
www.jgeosci.org

Journal of Geosciences, 53 (2008), 307–322	 DOI: 10.3190/jgeosci.033

Original paper

Geochemical and isotopic (Sr, Nd and O) constraints on sources  
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A Sr, Nd, and O isotopic study of Variscan granitoid rocks from the Western Carpathians reveals the dominance of hete-
rogeneous crustal sources for the most of the granitic rocks. Their neodymium crustal index (NCI) is 0.4 to 1.0 (mainly 
0.6–0.8). Initial (87Sr/86Sr)350 of 0.7053 to 0.7078 and εNd

(350) of -0.6 to -6.9 preclude a simple mantle and/or crustal origin 
for most of granitoids and suggest more complex sources, such as vertically zoned lower crust consisting of old metaigne-
ous, amphibolitic and metasedimentary rocks. Apparent crustal residence ages, indicated by two-stage depleted-mantle Nd 
model ages ranging from 1.6 to 1.1 Ga, are comparable with other segments of the European Variscan belt. The whole rock 
δ18O(SMOW) values of the granites are heterogeneous and range from 8.4 ‰ in tonalites to 11.3 ‰ in leucogranites, reflecting 
source compositions ranging from mafic to silicic. Petrographically, these granites are representative of common crustal 
anatectic rocks with magmatic muscovite; however, their isotopic signature reflects petrogenesis related to subduction pro-
cesses at active continental margins. Recent metamorphic, sedimentary and/or structural studies of the Variscan basement of 
the Western Carpathians suggest a continental collisional rather than a volcanic arc setting. The Western Carpathian granitic 
rocks were most likely generated by partial melting of mainly recycled Proterozoic crustal material during subduction-
collisional processes of the Variscan orogeny, with possible input of mafic magmas from the mantle. These mafic magmas 
may have served as a heat source for melting of the lower crust.
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1.	Introduction

The present-day structure of the Alps and Carpathians, 
forming part of Stille’s (1924) Alpine “Neo-Europa”, is 
mainly the result of convergent processes between the 
African Plate fragments (Adria–Apulia) and the North 
European Plate (Eurasia) spanning from the Late Jurassic 
to the present (Plašienka et al. 1997). Tethian sedimentary 
rocks dominate this orogenic mobile belt. However, the 
pre-Mesozoic basement is an important component of the 
structure of the Carpathians (Petrík and Kohút 1997). Its 
polyorogenic history is characterised by juxtaposition of 
various terranes and/or blocks that in most cases originated 
at the Gondwana margin due to multistage tectonic evo-
lution with large-scale nappe and strike-slip tectonics as 
part of the European Variscan orogeny (Stampfli and Borel 
2002; von Raumer et al. 2002). Although the basement 
rocks form only discrete fragments in the Alpine Carpath-
ians structure, the granitic rocks dominate at the present 
erosion level. One of the salient features of the Western 
Carpathians is a great variety of granitic rocks within small 
areas (Petrík and Kohút 1997). There exist many simi-
larities between the Variscan granitic rocks of the Alpine 
“Neo-Europa” and those of the European Variscan belt in 

the Iberian Massif, the Massif Central, and the Bohemian 
Massif that represent “Meso-Europa” in sense of Stille 
(1924). The varieties of granitoid suites include: (a) high-
K–Mg, (b) peraluminous, (c) calc-alkaline; (d) ferro-potas-
sic, (e) subalkaline, and (f) anorogenic – alkaline (Bonin 
et al. 1993; Finger et al. 1997; Schaltegger 1997; Bussy et 
al. 2000; Kohút 2002, among others). These suites were 
generated during main and late-Variscan orogenic stages. 
However, distribution of these series within particular 
basement blocks is not uniform and is still a matter of de-
bate. The aim of this paper is to present Sr-Nd-O isotopic 
data from Western Carpathian granitic rocks that place 
constraints on their sources, petrogenesis, as well as the 
Variscan crustal evolution and tectonics. 

2.	Geological setting

Similarly to the Pyrenees and Alps, the Carpathian 
Mountain chain is a typical Alpine collisional fold belt. 
However, its pre-Mesozoic basement rocks were part of 
the Variscan orogenic belt. During the Alpine orogeny, 
the Carpathian part of the Variscan belt was disrupted and 
sliced into nappe and terrane blocks that were variously 
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uplifted (Andrusov 1968; Plašienka et al. 1997). This 
polyorogenic history makes reconstruction of the Variscan 
structures rather difficult but provides excellent exposure 
of various levels of the Variscan crust. The Western 
Carpathians form a direct eastern continuation of the 
Eastern Alps. The pre-Alpine crystalline basement crops 
out mainly in the Central Western Carpathians (CWC) 
which consist of three principal crustal-scale superunits 
(from north to south): the Tatricum, the Veporicum and 
the Gemericum. In addition there are several cover-
nappe systems, including the Fatricum, the Hronicum 
and the Silicicum, also generally emplaced in sequence 
from north to south (Plašienka et al. 1997). The Variscan 
granitoid rocks occur in all three superunits of the CWC 
(Fig. 1; a more detailed geological map of the Western 
Carpathians can be found at http://www.geology.sk). 

In the Tatricum the granitoids along with pre-Meso-
zoic metamorphic rocks build backbones of the so-called 
“core mountains”. Both rock types are overlain by Meso-
zoic cover sediments and/or nappes. The basement rocks 
were only weakly affected by Alpine metamorphism 
(Krist et al. 1992). A large composite granodiorite–tonal-
ite body, strongly affected by the Alpine shear tectonics, 
dominates the Veporicum. Other basement rocks include 
high- to low-grade metamorphic rocks. These are overlain 

by Upper Paleozoic and Mesozoic cover. Due to complex 
Variscan and Alpine tectonics, this unit has a very com-
plicated imbricate structure. The degree of penetrative 
brittle–ductile deformation increases from the northwest 
to the southeast. The Gemericum is dominated by a large 
hidden granitoid body, which penetrates the overlying 
Lower Paleozoic rocks in the form of apophyses (Kohút 
and Stein 2005 and references therein). The Paleozoic 
rocks are composed of Silurian to Late Carboniferous, 
mostly low-grade flysch-like metasedimentary rocks 
and metavolcanics with remnants of an ophiolite com-
plex. Granitoid magmatism dominated in the Variscan 
orogeny of the Western Carpathians from 360 to 250 Ma 
(Petrík and Kohút 1997; Finger et al. 2003). In response 
to variable geotectonic events, different types of granitic 
magmas have formed during: a) Early Carboniferous 
crustal thickening, b) Late Carboniferous thermal event, 
and c) Permian transtension, as recorded by the respective 
presence of S-, I- and A-type granitic suites (Petrík and 
Kohút 1997; Broska and Uher 2001; Finger et al. 2003). 
Available age data (U-Pb, Rb-Sr and Ar-Ar) indicate the 
main phase of granite magmatism to have been between 
360 and 340 Ma (Petrík and Kohút 1997; Kohút 2007); 
therefore we adopted the age 350 Ma for calculations of 
initial isotopic compositions. 

Fig. 1 Simplified tectonic-geological sketch of the Western Carpathians (Slovak part) with location of investigated samples. 1 – Pre-Alpine crystalline 
basement of Tatric Unit, 2 – Mesozoic sedimentary cover and nappe structures, 3 – Veporic Unit, 4 – Gemeric Unit, 5 – Klippen belt, 6 – Flysch 
zone, 7 – Neogene to Quaternary Central and East Slovakian neovolcanites, 8 – Neogene to Quaternary sedimentary basins.
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3.	Analytical methods

Geochemical analyses were performed at the Univer-
sity of Ottawa by X-ray fluorescence and at the Dionýz 
Štúr Institute of Geology, Bratislava using classical wet 
chemical techniques. The REE concentrations were ana-
lyzed at the Memorial University of Newfoundland, St. 
John’s by ICP-MS (Jenner et al. 1990) and by INAA at 
MEGA Brno Inc. The measurements were verified against 
international GM and BM standards. The Sm-Nd isotope 
analyses were performed at the Institute of Precambrian 
Geology and Geochronology, Russian Academy of Sci-
ences, St. Petersburg, and Rb-Sr data were acquired in the 
laboratories of BGR Hannover on a Finnigan MAT 261 
mass spectrometer. The powdered whole-rock samples 
(WR) for Sm-Nd studies were analysed following the 
method of Richards et al. (1976) and the Rb-Sr analyses 
were carried out using the method of Wendt (1986). Pul-
verized samples were spiked with a mixed 149Sm-146Nd 
or a 85Rb-84Sr solution, respectively, and then dissolved 
in a mixture of HF + HNO3 + HclO4. Separation of the 
relevant elements was done using conventional cation-
exchange chromatography, followed, for Nd, by extrac-
tion chromatography on HDEHP covered Teflon powder. 
Total blanks during the measurements were 0.1–0.2 ng 
for Sm, 0.1–0.5 ng for Nd, 0.03–0.07 ng for Rb and 
0.5–0.8 ng for Sr. Accuracy of the measurements of Sm 
and Nd concentrations at the 2σ level was ±0.5 %, for 
147Sm/144Nd ±0.5 %, for 143Nd/144Nd ±0.005 %, for 87Rb/
86Sr ±0.5 %, and for 87Sr/86Sr ±0.005 %. The weighted 
average of 31 measurements of the La Jolla Nd-standard 
yielded 0.511845 ± 4 (2σ) for 143Nd/144Nd, normalized to 
146Nd/144Nd = 0.7219. For Rb-Sr determinations, internal 
standards NBS 987 and NBS 607 were used, respectively; 
all measurements were fractionation corrected to 86Sr/88Sr 
= 0.1194. Further details on the analytical techniques 
were described by Neymark et al. (1993) and Kohút et 
al. (1996, 1999).

Oxygen isotope analyses were conducted on a Finni-
gan MAT Delta-E mass spectrometer at the University 
of Missouri. The samples were reacted with BrF5 in Ni 
vessels and the liberated oxygen was converted to CO2 
by reaction with a hot carbon rod (Clayton and Mayeda 
1963). All values are reported in permil deviation relative 
to V-SMOW. Repeated analyses of NBS 28 (quartz) gave 
a δ18O value of 9.68 ± 0.21‰. 

The εNd(0) values were calculated using 147Sm/144Nd 
= 0.1967 and 143Nd/144Nd = 0.512638 for the Chondritic 
Uniform Reservoir (CHUR) following Jacobsen and 
Wasserburg (1980). A linear model with parameters 
147Sm/144Nd = 0.2136 and 143Nd/144Nd = 0.513151 was 
used for the Depleted Mantle reservoir (DM) according 
to Goldstein and Jacobsen (1988). Two-stage apparent 
crustal residence ages were calculated with a correction 

for crustal component 147Sm/144Nd(CC) = 0.12 and the De-
pleted Mantle parameters 143Nd/144Nd(DM) = 0.513151 and 
147Sm/144Nd(DM) = 0.219 following the model of Liew and 
Hofmann (1988). The εSr(0) values were calculated using 
87Sr/86Sr = 0.7045 and 87Rb/86Sr = 0.0816 for the present-
day Bulk Earth (or Uniform Reservoir, UR) composition 
(DePaolo and Wasserburg 1976; Faure 1986). The values 
of the neodymium crustal index (NCI) were computed 
according to the model of De Paolo et al. (1992).

4.	Results

The major- and trace-element chemical compositions 
of the studied samples are given in Tab. 1. The sample 
set includes ten specimens from one core in the Veľká 
Fatra Mts. and several representative samples from each 
of the Western Carpathian granite massifs. The broad 
sample set, covering all principal granitic types, includ-
ing tonalites, granodiorites, granites and/or leucogranites 
(Fig. 2) and hybrid samples from the Veporic Unit, is 
complemented by one sample of gabbro that is used to 
constrain the petrogenetic model. The majority of the 
Carpathian granitoid plutons are composed of several rock 
types, including tonalites, trondhjemites, granodiorites and 
leucogranites (granites and granodiorites predominate). 
Generally, the granitoids have SiO2 concentrations ranging 
from c. 60 to 77 wt. %, have increasing alkalinity from 
the more basic to the most acid varieties, but overall they 
are calc-alkaline. They are metaluminous to peraluminous 
(A/CNK = 0.7–1.5). Noteworthy is the markedly peralu-
minous character of hybrid tonalites (A/CNK = 1.4–1.5), 
in contrast to the subaluminous character of the Veľká 
Fatra Mts. leucogranites (A/CNK = 0.96–1.04). The 
prevalence of Na2O over K2O is a common feature (K2O/
Na2O by weight = 0.25–1.15), including the porphyritic 
“Prašivá” type granite whose alkali ratio is close to 1. The 
medium- to high-K calc-alkaline character is a common 
attribute of the European Variscan granitoids (Bonin et 
al. 1993). Biotite is the dominant ferromagnesian mafic 
mineral, whereas hornblende occurs only rarely in dioritic 
enclaves. Accessory mineral assemblages, magnetite + alla-
nite versus monazite + ilmenite, define in some plutons two 
granite groups (Petrík and Broska 1994) – the occurrence 
of mafic microgranular enclaves (MME) in magnetite-bear-
ing granites and the presence of metamorphic country-rock 
xenoliths in magnetite-free granites support division of the 
Western Carpathian granites into I- and S-type suites. The 
Sm-Nd, Rb-Sr and oxygen isotopic data are listed in Tab. 
2. The Rb-Sr isotopic systematics of the granitoids are 
shown in Fig. 3. With the exception of two leucogranite 
samples (ZK-4 and VVM-129), the granitoids fall on a 
linear array that is in a good agreement with the 350 Ma 
reference isochron. It is obvious as HT/MP metamor-
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Fig. 2 An-Ab-Or CIPW normative diagram (Barker 1979) showing 
varied character of the Variscan Western Carpathian igneous rocks. 
Symbols: circles – tonalites, squares – granodiorites, triangles – grani-
tes, diamonds – leucogranites, cross – gabbro.

Sample Rb Sr 1/Sr Rb/Sr 87Rb/86Sr 87Sr/86Sr(2σ) εSr(0) (87Sr/86Sr)350 εSr(350) Sm
VF-43 110 259 0.0039 0.42 1.3838 0.71359 ± 21 129.03 0.706695 36.95 3.05
VF-153 82 521 0.0019 0.16 0.4759 0.70856 ± 16 57.56 0.706184 29.69 5.89
VF-157 65 161 0.0062 0.40 1.1644 0.71214 ± 18 108.43 0.706338 31.87 2.26
VF-283 117 179 0.0056 0.65 2.9164 0.71985 ± 22 217.87 0.705318 17.40 3.41
VF-298 108 146 0.0068 0.74 3.0970 0.72220 ± 20 251.24 0.706770 38.01 3.25
VF-356 91 563 0.0018 0.16 0.4330 0.70824 ± 21 53.09 0.706083 28.25 4.73
VF-417 105 302 0.0033 0.35 1.1067 0.71164 ± 20 101.31 0.706123 28.82 4.27
VF-636 93 369 0.0027 0.25 0.5673 0.70962 ± 16 72.65 0.706792 38.32 4.55
VF-639 91 365 0.0027 0.25 0.5255 0.70882 ± 20 61.32 0.706202 29.94 4.72
VF-700 103 177 0.0056 0.58 1.6920 0.71521 ± 16 152.02 0.706780 38.15 2.07
VK-139 99 285 0.0035 0.35 0.9891 0.71240 ± 34 112.14 0.707472 47.98 5.66
BGPI-1 61 284 0.0035 0.21 1.6198 0.71492 ± 22 147.91 0.706850 39.15 3.52
T-87 92 482 0.0021 0.19 0.3500 0.70768 ± 28 45.14 0.705936 26.17 4.82
MM-29 56 327 0.0031 0.17 1.7590 0.71496 ± 24 148.47 0.706196 29.86 5.72
Z-164 80 305 0.0033 0.26 1.5696 0.71403 ± 16 135.27 0.706210 30.05 5.77
MF-4a 65 473 0.0021 0.14 0.4390 0.70848 ± 18 56.49 0.706293 31.24 4.19
NT-401 125 600 0.0017 0.21 0.5644 0.71010 ± 30 79.49 0.707288 45.37 4.19
ZK-4 158 122 0.0082 1.30 3.4260 0.73700 ± 28 461.32 0.719930 224.93 3.57
TL-117 88 449 0.0022 0.20 0.6092 0.70920 ± 20 66.71 0.706165 29.42 3.75
VG-46 89 344 0.0029 0.26 0.5480 0.70800 ± 40 49.68 0.705270 16.71 25.50
VG-47 131 210 0.0048 0.62 1.4660 0.71510 ± 30 150.46 0.707796 52.58 7.96
V-7312 240 120 0.0083 2.00 0.9727 0.71123 ± 28 95.53 0.706384 32.53 5.00
V-9738 72 320 0.0031 0.23 0.7440 0.71005 ± 24 78.78 0.706343 31.95 5.04
VVM-129 448   21 0.0476 21.33 17.4520 0.87094 ± 36 2362.5 0.783988 1134.70 2.58
CH-3/72 102 464 0.0022 0.22 1.0252 0.71110 ± 22 93.68 0.705992 26.97 11.83
KV-3/622 139 638 0.0016 0.22 0.1965 0.70330 ± 20 -17.03 0.702321 -25.17 11.39

t(DM2st) – two-stage apparent crustal residence ages (Liew and Hofmann 1988); NCI – neodymium crustal index (DePaolo et al. 1992)

Tab. 2 Isotopic composition and related parameters for the studied Western Carpathian granitic rocks

phism with widespread granitic magmatism is typical 
of European Variscides, and could have lead partial 
isotopic homogenization throughout wide areas during 
Early Carboniferous period or sources could have been 
isotopically similar a priori (F. Finger, personal com-
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Fig. 3 Whole-rock Rb/Sr isochron (Nicolaysen-type) plot indicating 
evolution of the Western Carpathian granitic rocks with dominance 
of studied samples clustering around the reference 350 Ma isochron. 
Symbols as in Fig. 2.
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Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd (2σ) εNd(0) (143Nd/144Nd)350 εNd(350) t(DM2st) NCI δ18O
15.93 0.19 0.11602 0.512391 ± 5 -4.82 0.512125 -1.21 1155 0.58 9.8
32.25 0.18 0.11636 0.512323 ± 6 -6.14 0.512056 -2.56 1261 0.70 9.3

8.54 0.26 0.13045 0.512284 ± 8 -6.91 0.511985 -3.95 1370 0.77 10.5
15.85 0.22 0.12985 0.512273 ± 10 -7.12 0.511975 -4.14 1385 0.79 11.3
15.45 0.21 0.12768 0.512306 ± 11 -6.48 0.512013 -3.39 1327 0.73 11.0
23.44 0.20 0.12241 0.512346 ± 6 -5.70 0.512065 -2.38 1247 0.66 9.7
23.89 0.18 0.11918 0.512265 ± 9 -7.28 0.511992 -3.81 1359 0.81 10.4
24.47 0.19 0.11444 0.512338 ± 8 -5.85 0.512076 -2.18 1231 0.67 9.6
25.19 0.19 0.11364 0.512347 ± 7 -5.68 0.512087 -1.97 1214 0.66 9.5

8.39 0.25 0.14990 0.512330 ± 13 -6.01 0.511986 -3.92 1368 0.69 9.0
30.80 0.18 0.11135 0.512302 ± 6 -6.55 0.512047 -2.74 1275 0.74 10.2
18.50 0.19 0.11551 0.512235 ± 9 -7.86 0.511970 -4.24 1393 0.86 11.1
27.70 0.17 0.10548 0.512397 ± 7 -4.70 0.512155 -0.62 1109 0.57 10.7
30.60 0.19 0.11346 0.512278 ± 11 -7.02 0.512018 -3.30 1319 0.78 11.2
31.99 0.18 0.10947 0.512298 ± 10 -6.63 0.512047 -2.74 1275 0.75 10.0
22.30 0.19 0.11362 0.512307 ± 11 -6.46 0.512047 -2.75 1276 0.73 9.8
22.66 0.18 0.11216 0.512396 ± 9 -4.72 0.512139 -0.94 1134 0.57 8.6
15.40 0.23 0.14044 0.512156 ± 8 -9.40 0.511834 -6.89 1601 1.00 9.6
21.50 0.17 0.10597 0.512343 ± 4 -5.75 0.512100 -1.70 1194 0.67 9.5
82.10 0.31 0.18865 0.512516 ± 5 -2.38 0.512084 -2.02 1219 0.36 8.4
33.91 0.23 0.14237 0.512354 ± 11 -5.54 0.512028 -3.11 1305 0.65 10.5
22.50 0.22 0.13498 0.512333 ± 14 -5.95 0.512024 -3.19 1311 0.68 8.6
28.50 0.18 0.10717 0.512332 ± 12 -5.97 0.512086 -1.97 1215 0.69 9.3

8.93 0.29 0.17537 0.512364 ± 9 -5.34 0.511962 -4.40 1405 0.63 9.9
52.04 0.23 0.13787 0.512343 ± 9 -5.68 0.512031 -3.05 1299 0.66 9.1
65.68 0.17 0.10515 0.512715 ± 6 1.50 0.512474 5.60 620 0.00 6.6

munication). The (87Sr/86Sr)350 ratios in granitoid rocks 
of the Tatric and Veporic units are low (0.705–0.708), 
suggesting a mixed lower crustal and mantle source, mix-
ing of more and less radiogenic sources and/or a Rb-poor 
crustal source (Fig. 4). Granitoids from the Gemeric Unit 
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Fig. 4 Initial Sr isotopic ratios at 350 Ma vs. 1/Sr plot documenting 
nearly balanced and quasi-homogenized isotopic composition during 
genesis of the Variscan granites in the Western Carpathians. Symbols 
as in Fig. 2.

(VVM-129) have extremely high (87Sr/86Sr)350 ≥0.725 
(Kovach et al. 1986), which suggests an older supracrustal 
metasedimentary source. 

The εNd(0) values for the West Carpathian granitoids, 
ranging from -2.3 to -9.4, are comparable with other 
data for the Variscan fold belt of Central Europe (Liew 
and Hofmann 1988), the Massif Central (Pin and Duthou 
1990), the Bohemian Massif (Liew et al. 1989; Janoušek 
et al. 1995; Gerdes 2001) and the Tauern Window (Finger 
et al. 1993). In contrast to the Rb-Sr isotopic system, no 
isochron relationship is apparent in the Sm-Nd system at 
350 Ma (Fig. 5), and the (143Nd/144Nd)350 ratios are more 
heterogeneous (Fig. 6). Even though, there is an overlap 
in the Nd isotopic ratios of tonalites, granodiorites, and 
granites, the leucogranites have systematically less radio-
genic Nd. Nevertheless, in comparison to the general broad 
range of Nd isotope ratios of crustal rocks wordlwide, the 
range in the CWC granitoids is small. Only the gabbro 
sample is distinct with the most radiogenic ratio, which 
reflects its mantle source.The δ18O values of the granitoids 
range from 8.4 to 11.3 ‰ (Figs 7 and 8). On average, the 
tonalites have the lowest δ18O values of 9.1 ± 0.6 ‰, the 
granodiorites have 9.9 ± 1.3 ‰, the granites show 10.2 ± 
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Fig. 5 143Nd/144Nd versus 147Sm/144Nd isochron diagram for the Western 
Carpathian granitic rocks. A reference 350 Ma isochron is drawn for 
comparison As can be seen, there is no linear relationship reflecting the 
lack of the regional-scale homogenization. Symbols as in Fig. 2.
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Fig. 6 Initial Nd isotopic ratios at 350 Ma versus 1/Nd ratio diagram. 
The lack of a linear array rules out simple two-component source 
mixing and reflects rather heterogeneous sources and/or open-system 
interactions during genesis of the Carpathian granites.
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Fig. 7 Diagram δ18O vs. (87Sr/86Sr)350 of the Western Carpathian grani-
tes; crustal and mantle components (CC + MC) are taken from James 
(1981). According this model the CWC granites represent 10–50% 
assimilation of crustal rocks.

Fig. 8 Plot of δ18O vs. (143Nd/144Nd)350 for granitic rocks of the Western 
Carpathians. Potential crustal source (upper crust – UC) and depleted 
mantle component (DM) are shown for comparison.

1.6 ‰, and the leucogranites have 10.0 ± 1.0 ‰. Thus, 
there is a considerable overlap in the oxygen isotope com-
position between individual granitoid types. However, with 
the exception of the leucogranites and one granodiorite 
sample, there is a fairly good negative correlation of the 
δ18O values with (143Nd/144Nd)350

 (Fig. 8) whereby higher 
δ18O values tend to indicate a sedimentary crustal protolith 
and lower values a mafic protolith (O’Neil and Chappell 
1977; Taylor 1988). The gabbro sample has δ18O value of 
6.6 ‰, which is typical of mantle-derived rocks. 

5.	Discussion

5.1.	Sources of granitoids

In spite of the broad range of granitoid types in the Tatric 
and Veporic superunits, the granitoids have rather narrow 
ranges of (87Sr/86Sr)350 and (143Nd/144Nd)350 ratios, particu-

larly in comparison to granitoids of other orogenic belts 
such as the Lachlan fold belt of Australia (McCulloch and 
Chappell 1982). The possible source rocks of the Western 
Carpathian granitoids have previously been discussed 
(e.g. Cambel and Petrík 1982; Kráľ 1994; Petrík et al. 
1994; Kohút and Nabelek 1996; Petrík and Kohút 1997; 
Petrík 2000; Finger et al. 2003). According to Kráľ (1994), 
the Tatric and the Veporic granitoids were generated from 
an isotopically inhomogeneous source by mixing of mantle 
and crustal material with a low Rb/Sr ratio. Petrík et al. 
(1994) suggested that S-type granitoids were generated 
by dehydration melting of peraluminous muscovite- and 
biotite-bearing metasedimentary rocks with graphitic 
intercalations because of fairly reduced accessory oxide 
assemblage. They viewed biotite- and biotite-hornblende 
plagioclase gneisses as plausible sources for generation of 
the I-type group. Kohút and Nabelek (1996) suggested for 
part of the Tatric transitional (I/S) granitoids melting of a 
vertically zoned lower crust, including a volcanic arc and 
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crustal metasediments. Petrík and Kohút (1997) preferred 
a) supracrustal, reduced granulite-facies rocks with minor 
addition of a mantle-like component as sources for the S-
type granites, b) intermediate, oxidized metaigneous rocks 
in combination with underplated mafic crust as protolith 
for the I-type group, c) H2O-poor and F-rich granulite 
and/or tonalite crust as parental to the A-type group, and d) 
mature, recycled sedimentary supracrustal rocks, or rocks 
which experienced sea-floor weathering and were perme-
ated by volcanic (boron) emanations as source lithologies 
for the Gemeric granites. Petrík (2000), on the basis of pre-
viously published data, considered various proportions of 
at least two contrasting source components – old recycled 
supracrustal metasediments and a young mafic source with 
possible addition of assimilants. Presented isotopic data 
(Sr, Nd and O) preclude a simple mantle (like plagio-
granites in ophiolitic complexes) or crustal origin (like 
Himalayan granites) for most of the Tatric and Veporic 
granites. Although the lowermost (87Sr/86Sr)350 ratio in 
the Fig. 4 is close to the CHUR composition and thus 
the mantle limit, most samples have this ratio slightly 
higher (0.706–0.708). Most of the Western Carpathian 
granitoids define a well-defined field in a (87Sr/86Sr)350 vs. 
(143Nd/144Nd)350 plot (Fig. 9) that is characteristic of I-type 
granitoids (McCulloch and Chappell 1982; Hensel et al. 
1985; Liew et al. 1989; Petford and Atherton 1996). 
Only the Kralička and the Gemer granites have isotopic 
characteristics that indicate involvement of upper-crustal 
sources. All granitoid samples lie in quadrant IV, but close 
to the mantle domain in quadrant II. Magma sources with 
positive values of both enrichment parameters fSm and fRb 
(quadrant I) are not typical of ordinary felsic igneous rocks 
(Faure 1986) but old amphibolite/greenstone lower crust 

shows such enrichment behavior (Keay et al. 1997; Poller 
et al. 1998). Apparent two-stage Nd crustal residence ages 
(tDM2st) range from 1.6 to 1.1 Ga, but are mostly between 
1.4 and 1.1 Ga (Fig. 10). The 1.6 Ga age is for a leucocratic 
sample ZK-4 which has the lowest εNd(0) value. Overall, the 
model ages are comparable with those of the Variscan belt 
elsewhere in Europe. For example, Nd crustal residence 
ages in the Central Iberian zone vary between 1.7 to 1.4 Ga 
(Moreno-Ventas et al. 1995; Villaseca et al. 1998; Castro 
et al. 1999), in the Bohemian Massif between 1.7 and 1.1 
Ga (Liew and Hofmann 1988; Janoušek et al. 1995), in 
Schwarzwald between 1.6 to 1.4 Ga (Liew and Hofmann 
1988) and in Massif Central between 1.8 to 1.1 Ga (Pin 
and Duthou 1990; Turpin et al. 1990; Williamson et al. 
1996; Downes et al. 1997). Analogues of dioritic rocks in 
the Tatra Mountains are scarce – similar rocks are found 
in Massif Central (Shaw et al. 1993), Corsica (Cocherie 
et al. 1994) or Bohemian Massif (Janoušek et al. 1995; 
Sokol et al. 2000).

The gabbro from the Veporic superunit falls on the 
mantle array in quadrant II, which demonstrates its man-
tle origin. The gabbro’s model age is 620 Ma, which is in 
accord with evolution of a hypothetical depleted mantle 
reservoir in the Carpathian realm during the Pan-African 
orogeny (700–500 Ma). However, recent U-Pb zircon 
SHRIMP dating of gabbro from the Branisko Mountains 
anatectic complex suggests a Late Devonian (370 Ma) 
age (Kohút et al. in print). 

The low (87Sr/86Sr)350 ratios might be interpreted in 
several ways: 1) melting of a relatively young crust, 
2) melting of lower crustal rocks with Rb depleted during 
the ancient granulite-facies metamorphism, 3) melting 
of a mixture of deep sea sediments with seafloor basalts, 
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4) melting of subducted oceanic slab, 5) melting of 
an underplated basaltic crust, and 6) melting of an old 
greenstone belt. Given that the European Hercynides are 
essentially related to subduction and collisional processes 
(Burg and Matte 1978; Matte 1986, 1991; Pin and Duthou 
1990; von Raumer and Neubauer 1993; and/or Petrík and 
Kohút 1997), one possibility is that the principal source 
of the Tatric and Veporic granitoids was an underplated 
volcanic arc below the collisionally thickened continen-
tal crust. On the other hand, more mature supracrustal 
metamorphic rocks and infracrustal igneous rocks were 
sources for the Gemeric granitoids that have more el-
evated Sr isotope ratios. From the geochemical point of 
view, the CWC granitoids seem to be analogues of vol-
canic-arc granitoids but such a character may have been 
inherited from products of Early Variscan active margin 
subduction processes. Similar scenario was described in 
the Bohemian Massif by Finger and Clemens (1995). The 
rather broad range of oxygen isotope ratios would then 
suggest that the arc crust was variably hydrothermally 
altered prior to underplating.

However, the source region was probably composite and 
certain portions were perhaps as old as Proterozoic as sug-
gested by the TDM ages of the granitoids. Where exposed 
by thrusting, the Carpathian basement includes low- to 
high-grade metamorphic rocks, amphibolites, migmatites, 
orthogneisses, granites, greenstone rocks and/or Upper 
Paleozoic sedimentary and volcanic rocks. A heterogeneous 
source region for the granitoids is inferred by variability of 
enclave populations, represented by country-rock xenoliths 
(gneisses, amphibolites, eclogites and granulites), and/or 
mafic microgranular enclaves (Hovorka and Petrík 1992; 
Petrík et al. 1994; Janák 1994; Janák et al. 1996, 1999; 
Petrík and Kohút 1997). An excellent perspective on how 
the source region may have appeared can be obtained in a 
new, 4 km long highway tunnel in the Branisko Mountains 
that exposes a small portion of the Variscan lower crust. 
The exposed rocks include a greenstone-like granite 
anatectic complex, composed of various amphibolites 
alternating with tonalitic gneisses on one side but rather 
typical greywacke gneisses on the other side of the 
tunnel. Widespread anatectic phenomena are observed 
in both lithologies. Stromatic migmatite, metatexite, 
diatexite and/or dictyonic structure indicate melting and 
segregation of the melt (Sawyer 1991, 1996; Brown 
1994). Salient is the presence of gabbroic enclaves within 
this anatectic complex and this may indicate input of a 
juvenile basic magma into the lower crust. It is possible 
that such a source region yielded the observed spectrum 
of Variscan granitoids. It is apparent, however, that Sr and 
Nd isotopes were already fairly homogeneous during the 
anatectic event as suggested by their narrow ranges in the 
granitoids. 

For better understanding of the nature of the compo-
nents in the complex source region during the Variscan 
magmatism, we added fields of amphibolites and metasedi-
mentary rocks from the Tatra Mountains (Poller et al. 1998, 
Kohút et al. 2008), which represent plausible lower crustal 
and upper crustal sources, respectively, to the (87Sr/86Sr)350 
vs. (143Nd/144Nd)350 diagram (Fig. 9). A prospective mantle 
source is represented by the gabbro and another upper-
crustal component by the Kralička granite (Tab. 3). Al-
though it is possible to construct a simple binary mixing 
array between a mantle source and the isotopically variable 
metasedimentary rocks, the occurrence of tonalites indi-
cates that amphibolites were also involved in the melting 
process. Mixing calculations involving gabbro (mantle 
source), amphibolites, and metapelites as potential sources 
yield the following proportions: 25–75 % metasediments, 
0–75 % amphibolites and 5–25 % gabbroid rocks, with 
ranges depending on the assumed isotopic compositions of 
the metapelites and amphibolites. Mixing calculations in-
volving orthogneisses (represented by the Kralička granite 
instead of amphibolites) yield 25–75 % metasedimentary 
rocks, 0–45 % orthogneisses, and 20–35 % mantle-derived 
melts. In either case, the presence of crustal sources during 
the generation of the Carpathian granites is evident. 

The importance of crustal contribution to the Western 
Carpathian granitoids is confirmed also by the neodymium 
crustal index (DePaolo et al. 1992) NCI = 0.4–1.0, mostly 
between 0.6 and 0.8 (Tab. 2). Furthermore, the δ18O values 
of the granitoids are generally elevated relative to mantle 
values including the gabbro (Figs 7–8), which suggests a 
significant crustal component in the protolith. This is in 
accord with the large amount of anatectic granite rocks ob-
served elsewhere within the European Variscides. We note 
that the two-stage Nd model age for amphibolitic rocks 
is identical to that of the granitoids and it is in contrast 
to the Early Proterozoic model ages of metasedimen-
tary rocks and orthogneisses from the Tatra Mountains 
(Fig. 10). This implies addition of mantle material to the 
source region that may have initially consisted of more 
silicic crustal materials. Such an addition is also sug-
gested by the compositions of dioritic MME in the Tatra 
Mts. granitoids (Poller et al. 2001). The mantle origin of 
the Tatra Mts. diorites has never been advocated, in accor-
dance with the observation of Pin et al. (1991). However, 
MME are commonly thought to be products of magma 

Tab. 3 Input parameters for individual sources in the mixing models.

Sr (87Sr/86Sr)350 Nd (143Nd/144Nd)350

Gabbro 638 0.702321 65.7 0.512474
Amphibolite 106 0.707730 13.7 0.512426
Metapelite   95 0.711537 31.9 0.511602
Orthogneiss 122 0.719930 15.4 0.511834
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mixing/mingling processes (e.g., Didier 1973; Didier and 
Barbarin 1991).

5.2.	Thermal aspects of melt generation

As is the case for much of the exposed European 
basement, crystalline products of the Variscan orog-
eny dominate the present erosion level of the Western 
Carpathians. Available dates (U-Pb, Rb-Sr and Ar-Ar) 
support granite-forming events mainly between 360 and 
260 Ma. The results of the present study indicate that the 
source region of the granitoid magmas could have included 
amphibolites, metasedimentary rocks and orthogneisses, 
and some mantle-derived material, perhaps in the form of 
magmas that invaded the source region during anatexis, 
was probably involved in the petrogenesis. The spectrum 
of granitoid compositions in the Western Carpathians and 
their isotopic compositions are consistent with a hetero-
geneous source region as seen on the exposures in the 
Branisko Mountains. The source region probably included 
potentially fertile lithologies, represented by metagrey-
wackes, metapelites and hydrated mafic or intermediate 
metavolcanics (amphibolites or greenstone-like rocks). 
The dehydration melting of muscovite, biotite and/or 
hornblende-bearing rocks has widely been suggested as 
an anatectic crustal process (Clemens and Vielzeuf 1987; 
Le Breton and Thompson 1988; Patiño Douce et al. 1990; 
Skjerlie et al. 1993; Wolf and Wyllie 1994; Singh and 
Johannes 1996; Montel and Vielzeuf 1997 among others). 
The continental crust must have been considerably thick 
(>40 km) and hot enough for melting of a basic metaig-
neous source to occur. Indeed, the voluminous granitoid 
production during the Variscan period demonstrates that 
the pre-Carboniferous crust of the European Variscides 
was sufficiently thickened by multistage collisional tec-
tonics to become fertile for granite production (Vielzeuf 
et al. 1990). Although leucogranites can potentially be 
produced by decompression melting or shear heating 
of mid-crustal metasedimentary rocks (e.g. Daniel et 
al. 1987; Nabelek and Barlett 1998; Patiño-Douce and 
Harris 1998; Nabelek and Liu 1999), these processes are 
unlikely to result in sufficiently high melt production to 
explain the volume of the Western Carpathian granitoids. 
Therefore an enhanced heat flux from mantle or unusually 
high radioactive heat production is required (e.g. Royden 
1993). Supracrustal sedimentary rocks enriched in U, Th 
and K could potentially sufficiently heat the source region 
to induce anatexis but a large abundance of such a lithology 
is not evident in the isotopic composition of the granitoids. 
The most likely source of heat for anatexis of the Variscan 
lower crust is an underplated and/or intraplated mantle-
derived magma as has been proposed for production of 
other orogenic granites (e.g. Holland and Lambert 1975; 
Wells 1981; Huppert and Sparks 1988; Dewey 1988). The 

gabbro from the Veporicum may represent a product of 
crystallization from such a magma, although its genetic 
relationship to the Western Carpathian granitoids is not 
yet clear. Gabbroic rocks also occur within the Branisko 
greenstone–granite anatectic complex. Field and petrologic 
evidence indicates collisionally thickened and inverted 
structure of the CWC Variscan basement (Janák 1994; 
Kohút and Janák 1994) with intrusion of lens-like granite 
bodies within the upper unit. Similar structure occurs in 
the classical Himalayan convergent orogen (Le Fort 1981; 
France-Lanord and Le Fort 1988; Harrison et al. 1998). It 
is suggested that melting of heterogeneous crustal sources 
in the Western Carpathians occurred during subduction 
of the lithosphere and continental collision in the early 
Variscan times. Heating through underplating and/or 
intraplating of mantle-derived magma facilitated partial 
melting. After the main collisional stage, the thick and 
thermally weakened crust most probably collapsed due 
to gravitational instability (Dewey 1988; Hollister 1993), 
leading to decompression and rapid exhumation at 2–3 
mm/year accompanied by rapid cooling of 35–87 °C/Ma 
(Janák and Kohút 1996; Kohút et al. 1997). Rapid cool-
ing of the hanging wall containing the melt by thrusting 
onto the colder footwall in the Carboniferous times 
was followed by gradual cooling attributed mainly to 
the extensional denudation and concomitant erosion 
forced by propagation of normal faults in the Permian. 
Therefore, majority of the crystalline basement terranes 
of the Western Carpathians have been eroded before the 
Alpine–Lower Triassic sedimentation.

6.	Conclusions

The Western Carpathians belong to the Alpine Neo-Eu-
rope. Even though they may have been variably affected 
by the Alpine orogeny, the granitic rocks in the Variscan 
basement show many similarities to other European oc-
currences of granitic rocks within the Variscan orogenic 
belt. The Sr-Nd-O isotopic compositions of the Variscan 
granitic rocks in the Western Carpathians indicate a 
mixed source consisting of Proterozoic and younger 
crustal and mantle-derived lithologies. It is inferred that 
the source was vertically-zoned lower crust consisting of 
felsic and mafic metaigneous and metasedimentary rocks. 
A contribution of mantle-derived magma is evident in Sr 
and Nd isotope compositions. Intrusion of such magma 
may have contributed to homogenization of the isotope 
ratios of these elements and provided the heat necessary 
for melting of the lower crust. Although the geochemical 
features of the Western Carpathian granitoids are typical of 
volcanic arc igneous suites, the surrounding metamorphic 
rocks association and their P-T conditions indicate their 
generation during an intracontinental subduction or conti-
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nental collision that involved high-grade metasedimentary 
and metaigneous rocks in the lower- to mid-crust. 
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Appendix: Sample description and location

Sample number Rock type, location Longitude 
(°E)

Latitude 
(°N)

Altitude
(m)

  1  VF- 43 muscovite-biotite granite, natural outcrop Vyšná Krivá 49°01´23˝01 19°11´33˝20 1 035.0
  2  VF-153 biotite tonalite, natural outcrop Vyšné Matejkovo 48°59´48˝10 19°13´35˝46 1 130.0
  3  VF-157 muscovite granite, natural outcrop Stupecké Valley 49°46´45˝24 19°10´49˝47 820.0
  4  VF-283 muscovite-biotite granodiorite, natural outcrop, Matejkov Ridge 48°59´53˝05 19°16´02˝20 831.5
  5  VF-298 muscovite-biotite granodiorite, natural outcrop, Vyšné Matejkovo 48°59´44˝21 19°15´57˝02 705.0
  6  VF-356 biotite tonalite, quarry Vyšné Matejkovo 48°59´47˝22 19°15´03˝59 812.0
  7  VF-417 muscovite-biotite granodiorite, natural outcrop Javorisko 49°02´34˝56 19°10´27˝18 905.0
  8  VF-636 biotite granodiorite, natural outcrop Blatná Valley 49°00´29˝39 19°09´05˝16 685.0
  9  VF-639 biotite granodiorite, natural outcrop Blatná Valley 49°00´17˝11 19°09´29˝40 742.0
10  VF-700 muscovite granite, natural outcrop Nižné Matejkovo 49°00´09˝26 19°15´54˝23 825.0
11  VK-139 biotite granodiorite, natural outcrop Malý Javorník 48°15´31˝20 17°08´57˝10 545.0
12  BGPI-1 biotite granodiorite, natural outcrop Hradná Valley 48°36´31˝04 18°00´59˝50 290.0
13  T-87 biotite granodiorite, natural outcrop Krnča 48°31´36˝00 18°15´58˝50 250.0
14  MM-29 muscovite-biotite granite, natural outcrop Poruba Valley 48°50´48˝02 18°33´11˝54 665.0
15  Z-164 biotite-muscovite granite, quarry Veľká Valley 48°49´27˝03 18°46´27˝30 590.0
16  MF-4a muscovite-biotite granodiorite, quarry Bystrička 49°10´24˝12 19°06´34˝44 575.0
17  NT-401 biotite granodiorite, natural outcrop Liptovská Lúžna 48°57´41˝50 19°20´19˝13 960.0
18  ZK-4 muscovite granite, natural outcrop Vyšná Boca 48°55´28˝56 19°44´28˝57 1 045.0
19  TL-117 muscovite-biotite granodiorite, natural outcrop, Prostredný Ridge 49°11´24˝19 20°01´31˝23 1 920.0
20  VG-46 biotite granodiorite, quarry Klementka 48°40´12˝41 19°37´30˝52 870.0
21  VG-47 muscovite-biotite granodiorite, quarry Chorepa 48°35´43˝17 19°51´31˝50 555.0
22  V-7312 biotite-muscovite granite, natural outcrop České Brezovo 48°29´13˝21 19°48´33˝32 340.0
23  V-9738 muscovite-biotite granite, natural outcrop Solisko 48°42´31˝53 20°09´48˝11 660.0
24  VVM-129 biotite-muscovite granite, drill well Peklisko 48°48´40˝58 20°33´39˝49 596.9
25  CH-3/72 muscovite-biotite granodiorite, quarry near Ružín dam 48°51´48˝42 21°05´28˝30 360.0
26  KV-3/622 gabbro, Rochovce borehole 48°42´04˝06 20°17´39˝21 408.5


