Am Bull 83: 1361-1382
http://doi.org/10.1130/0016-7606(1972)83[1361:MAPOTI]2.0.CO;2

Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52: 1-17
http://doi.org/10.1016/0016-7037(88)90051-8

Olson JC, Marvin RF, Parker RL, Mehnert HH (1977) Age and tectonic setting of lower Paleozoic alkalic and mafic rocks, carbonatites, and thorium veins in south-central Colorado. J Res US Geol Surv 5: 673-687

Padoan M, Garzanti E, Harlavan Y, Villa IM (2011) Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochim Cosmochim Acta 75: 3627-3644
http://doi.org/10.1016/j.gca.2011.03.042

Petrushin EI, Bazarov LS, Sharygin VV, Gordeeva VI, Vladykyn NV (2004) Effect of temperature regime on crystallization of leucite from orendite melt. Russ Geol Geophys 45: 1208-1215

Pin C, Gannoun A, Dupont A (2014) Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. J Anal At Spectrom 29: 1858-1870
http://doi.org/10.1039/C4JA00169A

Raja PKS, Vise JB (1973) Palaeomagnetism of the tororo ring complex, S.E. Uganda. Earth Planet Sci Lett 19: 438-442
http://doi.org/10.1016/0012-821X(73)90187-8

Ray JS, Ramesh R (2006) Stable carbon and oxygen isotopic compositions of Indian carbonatites. Int Geol Rev 48: 17-45
http://doi.org/10.2747/0020-6814.48.1.17

Reedman JH (1984) Resources of phosphate, niobium, iron, and other elements in residual soils over the Sukulu Carbonatite Complex, southeastern Uganda. Econ Geol 79: 716-724
http://doi.org/10.2113/gsecongeo.79.4.716

Reguir EP, Chakhmouradian AR, Halden NM, Malkovets VG, Yang P (2009) Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos 112: 372-384
http://doi.org/10.1016/j.lithos.2009.05.023

Reguir EP, Chakhmouradian AR, Pisiak L, Halden NM, Yang P, Xu C, Kynický J, Couëslan CG (2012) Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: Implications for element partitioning and evolution of carbonatites. Lithos 128-131: 27-45
http://doi.org/10.1016/j.lithos.2011.10.003

Sarbas B, Jochum KP, Nohl U, Weis U (2017) The geochemical databases GEOROC and GeoReM - What’s new? American Geophysical Union, Fall Meeting 2017, abstract # V23D-0501

Simonetti A, Bell K (1994) Nd, Pb and Sr isotopic data from the Napak carbonatite-nephelinite centre, eastern Uganda: An example of open-system crystal fractionation. Contrib Mineral Petrol 115: 356-366
http://doi.org/10.1007/BF00310774

Veksler IV, Nielsen TFD, Sokolov SV (1998) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis. J Petrol 39: 2015-2031
http://doi.org/10.1093/petroj/39.11-12.2015

Vieten K, Hamm HM (1978) Additional notes on the calculation of the crystal chemical formula of clinopyroxenes and their contents of Fe3+ from microprobe analyses. Neu Jb Mineral, Mh 2: 71-83

Viladkar SG (2000) Phlogopite as an indicator of magmatic differentiation in the Amba Dongar carbonatite, Gujarat, India. Neu Jb Mineral, Abh 7: 302-314

Viladkar SG (2017) Pyroxene-sövite in Amba Dongar carbonatite-alkalic complex, Gujarat. J Geol Soc India 90: 591-594
http://doi.org/10.1007/s12594-017-0756-y

Woolley AR (1982) A discussion of carbonatite evolution and nomenclature and the generation of sodic and potassic fenites. Mineral Mag 46: 13-17
http://doi.org/10.1180/minmag.1982.046.338.03

Ying J, Zhou X, Zhang H (2004) Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos 75: 413-426 
http://doi.org/10.1016/j.lithos.2004.04.037

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943