
www.jgeosci.org

Journal of Geosciences, 55 (2010), 131–148	 DOI: 10.3190/jgeosci.066

Original paper

The granite system near Betliar village (Gemeric Superunit,  
Western Carpathians): evolution of a composite silicic reservoir

Michal KUBIŠ1,2, Igor BROSKA1*

1	Geological Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, P.O. Box 106, 840 05 Bratislava, Slovakia;  
	 igor.broska@savba.sk
2	Present address: Geofos Ltd., Veľký diel 3323, 010 08 Žilina, Slovakia
*	Corresponding author

Boron- and fluorine-rich highly evolved granites in the Betliar area (Gemeric Unit, Western Carpathians) represent 
composite intrusion that formed probably during two distinct magmatic episodes. During the first stage, evolved granitic 
magma originating from an underlying volatile-rich reservoir intruded into an open fault system in the form of sill-like 
bodies and crystallized as equigranular or medium- to fine-grained rocks. The subsequent volatile flux enhanced post-
magmatic alterations of the solidified granites and led to the formation of greisens with elevated amounts of tourmaline and 
Nb–Ta–W–Th phases. During the second stage, magma from a deeper magmatic reservoir intruded as a mush containing 
K-feldspar, albite, mica and quartz phenocrysts and gave rise to porphyritic granites. Partial dissolution and corrosion 
of the phenocrysts was enhanced by a pressure drop during emplacement of the porphyritic granites into middle-crustal 
level where the volatile-rich residual melt rapidly crystallized and is now preserved as quartz–albite–K-feldspar matrix 
with tourmaline and other accessories. Monazite and zircon geochronology indicates that the process occurred during 
Middle and Late Permian, and possibly extended to Early Triassic. 
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1.	Introduction

Prominent examples of a composite granite system can 
be found in the Betliar area. The granite complex consists 
of porphyritic and fine-grained (leuco-) granite that crops 
out within Palaeozoic volcanosedimentary rocks over-
printed by contact metamorphism (Bajaník et al. 1984). 
The granites intruded the Gemeric Superunit, which is 
the uppermost crustal-scale tectonic unit of Alpine age in 
the Central Western Carpathians (Plašienka et al. 1997). 
Owing to their ubiquitous Sn, Nb, Ta and W mineraliza-
tion (Grecula 1995; Malachovský et al. 2000; Uher et 
al. 2001), the most fractionated granites at Betliar can 
be geochemically classified as evolved S-type granites 
(Uher and Broska 1996; Broska and Uher 2001). Three 
granite types may be distinguished: (i) coarse-grained and 
porphyritic biotite granite, (ii) medium-grained muscovite 
granite, forming lower parts of the intrusive bodies, and 
(iii) fine-grained muscovite granite, often greisenized, 
occurring in the upper parts (Ončáková 1954). Typical of 
the Betliar area is also the occurrence of granite porphyry 
described by Ončáková (1954), Kamenický and Kame
nický (1955) and Varček (1959). 

The first K–Ar radiometric data for the Betliar granite 
porphyry yielded an “apparent” Alpine age (Kantor 1957). 
Later, Kovach et al. (1986) determined Permian ages for 
the Betliar granite using the Rb–Sr isochron method. 

Recent single-grain zircon dating gave a concordant age 
of 246 ± 5 Ma that was interpreted as a minimum age of 
crystallization (Poller et al. 2002). Electron microprobe 
dating of monazite yielded 273 ± 13 Ma (Finger and 
Broska 1999), while the in situ U–Pb SHRIMP zircon 
dating gave an average age of 277.2 ± 1.9 Ma (Radvanec 
et al. 2009). In this study, we present new petrographic, 
mineralogical and geochemical data bearing on the evolu-
tion of the Betliar granitic suite and report new monazite 
and zircon geochronological data.

2.	Analytical methods

Whole-rock analyses were performed in the ACME 
Laboratories (Vancouver, Canada) using the following 
analytical procedure: (i) crushing of rock samples weight-
ing 3 to 10 kg, (ii) sintering of a 0.2 g sample aliquot 
with sodium peroxide, (iii) dissolution of the sinter cake, 
separation and dissolution of REE hydroxide-bearing 
precipitate, (iv) analysis by ICP-MS method with internal 
standardization to correct for matrix and drift effects. 
Natural rocks and pure quartz reagent (blank) were used 
as reference standards. Boron in the rock samples (GK-6, 
GK‑7) has been analyzed by optical emission spectros-
copy (OES) at the Geological Institute of the Slovak 
Academy of Sciences, Bratislava.
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Composition of rock-forming minerals was deter-
mined using a Cameca SX100 electron microprobe at 
the State Geological Survey (Bratislava, Slovakia) at 
the following conditions: accelerating voltage 15 kV, 
sample current 20 nA, beam diameter 5 μm and cali-
bration using natural standards. Apatite and monazite 
were analyzed using a Cameca SX50 electron micro-
probe at the Natural History Museum (London, United 
Kingdom). Operating conditions were: accelerating 

voltage 15 kV, beam current 25 nA, beam diameter 1 
to 5 µm. 

Monazite data acquired for geochronological con-
siderations were obtained using the Cameca SX100 
microprobe at the State Geological Survey (Bratislava, 
Slovakia) with the following operating conditions: accel-
erating voltage 15 kV, beam current 80–150 nA, counting 
time 75–130 s and beam diameter 5 μm. The following 
synthetic and natural standards were used for calibra-
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Fig. 1 Geological sketch map of the Betliar area. a – Position of the Gemeric unit in the Western Carpathians. b – The Gemeric unit with its granite 
occurrences; Betliar area shown by square (according to Bajaník et al. 1984). c – Sample locations in the Betliar granite body (after Rozložník et 
al. 1980). 
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tion: Al – Al2O3, Si – wollastonite, P – apatite, Pb – PbS,  
U – UO2, Th – ThO2, REE – (REE)PO4. Further analytical 
details pertaining to the monazite dating method can be 
found in Konečný et al. (2004). 

Zircon was analyzed by LA-ICP-MS at the Institute of 
Geochemistry, Mineralogy and Mineral Resources, Charles 
University (Prague, Czech Republic). 206Pb/238U and 
207Pb/206Pb zircon ages were determined using a 213 nm 
Q-switched Nd-YAG NewWave Microprobe laser coupled 
to a multi-collector PlasmaQuad 3 ICP-MS. The laser 
beam with energy up to 2.5 mJ/pulse was directed through 
a series of apertures and microscope optics and focused 
onto the sample surface. Spot analyses covered diameter 
of 10–15 μm. The samples were placed in a quartz cell 
mounted on a computer-driven motorized stage. The ab-
lated material from the cell was flushed out by a stream of 
He gas. The U–Pb ages were recalculated using the Isoplot/
Ex program – version 2.49 (Ludwig 2001); all the age data 
in the text are given at the 2σ confidence level. 

a b

c d

Kubiš and Broska Fig. 2

Fig. 2 Textures of the Betliar granitic rocks. a – Porphyritic granite (“granite porphyry”). b – Fine-grained (equigranular) granite. c – Medium-
grained granite with nodular tourmaline. d – Medium-grained granite with a quartz–tourmaline vein. 

3.	The Betliar granite body

The Betliar granite forms an irregular intrusive body 
(600 m in diameter at the present surface level) situated 
3.6 km N of the Betliar village (Fig. 1). The granite body 
intruded Lower Palaeozoic metasediments, the “porphy-
roid series” of the Gelnica Group (Bajaník et al. 1984) 
that is composed of metavolcanic rocks and phyllites. 
The cliffs in the vicinity of Betliar mainly consist of por-
phyritic granite (Fig. 2a) and, to a lesser extent, of fine-
grained (leuco-) granite, which crops out in the northern 
part of the intrusion (Fig. 2b). Direct contact between 
the two granite types could not have been observed. The 
medium- to coarse-grained granite occurs in the form of 
large blocks, up to several meters in size, situated within 
both the porphyritic and fine-grained (leuco-) granite. The 
contact between granites and surrounding metasediments 
is sharp. Medium- to fine-grained granites locally show 
abundant tourmaline-rich nodular aggregates (Fig. 2c). 
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Fig. 3 Photomicrographs and backscattered electron images from the porphyritic granite (“granite porphyry”) – sample GK-6. a – K-feldspar 
phenocryst in porphyritic granite. b – Albite phenocryst mainly altered to sericite. c – Two generations of biotite. d – Secondary paragenesis on 
former mineral (cordierite?). e – Granitic matrix enriched in tourmaline. f – Granitic matrix composed of albite, K-feldspar and quartz. 

Metarhyolite tuffs surrounding the fine-grained (leuco-) 
granite have been strongly altered and were crosscut 
by numerous quartz veinlets. Post-magmatic alteration, 

particularly greisenization, is developed to a limited ex-
tent only and confined to the contact of the fine-grained 
granite with the host rocks. The granites, however, were 
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forms irregular cluster aggregates. Accessory minerals in-
clude abundant tourmaline, zircon, apatite, monazite and 
thorite. Tourmaline occurs as spectacular clusters. Apatite 
is also abundant (Fig. 4e). In some places, granitic rock 
was cross-cut by quartz-tourmaline veins (Fig. 4f).

4.	Geochemistry

The Betliar granites belong to typical S-type peralumi-
nous granites (Tab. 1). The most widespread porphyritic 
granites (samples GK-6, GZ-15, 16) are strongly peralu-
minous (alumina saturation index, ASI = 1.2 to 1.6), with 
high SiO2 contents (73 to 75 wt. %), relatively high alkali 
concentrations, especially of K2O (3 to 5 wt. %), low con-
tents of MgO (0.3 to 0.9 wt.%), CaO (0.3 to 0.4 wt.%), 
FeO (1.25 to 1.75 wt.%), Sr (13 to 33 ppm) and Ba (104 
to 246 ppm) (Fig. 5). The porphyritic granites contain 
approx. 0.15 wt. % P2O5, 300–420 ppm Rb, 10–12 ppm 
Nb, ~ 2 ppm Ta and are enriched in boron (~375 ppm B). 
The rare earth element patterns show pronounced nega-
tive europium anomalies (Eu/Eu* = 0.22 to 0.31) and low 
LaN/YbN ratios (2.2 to 3.8) (Fig. 6).

The medium-grained granite (GK-17) has a more evolved 
composition with high SiO2 (74.7 wt. %), low peraluminos-
ity (ASI = 1.28) and high Rb (~477 ppm), Nb (~28 ppm), 
Ta (~14 ppm) and W (~24 ppm) contents. Low CaO (~0.42 
wt. %), Ba (~130 ppm), REE and Sr (~17 ppm) contents 
are characteristic of this granite type. Chondrite-normalized 
REE pattern is relatively flat (LaN/YbN = 1.3) with a distinct 
negative Eu anomaly (Eu/Eu* = 0.19) (Fig. 6). 

The more evolved equigranular fine-grained granites 
(GK-7, GK-19) located along the northern border of the 
Betliar intrusive complex are enriched in phosphorus 
(0.37 to 0.47 wt. % P2O5) (Fig. 5). High Rb contents (553 
to 697 ppm) and a strongly peraluminous nature (ASI = 
1.4 to 2.4) reveal a highly differentiated magma whereas 
Ba (130–145 ppm) and Sr (12–25 ppm) concentrations 
are similar to those in the porphyritic and medium-
grained granites. A higher degree of fractionation is also 
demonstrated by increased concentrations of incompatible 
rare metals: Nb (47–73 ppm), Ta (14.3–18.2 ppm) and W 
(21–38 ppm). By contrast, Sn contents (13 to 30 ppm) are 
relatively low. The chondrite-normalized REE patterns 
are rather flat (LaN/YbN = 0.9 to 1.2) and show deep nega-
tive Eu anomalies (Eu/Eu* = 0.20 to 0.30). 

5.	Rock-forming minerals

5.1.	Alkali feldspars

Alkali feldspars of the Betliar granite body are close to 
pure end-members. Albite concentrations in K-feldspar 

crosscut by quartz and quartz–tourmaline veinlets (Fig. 
2d). 

3.1.	The porphyritic granite

The porphyritic granite (samples: GK-6, GZ-15, GZ-16) 
contains megacrysts of alkali feldspar (1–4 cm in size) 
and quartz (0.5–3 cm) that are disseminated in a me-
dium- to fine-grained matrix (Fig. 3a). Their groundmass 
essentially consists of equigranular K-feldspar, albite and 
quartz in similar volumetric proportions, with smaller 
quantities of white mica and tourmaline. 

Alkali feldspar forms subhedral to anhedral crystals, 
usually with perthitic structure (string, vein and patch 
perthite). Subhedral megacrysts (up to 0.5 cm) and matrix 
albite (An00–07) were strongly sericitized (Fig.  3b). The 
strongly altered plagioclase rarely shows relic cores (An30). 
Quartz forms anhedral to subhedral grains showing partial 
magmatic resorption, which also affected plagioclase, and 
undulose extinction. Biotite occurs as subhedral plates, 
0.3 to 1 mm in size, frequently clustered into aggregates 
(Fig. 3c). White mica forms mainly irregular grains, but 
isolated flakes occur as  secondary alteration products in 
plagioclase (Fig. 3d). The rock matrix is composed of 
albite, K-feldspar, quartz and tourmaline (Fig. 3e–f). Typi-
cal accessory minerals include apatite, zircon, monazite, 
xenotime, ilmenite, rutile, thorite, pyrite and fluorite. 

3.2.	Equigranular granite

The fine-grained, equigranular granite (average grain size: 
0.1–2.0 mm, Fig. 4a) consists of K-feldspar (25.7 vol. %), 
quartz (42.2 vol. %), albite (19.0 vol. %) and white mica 
(13.1 vol. %; Fig. 4b). K-feldspar with average size of 
0.5 to 2 mm forms subhedral to euhedral grains, often 
with perthitic lamellae. Albite (An00–01) shows randomly 
oriented, subhedral crystals (up to 1 mm in size), often 
strongly sericitized. White mica occurs as isolated flakes 
or interstitial aggregates (Fig. 4c). Quartz mostly forms 
anhedral to subhedral crystals (up to 2 mm). The most 
common accessory minerals are tourmaline, apatite, 
zircon, fluorite, rare Nb-Ta oxide, wolframite, scheelite 
and cheralite (samples GK-7 and GK-19). The granites 
were strongly altered to greisens and became enriched 
in apatite (Fig. 4d) and Nb–Ta–W–Th phases such as 
columbite, thorite and ixioliote. 

The medium-grained monzogranite (sample GK-17) is 
a grey or, locally, light grey rock that consists of quartz, 
alkali feldspar, albite and white mica; biotite is absent. 
Quartz forms small porphyritic anhedral grains (up to 
1 cm). Alkali feldspar occurs as subhedral to anhedral 
grains with chessboard twining. Albite (An01) is subhedral 
and strongly sericitized. White mica is common and it 
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Fig. 4 Photomicrographs and backscattered electron images from equigranular and fine- to medium-grained granites. a – Texture of equigranular 
granite (sample GK-7). b – Equigranular matrix and euhedral quartz, albite and mica (GK-7). c – Matrix and metamorphic white mica, Fe–Al 
celadonite and Al-celadonite (GK-7). d – Greisenized equigranular granite with quartz mica and abundant apatite (GK-19). e – Granite with quartz, 
albite, white mica and abundant apatite (GK-17). f – Quartz–tourmaline vein with muscovite (GK-17).

do not exceed 4 mol. % Ab and anorthite abundances 
in albite are below 3 mol. % An (Tab. 2). Increased 
phosphorus contents were observed in K-feldspar and 

albite of the main granite types and they correlate with 
the high peraluminosity of the magma (ASI = 1.2–1.6; 
Tab. 1) whereby P behaves as an incompatible element. 
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Tab. 1 Major- and trace-element data for the granites from Betliar area. For locations see Fig. 1.

Rock type porphyritic granite equigranular granite rhyolite metatuff
rock varieties medium-grained fine-grained fine-grained
Sample GZ-15 GZ-16 GK-6 GK-17 GK-7 GK-19 GK-18
SiO2 72.85 73.69 74.61 74.67 71.74 69.44 66.18
TiO2 0.21 0.10 0.22 0.07 0.06 0.05 0.48
Al2O3 14.89 13.69 13.24 13.88 16.47 18.60 14.56
Fe2O3 1.32 1.25 1.75 1.19 0.88 0.54 3.99
MnO 0.02 0.03 0.03 0.02 0.02 0.01 0.11
MgO 0.91 0.21 0.3 0.37 0.46 0.62 1.54
CaO 0.26 0.27 0.42 0.42 0.66 0.52 4.58
Na2O 3.41 3.29 3.11 3.49 3.7 0.16 3.20
K2O 3.19 4.92 4.78 3.99 4.34 5.79 3.90
P2O5 0.15 0.16 0.14 0.31 0.47 0.37 0.15
Total 97.31 97.69 100.03 99.92 100.12 100.10 99.80
B – – 372 – 170 – –
Ba 150 104 246 130 145 136 776
Cs – – 12.1 10.0 12.1 7.5 9.4
Co 6.0 7.0 1.3 2.4 0.7 1.5 3.9
Ga – 24.0 20.8 23.7 35.5 28.4 16.8
Hf – – 3.8 2.6 2.3 3.6 5.3
Nb 10.0 11.0 11.9 27.7 46.8 73.0 10.4
Rb 300.0 420.0 339.7 476.5 696.5 553.4 137.8
Sn – 24.5 15.0 15.0 13.0 30.0 14.0
Sr 13.0 17.0 32.6 16.8 24.5 12.7 170.2
Ta – 2.4 2.3 13.5 14.3 18.2 0.9
Th 21.0 29.0 16.2 8.0 10.6 11.8 13.3
U 4.0 3.0 3.5 3.4 3.9 4.1 2.6
W – – 8.0 24.0 21.2 37.5 9.2
Zr 133.0 76.0 114.0 46.9 34.4 48.4 170.3
Mo – – <0.2 <0.1 0.1 <0.1 <0.1
Y 26.82 15.48 26.80 11.80 7.70 9.30 34.60
La 13.33 6.51 17.20 2.60 1.80 1.30 32.60
Ce 25.83 13.33 38.50 5.60 4.00 4.00 67.10
Pr 3.68 1.88 4.50 0.82 0.63 0.62 8.50
Nd 14.48 6.93 15.90 3.50 2.40 2.60 31.90
Sm 3.86 2.04 3.90 0.98 1.10 1.14 6.29
Eu 0.30 0.10 0.38 0.07 0.12 0.09 1.16
Gd 4.46 2.03 3.57 1.35 1.34 1.58 4.74
Tb 0.79 0.43 0.77 0.35 0.28 0.36 0.95
Dy 5.22 3.02 4.23 2.16 1.55 1.87 5.65
Ho 0.99 0.59 0.86 0.40 0.28 0.30 1.19
Er 2.88 1.85 2.57 1.22 0.68 0.86 3.17
Tm 0.45 0.31 0.40 0.21 0.15 0.15 0.53
Yb 2.99 2.04 3.02 1.31 1.00 1.00 2.90
Lu 0.43 0.29 0.38 0.22 0.11 0.13 0.47
ASI 1.56 1.22 1.20 1.28 1.37
Eu/Eu* 0.22 0.15 0.31 0.19 0.30 0.20 0.65
Ts [Zr] 806 741 773 708 686 744

Ts [Zr]  zircon saturation temperatures calculated after Watson and Harrison (1983) (˚C)



Michal Kubiš, Igor Broska

138

0

40

80

120

160

200

0.0 0.1 0.2 0.3 0.4 0.5 0.6

P2O5 (wt.%)

Zr
(p

pm
)

0

50

100

150

200

250

300

350

0.0 0.1 0.2 0.3 0.4 0.5 0.6

P2O5 (wt.%)

Ba
(p

pm
)

0

20

40

60

80

0.0 0.1 0.2 0.3 0.4 0.5 0.6

P2O5 (wt.%)

N
b

(p
pm

)

0.0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6

P2O5 (wt.%)

C
a

O
(w

t.
%

)

0.0

0.2

0.4

0.6

62 66 70 74 78

SiO2 (wt.%)

P
2
O

5
(w

t.
%

)

P-rich granites

P-poor granites

12

14

16

18

20

62 66 70 74 78

SiO2 (wt.%)

A
l 2
O

3
(w

t.
%

)

PG

MGG

EG

other GMG

Fig. 5 Kubiš Broska

Fig. 5 Chemical variation diagrams for the porphyritic granites (PG) and evolved granites (MGG – medium-grained granite; EG – equigranular gra-
nite) from the Betliar area. The data are compared to other granites from the Gemeric Unit (other GMG) (unpublished data from Kubiš 2004).

K-feldspar phenocrysts from porphyritic granite show 
zoning in phosphorus concentrations. The P contents in 
the phenocryst cores are low (0.03–0.09 wt. % P2O5) but 
increase towards the rims (0.13–0.25 wt.% P2O5). Barium 
abundances define a bell-shaped distribution which 
indicates origin by magmatic crystallization (Fig. 7). 
K‑feldspar from the medium-grained granite has very low 
P concentrations (below the detection limit; Tab. 2).

Albite domains in the perthites and individual albite 
crystals in the groundmass have very irregular phospho-
rus contents (0.02–0.23 wt. % P2O5). This is in contrast 
to the P2O5 contents in albites from the fine- and medium-

grained granites, which are very low (< 0.09 wt. % P2O5; 
Tab. 2).

Strongly altered plagioclase cores (An30) in the por-
phyritic granite also show low P2O5 contents (0.02–0.04 
wt. %) as is true for albite rims (0.01 wt. % P2O5; Tab. 2) 
hosting numerous apatite inclusions.

5.2.	Micas

Trioctahedral dark mica in porphyritic granite corresponds 
to annite with high molar Fe/(Fe + Mg) ratio (0.79–0.81; 
Tab. 3). Annite crystals contain small inclusions of radio-
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active minerals with pleochroic haloes. Fluorine concen-
trations are low (0.01–0.28 apfu). Annite occurs in three 
distinct forms: (i) an older “restitic” annite I found in 
central parts of (ii) annite II. These two phases can be eas-
ily distinguished by Ti concentrations whereby annite I is 
always depleted in Ti (Fig. 8); (iii) annite is also present in 
porphyritic granite as a breakdown product of an unknown 
euhedral mineral, probably cordierite. The pseudomorphs 
consist of tiny aggregates of annite III, muscovite and 
quartz in approximately equal proportions. 

Dioctahedral white mica corresponds to muscovite of 
secondary origin or magnesian and ferroan “phengite” in 
all granite types (Tischendorf et al. 2007). Some of the 
white micas show low Fe concentrations (1.7 wt. %), 
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Fig. 8 Biotite (annite) in porphyritic granite has formed in two stages: 
Annite I is a relic whereas annite II crystallized in a deep-seated magma 
chamber. Annite III is a result of mineral breakdown (replacement of 
cordierite?). 

but higher Fe concentrations (6.0 wt. % FeOTOT) are also 
encountered and the latter are probably unrelated to the 
Alpine metamorphic overprint (Tab. 3). 

6.	Accessory minerals

6.1.	 Tourmaline

Tourmaline is a widespread accessory mineral in all 
granite types and it forms four different types. A total of 
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Tab. 2 Chemical composition of feldspars (in wt. %)

No. 1 2 3 4 5 6 7 8
Sample GK-6 GK-6 GK-6 GK-6 GK-6 GK-7 GK-17 GK-17
Mineral Kfs Kfs Ab Kfs Plg Ab Kfs Ab
Position core rim matrix matrix restite grain grain grain
SiO2 64.22 63.71 66.46 64.86 61.91 68.02 64.74 68.76
TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al2O3 18.53 18.52 21.25 18.53 24.44 19.33 18.67 19.59
FeO 0.01 0.01 0.01 0.00 0.04 0.01 0.00 0.00
MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
CaO 0.08 0.03 1.93 0.01 6.02 0.05 0.06 0.04
BaO 0.04 0.20 0.00 0.06 0.01 0.00 0.08 0.01
Na2O 0.25 0.38 10.73 0.41 8.20 11.87 0.37 10.98
K2O 16.55 16.43 0.09 16.19 0.29 0.05 16.20 0.07
P2O5 0.16 0.06 0.30 0.25 0.06 0.09 0.08 0.00
Total 99.83 99.33 100.77 100.31 100.97 99.42 100.20 99.48
Calculated on the basis of 8 O
Si 2.979 2.976 2.895 2.986 2.725 2.990 2.986 3.007
Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Al 1.013 1.020 1.091 1.005 1.268 1.001 1.015 1.010
Fe 0.000 0.000 0.001 0.000 0.002 0.000 0.000 0.000
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
Ca 0.004 0.001 0.090 0.000 0.284 0.002 0.003 0.002
Ba 0.001 0.004 0.000 0.001 0.000 0.000 0.001 0.000
Na 0.022 0.034 0.906 0.036 0.700 1.012 0.033 0.931
K 0.979 0.979 0.005 0.951 0.016 0.003 0.953 0.004
P 0.006 0.002 0.011 0.010 0.002 0.003 0.003 0.000
XAb 0.022 0.033 0.905 0.037 0.700 0.995 0.033 0.994
XAn 0.004 0.001 0.090 0.000 0.284 0.002 0.003 0.002
XOr 0.973 0.962 0.005 0.962 0.016 0.003 0.962 0.004
XCs 0.001 0.004 0.000 0.001 0.000 0.000 0.001 0.000

three stages of tourmaline growth can be distinguished 
by combination of petrographic observations and mineral 
composition. The earliest type is represented by schorl 
with high molar Fe/(Fe + Mg) ratio of 0.7–1.0 and low 
X-site vacancy (□X = 0.1–0.5 apfu; Tab. 4). This type 
is represented by euhedral, irregularly disseminated 
tourmalines that crystallized directly from a granitic 
magma. 

The second type belongs to the interstitial nodular tour-
maline formed near solidus or at early subsolidus tempera-
tures. These tourmalines have molar Fe/(Fe + Mg) ratios 
of 0.8–1.0 and X-site vacancy, □X of 0.29–0.40 apfu. 

The third type of tourmaline represented by schorl 
occurs in quartz–tourmaline veins cross-cutting the me-
dium- and fine-grained equigranular granites. Tourmaline 
crystals from the veins show broad compositional varia-
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Fig. 9 Quadrilateral □X/(□X + Na) vs. Fe/(Fe + Mg) diagram (atomic 
proportions) of tourmalines from Betliar area.
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Tab. 3 Chemical composition of micas (in wt. %)

Sample GK-6 GK-6 GK-6 GK-6 GK-6 GK-7 GK-7 GK-17
Mineral annite annite annite annite annite muscovite muscovite muscovite
Generation Bt I Bt I Bt II Bt II Bt III
SiO2 34.59 35.23 34.87 34.88 33.98 48.83 48.97 49.68
TiO2 1.24 1.59 2.92 2.54 2.21 0.18 0.06 0.25
Al2O3 16.52 16.22 16.27 16.13 16.56 29.91 31.91 29.49
FeO 27.87 27.52 28.10 27.89 28.58 4.63 1.72 1.88
MnO 0.43 0.51 0.54 0.53 0.54 0.06 0.04 0.00
MgO 3.96 4.02 3.91 4.00 3.67 0.72 1.61 2.58
CaO 0.14 0.07 0.06 0.02 0.06 0.15 0.07 0.02
Na2O 0.05 0.04 0.05 0.04 0.05 0.08 0.13 0.13
K2O 8.93 8.97 9.36 9.56 9.21 9.86 10.94 11.06
F 0.52 0.00 0.15 1.12 0.78 0.24 0.74 0.11
Cl 0.24 0.21 0.20 0.20 0.23 0.01 0.00 0.01
H2Ocalc 3.47 3.75 3.66 3.19 3.33 4.36 4.16 4.44
Total 97.96 98.13 100.09 100.10 99.20 99.03 100.35 99.67
O=F -0.22 0.00 -0.06 -0.47 -0.33 -0.10 -0.31 -0.05
O=Cl -0.05 -0.05 -0.05 -0.05 -0.05 0.00 0.00 0.00
Total 97.69 98.08 99.98 99.59 98.82 98.92 100.04 99.62
Formulae based on 22 oxygen atoms
Si 5.607 5.666 5.528 5.561 5.482 6.618 6.510 6.644
AlIV 2.393 2.334 2.472 2.439 2.518 1.382 1.490 1.356
X 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
AlVI 0.763 0.740 0.568 0.592 0.630 3.395 3.509 3.293
Ti 0.151 0.192 0.348 0.305 0.268 0.018 0.006 0.025
Fe 3.778 3.701 3.726 3.719 3.856 0.525 0.191 0.210
Mn 0.059 0.069 0.073 0.072 0.074 0.007 0.005 0.000
Mg 0.957 0.964 0.924 0.951 0.883 0.145 0.319 0.515
Y 5.708 5.667 5.639 5.637 5.710 4.091 4.030 4.042
Na 0.016 0.012 0.015 0.012 0.016 0.021 0.034 0.035
Ca 0.024 0.012 0.010 0.003 0.010 0.022 0.010 0.003
K 1.847 1.840 1.893 1.944 1.895 1.705 1.855 1.888
Z 1.862 1.853 1.909 1.957 1.911 1.726 1.889 1.923
Total 15.571 15.519 15.548 15.594 15.621 13.816 13.919 13.965
F 0.267 0.000 0.075 0.565 0.398 0.103 0.311 0.048
Cl 0.066 0.057 0.054 0.054 0.063 0.002 0.000 0.003
OH 3.667 3.943 3.871 3.381 3.539 3.895 3.689 3.949
Fe/(Fe+Mg) 0.80 0.79 0.80 0.80 0.81 0.78 0.37 0.29

tion in schorl–dravite solid solution with molar Fe/(Fe + 
Mg) = 0.44–0.93 and X□ = 0.07–0.43 apfu. 

The fourth tourmaline type is represented by a late-
magmatic or metamorphic schorl to dravite occurring 
in all granite types where it forms very thin veins or 
irregular grain clusters, filling cracks and fractures in pre-
existing tourmaline crystals. This tourmaline type shows 
lower molar Fe/(Fe + Mg) ratio (0.45–0.65; Fig. 9) and 
its mineral chemistry is mainly controlled by substitu-
tions represented by exchange vectors of FeMg–1 and 
X□YAlXNa–1

Y(Fe,Mg)–1.

6.2.	Phosphates

Apatite is present in two generations: the first type (pri-
mary magmatic apatite) is represented by large crystals 
(~150 μm in size) enriched in Fe and Mn (0.2–0.9 wt. % 
FeO, 3.0–4.2 wt. % MnO) whereas the second type is 
found as inclusions in alkali feldspars, having prob-
ably formed by breakdown of feldspar with significant 
berlinite substitution. The second apatite type occurs as 
very small crystals (~3 μm in size) with low Mn and Fe 
contents. The highest amount of the small apatite inclu-
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Tab. 4 Chemical composition of tourmaline (in wt. %)

Sample GK-6 GK-6 GK-17 GK-17 GK-17 GK-17 GK-7 GK-7

Rock Porphyritic 
granite

Porphyritic 
granite

Medium-grained 
granite

Medium-grained 
granite

Medium-grained 
granite

Medium-grained 
granite

Equigranular 
granite

Equigranular 
granite

Type Tur I Tur I Tur II Tur II Tur III Tur III Tur I Tur IV
SiO2 34.95 34.86 34.51 35.34 34.77 36.89 35.16 36.53
TiO2 0.80 0.45 0.66 0.77 0.40 0.34 0.49 0.09
B2O3* 10.38 10.47 10.46 10.44 10.30 10.58 10.15 10.46
Al2O3 33.26 35.19 35.22 34.37 34.11 31.12 31.19 30.76
Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 12.40 11.41 12.37 12.93 15.20 9.94 16.51 12.22
MnO 0.15 0.15 0.15 0.15 0.00 0.02 0.11 0.08
MgO 2.56 2.40 1.59 1.15 0.00 5.92 0.52 4.70
CaO 0.35 0.33 0.25 0.16 0.08 0.04 0.01 0.02
Na2O 2.12 1.95 2.08 1.80 1.98 2.69 2.24 2.68
K2O 0.05 0.08 0.05 0.03 0.04 0.04 0.05 0.04
H2O* 3.38 3.30 3.61 3.44 3.55 3.65 3.08 3.21
F 0.54 0.67 0.00 0.35 0.00 0.00 0.88 0.84
Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
O=F -0.23 -0.28 0.00 -0.15 0.00 0.00 -0.37 -0.35
O=Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 100.30 100.61 100.95 100.78 100.43 101.23 100.04 101.28
Formulae based on 31 oxygen atoms
Si4+ 5.850 5.786 5.735 5.882 5.867 6.060 6.02 6.067
Al T 0.150 0.214 0.265 0.118 0.133 -0.060 -0.020 -0.067
Σ T 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
B3+ 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
Al Z 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
Ti4+ 0.101 0.056 0.082 0.096 0.051 0.042 0.063 0.011
Al Y 0.411 0.670 0.633 0.625 0.651 0.085 0.314 0.088
Cr3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe2+ 1.685 1.584 1.719 1.800 2.145 1.366 2.364 1.697
Mn2+ 0.021 0.021 0.021 0.021 0.000 0.003 0.016 0.011
Mg2+ 0.639 0.505 0.394 0.285 0.000 1.450 0.133 1.164
Σ Y 2.857 2.836 2.849 2.827 2.847 2.946 2.890 2.971
Vac. Y 0.143 0.164 0.151 0.173 0.153 0.054 0.110 0.029
Al total 6.561 6.884 6.898 6.743 6.784 6.025 6.294 6.021
Ca2+ 0.063 0.059 0.045 0.029 0.014 0.007 0.002 0.004
Na+ 0.688 0.628 0.67 0.581 0.648 0.857 0.744 0.863
K+ 0.011 0.017 0.011 0.006 0.009 0.008 0.011 0.008
Σ X 0.762 0.704 0.726 0.616 0.671 0.872 0.757 0.875
Vac. X 0.238 0.296 0.274 0.384 0.329 0.128 0.243 0.125
OH V 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
OH total 3.714 3.648 4.000 3.816 4.000 4.000 3.518 3.559
OH W 0.714 0.648 1.000 0.816 1.000 1.000 0.518 0.559
F- 0.286 0.352 0.000 0.184 0.000 0.000 0.477 0.441
Cl- 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000
Sum W 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.000
O2- 30.714 30.648 31.000 30.816 31.000 31.000 30.518 30.559
CATSUM 18.618 18.538 18.574 18.444 18.518 18.818 18.647 18.847
Fe/(Fe+Mg) 0.73 0.76 0.81 0.86 1.00 0.49 0.95 0.59
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sions was found in greisenized granites or greisens where 
phosphorus was mobilized during feldspar breakdown 
(GK-19). The newly-formed apatite is mostly located in 
white mica aggregates and is often accompanied by Nb–
Ta–W phases (Fig. 4d). 

Monazite-(Ce) with 3.3–9.5 wt. % ThO2 and 0.1–0.25 
wt. % UO2 is the main host of light rare earth elements 
in the porphyritic granite. It is locally slightly enriched 
in cheralite end-member (~4–9 mol. %). High cheralite 
contents in monazite (28–46 mol. %) have been found 
in fine-grained granite in association with wolframite. 
There are 26.7–32.7 wt. % ThO2 and 0.9–4.1 wt. % UO2. 
Electron microprobe dating of the monazite-(Ce) from 
porphyritic granite revealed Permian to Early Triassic 
age. A total of 13 analyses were obtained from homog-
enous crystals, with a weighted mean of 247 ± 13 Ma 
(2σ) (Fig. 10a). The Permian age (251 ± 6.8 Ma) was also 
obtained by electron microprobe dating of the monazite 
from the fine-grained equigranular granite (Fig. 10b). 

6.3.	Zircon

Zircon population from the porphyritic granite is domi-
nated by morphological subtypes S7, S8, S9, S10, less 
frequently S4, S3 and S6 (Pupin 1980). A second zircon 
generation consists of mainly metamict, low-temperature 
crystals with prevalence of G1 and P1 subtypes. The ty-
pological mean point for the sample GK-6 corresponds to 
I.A. = 480 and I.T = 364. Zircon in the porphyritic granite 
is mainly accompanied by xenotime-(Y) with irregular 
uranium distribution. 

Fine-grained equigranular granite contains ubiquitous 
zircons with cores and magmatic oscillatory zoning in 
their outer parts. Resorbed grains were observed fre-
quently. Zircon nucleation centres display oscillatory 
zoning and are commonly oval in shape. Typical mor-
phometric subtypes in the sample GK-7 correspond to 
S8, S7, S12, S3 and S4 subtypes, whereas younger zircon 
generation belongs to the G1 subtype. The typological 
mean point is characterized by I.A = 524 and I.T = 342. 
In some other cases, cores show a primary crystal shape, 
with sector or irregular oscillatory zoning. 

The LA-ICP-MS U–Pb dating of 6 zircon crystals from 
the fine-grained equigranular granite GK-7 yielded three 
concordant and four discordant ages (Fig. 11). The old-
est discordant age of 538 ± 33 Ma (grain GK-7-7) might 
be interpreted as a result of Pb inheritance in a regular 
core as verified by sector zoning in cathodoluminescence 
images. The crystallization age of this sample is defined 
by grains GK-7-16 and GK-7-22 (Fig. 11, Tab. 5). The 
concordant grains yielded an emplacement date of 258 
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Fig. 10 Isochron diagrams (Konečný et al. 2004) illustrating the electron 
microprobe data for monazite from the porphyritic granite (GK-6) and 
the equigranular fine-grained granite (GK-7).
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± 19 Ma for the fine-grained equigranular granite. The 
discordant data from grains GK-7-12 and GK-7-14 plot 
close to the accepted crystallization age (Tab. 5).

7.	Discussion 

7.1.	Granite evolution and origin of the  
composite granite system

The Betliar granites record a prolonged magmatic 
evolution. The composite nature of the granite suite is 
interpreted as having resulted from a multistage granite 
emplacement of magmas with distinct chemical compo-
sition. Geochemistry of the porphyritic granites differs 
from the more evolved one represented by equigranular or 
medium-, and fine-grained Betliar granites. In comparison 
to porphyritic granite, the evolved equigranular granites 
are significantly enriched in rare metals (Nb, Ta, W) and 
exhibit a stronger alteration resulting in the formation of 
greisens. They most likely intruded at a shallow crustal 
level as a sill-like body, subsequently followed by em-
placement of distinct magma batches forming the Betliar 
porphyritic granite (granite porphyry).

Remarkable differences in HFSE and REE concentra-
tions between the porphyritic and evolved equigranular 
medium- and fine-grained granites are characteristic of 
a protracted magmatic differentiation (e.g. Dostal and 
Chatterjee 1995; Ramirez and Menedez 1999; Haapala 
and Lukkari 2005; Antunes et al. 2008). Fractional crys-
tallization could have also been responsible for a decrease 
in Ti, Fe and Co, and an enrichment in incompatible 
elements (Ta, Nb, Rb, Cs etc.) observed from the most 
primitive porphyritic to the most evolved rare-metal 
enriched granites. The decrease in Zr, REE, Y and Th 
abundances in the granite complex is consistent with 
fractionation of accessory silicates and phosphates. The 
elements Ba and P in K-feldspar are sensitive to igneous 
differentiation (Mehnert and Büsch 1981; Long and Luth 
1986; Cox et al. 1996) and define the evolutionary path 
during igneous evolution (Larsen 2002). The elemental 

variation in P and Ba between megacryst cores and rim 
compositions in porphyritic granite is an evidence for 
protracted crystallization in the deeper seated melt batch 
of the porphyritic granite (Fig. 7).

The evolution of the composite granitic system was 
characterized by early solidification of the emplaced 
magma from the reservoir margins inwards (formation 
of the carapace) and its subsequent rupture that allowed 
emplacement of more evolved, volatile-rich melts de-
rived from the underlying parental magma chamber 
(Fig. 12). A similar scenario has been proposed for the 
intrusive sequences in the Cornubian ore field, SW Eng-
land (Jackson et al. 1989) or the evolution of the Mole 
Granite in Australia (Audétat et al. 2000; Schaltegger et 
al. 2005). Finally, the ascent path was used by another 
pulse of silicate magma now represented by the Betliar 
porphyritic granite. The zircon saturation geothermom-
etry (Watson and Harrison 1983) applied to porphyritic 
granites yielded temperatures of 740–800 ˚C, which may 
be interpreted as the temperature of magmatic zircon sat-
uration in the parental magma. On the other hand, lower 
zircon saturation temperatures (685–745 ˚C) determined 
for the fine- to medium-grained granites are comparable 
with those from highly evolved, P- and F-rich magmas, 
for instance from the Kymi stock, Finland (e.g. Haapala 
and Lukkari 2005). 

The evolved granites yielded an age of 258 ± 19 Ma 
(Fig. 11) and a similar SHRIMP zircon age was also 
reported from an adjacent Súľová granite body (257.7 ± 
4 Ma; Radvanec et al. 2009). Conventional single-grain 
zircon dating of the porphyritic Betliar granite yielded 
a slightly younger age (246 ± 5 Ma; Poller et al. 2002). 
A similar relationship was revealed by monazite, which 
yielded a slightly older age for the evolved granite and a 
younger age for the porphyritic granite (Fig. 10). How-
ever, these ages can be considered the same within the 
error. On the other hand, relatively high U–Pb concordant 
zircon age of 277 Ma for the porphyritic granite recently 
determined using the SHRIMP method opens some ques-
tions regarding the granite evolution (Radvanec et al. 
2009). In this sense the age difference between evolution 

Tab. 5 LA ICP-MS isotope data from zircon grains from the fine-grained equigranular granite (sample GK-7).

Sample  Measured ratios  Ages (Ma)
Spot 207Pb/235U 7/5 err 206Pb/238U 6/8 err Rho 207Pb/235U 1σ 206Pb/238U 1σ
GK-7-8 0.6104 0.0400 0.0442 0.0018 0.31 483.8 25.2 278.8 11.1
GK-7-7 0.6459 0.0332 0.0870 0.0056 0.63 505.9 20.5 537.5 33.4
GK-7-12 0.1756 0.0129 0.0372 0.0023 0.42 164.3 11.1 235.2 14.1
GK-7-22 0.2941 0.0303 0.0402 0.0036 0.44 261.8 23.8 253.8 22.6
GK-7-16 0.3153 0.0240 0.0402 0.0018 0.29 278.3 18.6 254.0 11.2
GK-7-14 0.4819 0.0353 0.0398 0.0017 0.30 399.4 24.2 251.4 10.8

err – error of measurement, 1 sigma; Rho – error correlation
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of equigranular and fine-grained granites is hypothetical, 
supported solely by the observed geological relationships 
and granite evolutionary trend.

7.2.	Tourmaline as result of fractionation and 
high volatile flux 

Tourmaline in the Betliar granitic system formed in 
several stages but its precipitation in the nodular form 
remains the most peculiar one (Fig. 2c). Tourmaline 
nodules are known from a number of localities world-
wide and their formation was suggested to be related to 
magmatic crystallization and penetration of hydrothermal 
fluids (e.g., Samson and Sinclair 1992; Buriánek and 
Novák 2007; Trumbull et al. 2008). Tourmaline nodules 
at Moslavačka Gora in Croatia (Balen and Broska in 
press) have been interpreted as indicating decompres-
sion and ascent of fluids during shallow emplacement. 
The supersaturation in aqueous fluids in the magma may 
result in formation of vapour bubbles and their migration 
through the granite body. Subsequently, rupture of roof 
rocks and release of residual B-bearing volatiles could 

have led also to the formation of hydrothermal quartz–
tourmaline veins (Fig. 2d). 

Enrichment in F, B and H2O in the Betliar granitic 
magmas can be explained by fractional crystalliza-
tion of initially enriched parental melts (Thomas et al. 
2005). During solidification, a reaction between biotite 
and B-bearing silicate melt was proposed to give rise to 
tourmaline (Shearer et al. 1987). The stability of tour-
maline is further enhanced by low Ti abundances, which 
stabilize tourmaline over biotite (Nabelek et al. 1992). 
The commonly observed association of tourmalinization 
(boron metasomatism) in nature is consistent with the 
preferential partitioning of boron into aqueous vapour of 
magmatic–hydrothermal systems (Schatz et al. 2004).

7.3.	Alteration of equigranular granites

Equigranular granites that crystallized from volatile-
rich melts have undergone strong subsolidus alteration 
(greisenization). The greisenization of the fine-grained 
granites and formation of the Sn–W–Nb–Ta vein miner-
alization with abundant tourmaline resulted from a high 
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Fig. 12 Geological sketch illustrating the postulated successive intrusion events that are thought to have formed the composite Betliar Granite 
Massif. 
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flux of hydrothermal fluids. Such a process was discussed 
previously in the Hnilec area (Kubiš and Broska 2005). 

Remarkably, greisens are enriched in phosphorus 
(Fig.  4d) and we propose that secondary apatite might 
have originated from decomposition of albite that 
contained berlinite end-member, AlPO4 (London et al. 
1990; London 1992, 1998). High P contents in alkali 
feldspars were reported from the evolved peraluminous 
granites worldwide (London et al. 1990; Bea et al. 1992; 
Pichavant et al. 1992; Frýda and Breiter 1995; Breiter 
et al. 1997, 1999, 2002; Breiter 2001). The presence of 
P in alkali feldspars in the Hnilec granites was already 
described by Broska et al. (2001, 2002). 

8.	Concluding remarks

Field, petrological and geochemical data indicate a 
composite nature of the Betliar granite. We suggest the 
following multistage petrogenetic scenario: (i) intru-
sion of porphyritic granite intrusion followed after the 
emplacement of earlier magma batches now preserved 
as medium- to fine-grained equigranular granites, (ii) 
magmas were taping an evolved upper (?) portion of 
a deep-seated magma chamber, (iii) the growth of al-
kali feldspar megacrysts commenced in a deep-seated 
magmatic chamber whereas the medium-grained matrix 
solidified after emplacement at shallow crustal level, and 
(iv) the equigranular granites were subsequently altered 
to greisens. 
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