Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

< previous | issue | next >
 
Received: 14 April 2020
Accepted: 15 February 2022
Online: 22 May 2022
H. Editor: J. Hora
 
  full text (PDF, 4.42 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 

Original paper

Karel Pacák, Jiří Zachariáš, Matěj Němec

Titanium-oxide activity during the formation of gold-bearing quartz veins: evidence for closed system behavior

Journal of Geosciences, volume 67 (2022), issue 1, 19 - 32

DOI: http://doi.org/10.3190/jgeosci.340


  Abstract References Affiliations

Ackerman L, Haluzová E, Creaser RA, Pašava J, Veselovský F, Breiter K, Erban V, Drábek M (2017) Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re-Os geochronology of molybdenite. Miner Depos 52: 651-662
http://doi.org/10.1007/s00126-016-0685-5

Ackerson MR, Mysen BO, Tailby ND, Watson EB (2018) Low-temperature crystallization of granites and the implications for crustal magmatism. Nature 559: 94-97
http://doi.org/10.1038/s41586-018-0264-2

Acosta MD, Watkins JM, Reed MH, Donovan JJ, DePaolo DJ (2020) Ti-in-quartz: Evaluating the role of kinetics in high temperature crystal growth experiments. Geochim Cosmochim Acta 281: 149-167
http://doi.org/10.1016/j.gca.2020.04.030

Allan MM, Yardley BWD (2007) Tracking meteoric infiltration into a magmatic-hydrothermal system: A cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia. Chem Geol 240: 343-360
http://doi.org/10.1016/j.chemgeo.2007.03.004

Antignano A, Manning CE (2008) Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0.7-2.0 GPa and 700-1000 °C: Implications for mobility of nominally insoluble elements. Chem Geol 255: 283-293
http://doi.org/10.1016/j.chemgeo.2008.07.001

Ashley KT, Law RD (2015) Modeling prograde TiO2 activity and its significance for Ti-in-quartz thermobarometry of pelitic metamorphic rocks. Contrib Mineral Petrol 169: 1-7

Ashley KT, Webb LE, Spear FS, Thomas JB (2013) P-T -D histories from quartz: A case study of the application of the TitaniQ thermobarometer to progressive fabric development in metapelites. Geochem Geophys Geosyst 14: 3821-3843
http://doi.org/10.1002/ggge.20237

Barker AK, Coogan LA, Gillis KM, Hayman NW, Weis D (2010) Direct observation of a fossil high-temperature, fault-hosted, hydrothermal upflow zone in crust formed at the East Pacific Rise. Geology 38: 379-382
http://doi.org/10.1130/G30542.1

Bestmann M, Pennacchioni G, Mostefaoui S, Göken M, de Wall H (2016) Instantaneous healing of micro-fractures during coseismic slip: Evidence from microstructure and Ti in quartz geochemistry within an exhumed pseudotachylyte-bearing fault in tonalite. Lithos 254-255: 84-93
http://doi.org/10.1016/j.lithos.2016.03.011

Boiron MC, Barakat A, Cathelineau M, Banks DA, Durisova J, Moravek P (2001) Geometry and P-V-T-X conditions of microfissural ore fluid migration: the Mokrsko gold deposit (Bohemia). Chem Geol 173: 207-225
http://doi.org/10.1016/S0009-2541(00)00276-X

Breiter K, Svojtka M, Ackerman L, Švecová K (2012) Trace element composition of quartz from the Variscan Altenberg-Teplice caldera (Krušné hory/Erzgebirge Mts, Czech Republic/Germany): Insights into the volcano-plutonic complex evolution. Chem Geol 326-327: 36-50
http://doi.org/10.1016/j.chemgeo.2012.07.028

Buthelezi M, Ashwal LD, Horváth P (2017) Application of titanium-in-quartz geothermometry to magmatic quartz in evolved rocks from the Bushveld Complex, South Africa. S Afr J Geol 120: 241-250
http://doi.org/10.25131/gssajg.120.2.241

Cavalcante GCG, Vauchez A, Merlet C, Egydio-Silva M, De Holanda MHB, Boyer B (2014) Thermal conditions during deformation of partially molten crust from TitaniQ geothermometry: Rheological implications for the anatectic domain of the Araçuaí belt, eastern Brazil. Solid Earth 5: 1223-1242
http://doi.org/10.5194/se-5-1223-2014

Cernuschi F, Dilles JH, Grocke SB, Valley JW, Kitajima K, Tepley FJ (2018) Rapid formation of porphyry copper deposits evidenced by diffusion of oxygen and titanium in quartz. Geology 46: 611-614
http://doi.org/10.1130/G40262.1

Cruz-Uribe AM, Mertz-Kraus R, Zack T, Feineman MD, Woods G, Jacob DE (2017) A New LA-ICP-MS method for Ti in Quartz: Implications and application to high pressure rutile-quartz veins from the Czech Erzgebirge. Geostand Geoanal Res 41: 29-40
http://doi.org/10.1111/ggr.12132

Dallmeyer RD, Franke W, Weber K (eds) (1995) Pre-Permian Geology of Central and Eastern Europe. Springer-Verlag, Berlin, pp 1-593
http://doi.org/10.1007/978-3-642-77518-5

Ehrlich K, Verš E, Kirs J, Soesoo A (2012) Using a titanium-in-quartz geothermometer for crystallization temperature estimation of the Palaeoproterozoic Suursaari quartz porphyry. Est J Earth Sci 61: 195-204
http://doi.org/10.3176/earth.2012.4.01

Grujic D, Stipp M, Wooden JL (2011) Thermometry of quartz mylonites: Importance of dynamic recrystallization on Ti-in-quartz reequilibration. Geochem Geophys Geosyst 12, Q06012
http://doi.org/10.1029/2010GC003368

Haertel M, Herwegh M, Pettke T (2013) Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone. Tectonophys 608: 468-481
http://doi.org/10.1016/j.tecto.2013.08.042

Hajná J, Žák J, Kachlík V (2011) Structure and stratigraphy of the Teplá-Barrandian Neoproterozoic, Bohemian Massif: a new plate-tectonic reinterpretation. Gondwana Res 19: 495-508
http://doi.org/10.1016/j.gr.2010.08.003

Holub F, Machart J, Manová M (1997) The Central Bohemian Plutonic Complex Geology, chemical composition and genetic interpretation. Sbor Geol Věd, Ložisk geol-mineral (Praha) 31, 27-50

Huang R, Audétat A (2012) The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochim Cosmochim Acta 84: 75-89
http://doi.org/10.1016/j.gca.2012.01.009

Janoušek V, Gerdes A (2003) Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48: 70-71

Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78: 67-99
http://doi.org/10.1016/j.lithos.2004.04.046

Janoušek V, Wiegand BA, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U-Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatna suite, Central Bohemian Plutonic Complex. J Geol Soc 167: 347-360
http://doi.org/10.1144/0016-76492009-008

Kendrick J, Indares A (2018) The Ti Record of Quartz in Anatectic Aluminous Granulites. J Petrol 59: 1493-1516
http://doi.org/10.1093/petrology/egy070

Kidder SB, Toy VG, Prior DJ, Little TA, Khan A, MacRae C (2018) Constraints on Alpine Fault (New Zealand) mylonitization temperatures and the geothermal gradient from Ti-in-quartz thermobarometry. Solid Earth 9: 123-1139
http://doi.org/10.5194/se-9-1123-2018

Kohn MJ, Northrup CJ (2009) Taking mylonites’ temperatures. Geology 37: 47-50

Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian zones, Iberian and Bohemian massifs). Tectonophys 461: 21-43
http://doi.org/10.1016/j.tecto.2008.05.002

Monnier L, Lach P, Salvi S, Melleton J, Bailly L, Béziat D, Monnier Y, Gouy S (2018) Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France. Lithos 320-321: 355-377
http://doi.org/10.1016/j.lithos.2018.09.024

Morávek P (1971) Ore-deposits structure and mineralization of the Jílové gold-mining district (in Czech with extensive English summary). Sb geol Věd, řada LG 13, 1-170

Morávek P, Janatka J, Pertoldová J, Straka E, Ďurišová J, Pudilová M (1989) Mokrsko gold deposit - the largest gold deposit in the Bohemian Massif, Czechoslovakia. Econ Geol Monograph 6: 252-259

Morgan DJ, Jollands MC, Lloyd GE, Banks DA (2014) Using titanium-in-quartz geothermometry and geospeedometry to recover temperatures in the aureole of the Ballachulish Igneous Complex, NW Scotland. Geol Soc, London, Spec Publ 394, 145-165
http://doi.org/10.1144/SP394.8

Müller A, Ihlen PM, Wanvik JE, Flem B (2007) High-purity quartz mineralisation in kyanite quartzites, Norway. Miner Depos 42: 523-535
http://doi.org/10.1007/s00126-007-0124-8

Müller A, Seltmann R, Kober B, Eklund O, Jeffries T, Kronz A (2008) Compositional zoning of rapakivi feldspars and coexisting quartz phenocrysts. Canad Mineral 46: 1417-1442
http://doi.org/10.3749/canmin.46.6.1417

Müller A, Wanvik JE, Ihlen PM (2012) Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In Götze J, Möckel R (eds) Quartz: Deposits, mineralogy and analytics. Springer, Berlin, Heidelberg, p 71-118
http://doi.org/10.1007/978-3-642-22161-3_4

Nachlas WO, Hirth G (2015) Experimental constraints on the role of dynamic recrystallization on resetting the Ti-in-quartz thermobarameter. J Geophys Res: Solid Earth 120: 8120-8137
http://doi.org/10.1002/2015JB012274

Nachlas WO, Whitney DL, Teyssier C, Bagley B, Mulch A (2014) Titanium concentration in quartz as a record of multiple deformation mechanisms in an extensional shear zone. Geochem Geophys Geosyst 15: 1374-1397
http://doi.org/10.1002/2013GC005200

Nachlas WO, Thomas JB, Hirth G (2018) TitaniQ deformed: Experimental deformation of out-of-equilibrium quartz porphyroclasts. J Struct Geol 116: 207-222
http://doi.org/10.1016/j.jsg.2018.07.012

Negrini M, Stunitz H, Berger A, Morales LFG (2014) The effect of deformation on the TitaniQ geothermobarometer: An experimental study. Contrib Mineral Petrol 167: 1-22
http://doi.org/10.1007/s00410-014-0982-x

Němec M, Zachariáš J (2018) The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation. Miner Depos 53: 225-244
http://doi.org/10.1007/s00126-017-0734-8

Nevitt JM, Warren JM, Kidder S, Pollard DD (2017) Comparison of thermal modeling, microstructural analysis, and Ti-in-quartz thermobarometry to constrain the thermal history of a cooling pluton during deformation in the Mount Abbot Quadrangle, CA. Geochem Geophys Geosyst 18: 1270-1297
http://doi.org/10.1002/2016GC006655

O’Brien PJ (2000) The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol Soc, London, Spec Publ 179, 369-386
http://doi.org/10.1144/GSL.SP.2000.179.01.22

O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21. 3-20
http://doi.org/10.1046/j.1525-1314.2003.00420.x

Ostapenko GT, Bamarnik MY, Gorogotskaya LI (1987) Isomorphism of titanium substitution for silicon in quartz: experimental data. Mineral Zh 9: 30-40

Pacák K, Zachariáš J, Strnad L (2019) Trace-element chemistry of barren and ore-bearing quartz of selected Au, Au - Ag and Sb - Au deposits from the Bohemian Massif. J Geosci 64: 19-35
http://doi.org/10.3190/jgeosci.279

Pérez-Alonso J, Fertes-Fuente M, Bastida F (2016) Quartz veining in slates and Variscan deformation: Insights from the Luarca sector (NW Spain). Tectonophys 671: 24-41
http://doi.org/10.1016/j.tecto.2016.01.019

Rusk BG, Lowers HA, Reed MH (2008) Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology 36: 547-550
http://doi.org/10.1130/G24580A.1

Rusk B, Koenig A, Lowers H (2011) Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry. Amer Miner 96: 703-708
http://doi.org/10.2138/am.2011.3701

Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štipská P, Ulrych S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341: 266-286
http://doi.org/10.1016/j.crte.2008.12.006

Simon K, Scherer T, van den Kerkhof AM, Kronz A (2004) Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescence and trace element analysis (Bamble sector, Norway). Contrib Mineral Petrol 146: 637-652
http://doi.org/10.1007/s00410-003-0523-5

Spear FS, Wark DA (2009) Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. J Metamorph Geol 27, 187-205
http://doi.org/10.1111/j.1525-1314.2009.00813.x

Storm LC, Spear FS (2009) Application of the titanium-in-quartz thermometer to pelitic migmatites from the Adirondack Highlands, New York. J Metamorph Geol 27: 479-494
http://doi.org/10.1111/j.1525-1314.2009.00829.x

Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirotti A (2010) TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160: 743-759
http://doi.org/10.1007/s00410-010-0505-3

Thomas JB, Watson EB, Spear FS, Wark DA (2015) TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations. Contrib Mineral Petrol 169: 27
http://doi.org/10.1007/s00410-015-1120-0

van den Kerkhof AM, Kronz A, Simon K, Riganti A, Scherer T (2004) Origin and evolution of Archean quartzites from the Nondweni greenstone belt (South Africa): inferences from a multidisciplinary study. S Afr J Geol 107: 559-576
http://doi.org/10.2113/gssajg.107.4.559

Wark DA, Watson EB (2006) TitaniQ: A titanium-in-quartz geothermometer. Contrib Mineral Petrol 152: 743-754
http://doi.org/10.1007/s00410-006-0132-1

Wertich V, Leichmann J, Dosbaba M, Götze J (2018) Multi-Stage Evolution of Gold-Bearing Hydrothermal Quartz Veins at the Mokrsko Gold Deposit (Czech Republic) Based on Cathodoluminescence, Spectroscopic, and Trace Elements Analyses. Minerals 8: 335
http://doi.org/10.3390/min8080335

Wiebe RA, Wark DA, Hawkins DP (2007) Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite, coastal Maine. Contrib Mineral Petrol 154: 439-453
http://doi.org/10.1007/s00410-007-0202-z

Zachariáš J (2016) Structural evolution of the Mokrsko-West, Mokrsko-East and Čelina gold deposits, Bohemian Massif, Czech Republic: Role of fluid overpressure. Ore Geol Rev 74: 170-195
http://doi.org/10.1016/j.oregeorev.2015.11.027

Zachariáš J, Hübst Z (2012) Structural evolution of the Roudný gold deposit. Bohemian Massif: A combination of paleostress analysis and review of historical documents. J Geosci 57: 87-103
http://doi.org/10.3190/jgeosci.117

Zachariáš J, Němec M (2017) Gold to aurostibite transformation and formation of Au-Ag-Sb phases: the Krásná Hora deposit, Czech Republic. Mineral Mag 81: 987-999
http://doi.org/10.1180/minmag.2016.080.145

Zachariáš J, Stein H (2001) Re-Os ages of Variscan hydrothermal gold mineralizations, Central Bohemian metallogenetic zone. In Piestrzyński et al. (eds) Mineral Deposits at the Beginning of the 21st Century. Swets & Zeitlinger Publishers Lisse, pp 851-854

Zachariáš J, Pertold Z, Pudilová M, Žák K, Pertoldová J, Stein H, Markey R (2001) Geology and genesis of Variscan porphyry-style gold mineralization, Petráčkova hora deposit, Bohemian Massif, Czech Republic. Miner Depos 36: 517-541
http://doi.org/10.1007/s001260100187

Zachariáš J, Frýda J, Paterová B, Mihaljevič M (2004) Arsenopyrite and As-bearing pyrite from the Roudný deposit, Bohemian Massif. Mineral Mag 68: 31-46
http://doi.org/10.1180/0026461046810169

Zachariáš J, Paterová B, Pudilová M (2009) Mineralogy, fluid Inclusion, and stable isotope constraints on the genesis of the Roudný Au-Ag deposit, Bohemian Massif. Econ Geol 104: 53-72
http://doi.org/10.2113/gsecongeo.104.1.53

Zachariáš J, Žák K, Pudilová M, Snee LW (2013) Multiple fluid sources/pathways and severe thermal gradients during formation of the Jílové orogenic gold deposit, Bohemian Massif, Czech Republic. Ore Geol Rev 54: 81-109
http://doi.org/10.1016/j.oregeorev.2013.02.012

Zachariáš J, Morávek P, Gadas P, Pertoldová J (2014) The Mokrsko-West gold deposit, Bohemian Massif, Czech Republic: mineralogy, deposit setting and classification. Ore Geol Rev 58: 238-263
http://doi.org/10.1016/j.oregeorev.2013.11.005

Zhang CLX, Almeev RR, Horn I, Behrens H, Holtz F (2020) Ti-in-quartz thermobarometry and TiO2 solubility in rhyolitic melts: New experiments and parametrization. Earth Planet Sci Lett 538: 116213
http://doi.org/10.1016/j.epsl.2020.116213

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943