
www.jgeosci.org

Journal of Geosciences, 56 (2011), 51–79	 DOI: 10.3190/jgeosci.087

Original paper

The Late Miocene Guacimal Pluton in the Cordillera de Tilarán, 
Costa Rica: its nature, age and petrogenesis

Vladimír ŽÁČEK1*, Vojtěch JANOUŠEK1, Andrés ULLOA2, Jan KOŠLER3, Sofia HUAPAYA4, 
Petr MIXA1, Lenka VONDROVICOVÁ1, Guillermo E. ALVARADO5,2

1	Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic; vladimir.zacek@geology.cz
2	Escuela Centroamericana de Geología, Universidad de Costa Rica (UCR), San José, Costa Rica
3	Centre for Geobiology and Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway
4	MINAET, Dirección de Geología y Minas, Apdo. 10104, San José, Costa Rica
5	Área de Amenazas y Auscultación Sísmica y Volcánica, PySA, ICE, Apdo. 10032-1000, San José, Costa Rica
*	Corresponding author

The Guacimal Pluton is situated in the Cordillera de Tilarán in the northwestern Costa Rica. It forms an oval-shaped 
body strongly elongated in the NW–SE direction. Its dimensions are ~15 × 4–6 km with an exposed surface of 60–70 
km2. The pluton intruded basic volcanic rocks of the Aguacate Group (Miocene–Pliocene) and is surrounded by a wide 
thermal aureole of calc-silicate metasomatic rocks. 
The pluton is mainly formed of monzogranites to granodiorites, which strongly prevail over more basic types occu-
ring scarce and relatively thin dykes and enclaves. The dominant magmatic minerals of this felsic suite are quartz, pla-
gioclase, and K-feldspar with subordinate Mg-rich biotite, amphibole I, and magnetite. Orthopyroxene, Mn-rich ilme-
nite, Al-poor titanite, rutile, apatite, zircon, thorite, and chalcopyrite are accessories. Secondary minerals, which occur 
as fillings of miarolitic cavities and interstices, are quartz II, K-feldspar II, epidote, chlorite, actinolite, ilmenite II and 
Al-rich titanite II. The much less frequent mafic suite (mainly quartz diorite to quartz monzodiorite/monzogabbro) is 
composed of plagioclase, pargasite, actinolite, K-feldspar, quartz and magnetite, with accessory amounts of opaque mi-
nerals, epidote, chlorite, and titanite. 
The pluton was emplaced at a depth of c. 3 km, crystallized at temperature of c. 760–800 °C under a relatively high 
oxygen fugacity (1.6–2.1 log units above the NNO buffer). Increased activities of volatiles (H2O, F) upon cooling are 
indicated by the presence of highly aluminous, F-rich titanite and other hydrous silicates in miarolitic cavities. The pre-
vailing, felsic rocks of the Guacimal Pluton are high-K calc-alkaline, whereas the mafic suite is nearly exclusively medi-
um-K calc-alkaline in nature. Laser ablation ICP-MS dating of zircons from two granite samples yielded statistically 
identical U–Pb ages of 6.3 ± 0.5 and 6.0 ± 0.4 Ma, respectively. The Sr–Nd isotopic compositions are rather primitive 
(87Sr/86Sr6 = 0.70380–0.70413, ε6

Nd ~ +7.3 to +7.9). Narrow range of these values rules out open-system processes such 
as magma mixing or assimilation of isotopically contrasting upper continental crust. Instead, the felsic suite is inter-
preted as either having crystallized from a highly fractionated melt extracted from a plagioclase–amphibole-dominated 
crystal mush in a putative deep crustal reservoir or a product of partial melting of older arc-related rocks, such as inter-
mediate lavas or volcaniclastics or immature psammitic sediments rich in volcanic material. The observed variation in 
the felsic suite was most likely produced by low degrees of closed-system fractional crystallization of an assemblage 
dominated by feldspars. At least some of the rocks of the volumetrically subordinate mafic suite may represent litholo-
gies rich in the complementary cumulates.
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1.	Introduction

Plutonic rocks occurring in Central America range from 
Precambrian to Pliocene in age. The older intrusions 
are mostly situated in the Chortis Block of Guatemala, 
Honduras and northern Nicaragua but the majority of the 
youngest plutonic rocks are concentrated in the Choro-
tega Block in the SE Costa Rica and Panama, where they 
are associated with the Neogene volcanic front (Weyl 

1980; Donelly et al. 1990; Patino 2007). The igneous 
activity of this, now extinct, Late Miocene to Pliocene 
volcanic front produced rocks of highly variable nature, 
ranging from mostly tholeiitic to calc-alkaline, that form 
extensive volcanic deposits and numerous intrusive bod-
ies of various sizes (Denyer and Alvarado 2007, Fig. 1). 

The largest plutonic complex is represented by the 
Talamanca Intrusive Suite, which extends from E Costa 
Rica to Panama. This suite includes numerous plutons 
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and stocks of various sizes where monzogranites domi-
nate but gabbros, diorites, granodiorites, and alkaline 
granites are also found (Kussmaul 1987; Abratis 1998; 
Drummond et al. 1995; Patino 2007). The age of this ig-
neous complex ranges from 21.6 to 3.5 Ma, with most of 
ages falling between 12 to 8 Ma; the granites are consid-
ered mostly, but not always, to be the youngest whereas 
the gabbros are the oldest (Alvarado et al. 1992; de Boer 
et al. 1995; MacMillan et al. 2004; Patino 2007). The 36 
to 3 Ma old intrusive rocks of Panama show a similar 
compositional range; granodiorites of this suite are asso-
ciated with an extensive porphyry copper mineralization 
(Kessler et al. 1977). 

Other Neogene plutonic bodies in Costa Rica are much 
less voluminous but very varied. North of the Cordil-
lera de Talamanca, small intrusions of teschenites were 
reported together with monzonites and syenites with 
feldspathoids (Guayacán suite) dated at 4.5 Ma (Azambre 
and Tournon 1977; Patino 2007). Other small intrusive 
bodies are monzonites to gabbros at Escazú, which were 
dated from 6.3 to 2.2 Ma (Kussmaul 1987; de Boer et al. 
1995), gabbros at Puerto Nuevo (or Dominical Gabbros, 
c. 14–11 Ma; Appel 1990; de Boer et al. 1995; MacMil-
lan et al. 2004; Gazel et al. 2009) and a small stock of 

monzogabbro at Desmonte (2.1 Ma, Bellon and Tournon 
1978) (see Fig. 1). 

In the NW Costa Rica, the Guacimal Pluton is an iso-
lated body situated in the Cordillera de Tilarán (Chaves 
and Sáenz 1974; Cigolini and Chaves 1986; Kussmaul 
1987; Denyer and Alvarado 2007). Whereas the large 
granitic bodies in the Cordillera de Talamanca were stud-
ied extensively because of their ore potential (porphyry 
copper deposits), the information about the Guacimal 
Pluton remains fragmentary.

Our recent detailed geological survey provided new data 
on the size and shape, petrology, geochemistry, and age 
of this plutonic body. Preliminary results were presented 
in the form of conference abstracts or short reports (e.g. 
Žáček et al. 2008) and three published sheets of geologi-
cal maps on the scale 1 : 50 000 (Žáček et al. 2010a–c). 
However most of the information remained in the form of 
an unpublished final report (Kycl et al. 2010), which was 
handed over to the Costa Rican partner (MINAET, Direc-
ción de Geología y Minas, San José) in March 2010. The 
current paper represents the first contribution in a series, 
and it is devoted to petrology, mineral chemistry, whole-
rock and Sr–Nd isotope geochemistry as well as possible 
petrogenesis of this intriguing plutonic body.
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Fig. 1 Sketch map of Costa Rica with 
marked Neogene plutons. Modified 
from Denyer and Alvarado (2007).
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2.	Geological setting

The studied area is situated in the NW Costa Rica, and 
it belongs to Montes del Aguacate and Cordillera de 
Tilarán. It is built by various geological units of Lower 
Cretaceous to Quaternary age but mainly of the Miocene 
to Pleistocene basaltic and andesitic lavas (Dengo 1962). 
The oldest unit is the Complex of Nicoya formed of ba-
salts and peridotites, which represent relics of the Early 
Cretaceous ocean floor (Alvarado et al. 1997; Baumgart-
ner and Denyer 2006; Denyer et al. 2006). Several sedi-
mentary and volcanosedimentary formations of Upper 
Cretaceous to Miocene age rest unconformably on this 
ophiolitic suite (Astorga 1987; Denyer and Arias 1991). 
However, the basement of the studied area is dominated 
by volcanic rocks, mainly lavas and volcaniclastics of 
basaltic to andesitic composition. On the basis of more 
than 200 K–Ar ages, the development of this extinct 
volcanic arc (Central America Cordillera) started in Early 
Miocene (c. 24 Ma). The volcanic activity was episodic 
with distinct pulses at 16–17, 4–6, and 1–2 Ma (Bellon 
and Tournon 1978; Amos and Rogers 1983; Alvarado et 
al. 1992; Gillot et al. 1994; Kussmaul et al. 1994; Gans 
et al. 2002, 2003).

The older Aguacate Group (c. 23–2 Ma) is cut by 
various intrusive and subvolcanic bodies of variable 
composition (rhyolites, dacites, andesites to basalts), 
and by deeper seated batholiths with smaller stocks of 
granites, granodiorites, diorites and gabbros (including 
the Guacimal Pluton). This unit was affected by extensive 
hydrothermal alteration often associated with the gold 
mineralization (Laguna 1983, 1984). The presence of 
numerous gold deposits in this region is obvious from the 
local name Cinturón de Oro or the Golden Belt (Amos 
and Rogers 1983; Schulz et al. 1987). 

After the volcanic activity of the Aguacate Group 
ceased, several ignimbrite eruptions occurred in Late 
Pliocene to Early Pleistocene, relics of which are found 
mostly in the eastern part of the studied area (Peñas 
Blancas and Alto Palomo units – Villegas 1997, 2004). 
After a gap in the Early Pleistocene, the volcanic activity 
resumed as a consequence of formation of a new volcanic 
arc, producing andesitic lavas, various types of pyroclas-
tic rocks and lahars, associated with several rhyodacitic 
to andesitic domes. 

In contrast to the older Aguacate Group, the Early 
Pleistocene Monteverde Formation (1–2 Ma) is char-
acterized by more acidic calc-alkaline volcanism with 
dominant andesites and by absence of gold-bearing hy-
drothermal alteration. 

The Quaternary period is represented by fluvial sedi-
ments, including two levels of terraces and extensive al-
luvial fans. Accumulations of deposits of giant landslides 
occur in the mountains. 

3.	Methods

The study area belongs to Guanacaste, Puntarenas, and 
Alajuela provinces, and it included three topographic 
map sheets at a scale of 1 : 50 000 (Miramar, Chapernal 
and Juntas), thus covering a total area of about 1500 km2. 

Magnetic susceptibility of igneous rocks was mea-
sured in the field with the KT-5 portable kappameter. 
Nine whole-rock samples for chemical analyses and/or 
dating (5 granites, 1 quartz diorite and 2 contact horn-
felses; see Tab. 1 and Fig. 2 for sample location and fur-
ther details) were obtained during field geological map-
ping in March and April 2009 in the Juntas topographic 
sheet. Rock samples were crushed in a steel jaw crusher, 
homogenized and grinded in an agate ball mill. The fine 
powders were analyzed for whole-rock geochemical 
composition in the Acme Analytical Laboratories Ltd., 
Vancouver, Canada. The major and minor elements were 
determined by ICP-OES (4A analytical package) and 
most trace elements (Ba, Cs, Ga, Hf, Nb, Rb, Sr, Ta, Th, 
U, V, Zr, Y, and REE) by ICP-MS (4B). The dissolution 
of the rock powders in both cases followed fusion with a 
lithium metaborate/tetraborate flux and dilute nitric acid 
digestion. The analyses of remaining trace elements, and 
transition metals in particular (Cu, Pb, Zn, Cr and Ni), 
were carried out by ICP-MS following dissolution in aqua 
regia at 95 ºC (1DX). The detection limits are given in 
the Table with the analytical data; further details can be 
found at http://acmelab.com.

At least 5 kg of three fresh granites (Ju311, Ju328 
and Ju346) were crushed in a jaw crusher and zircons 
were extracted using Wilfley shaking table, heavy liquid 
(methylene iodide) and magnetic separation at the Czech 
Geological Survey (CGS) at Prague-Barrandov. The zir-
con concentrates were finally handpicked.

Electron microprobe analyses were carried out 
by Cameca SX-100 electron microprobe in the Joint 
Laboratory of the Masaryk University and of the CGS, 
Brno (R. Škoda, analyst) in the WDS mode. The min-
erals were analysed at 15 kV accelerating voltage and 
10 nA (feldspars, amphiboles, pyroxenes, micas) or 20 
nA beam current (titanite, spinels, ilmenite, rutile). The 
beam diameter ranged from ~1 µm (rutile, ilmenite, 
magnetite), 4 µm (majority of silicates) to 6 µm (feld-
spars). The following standards were used: U – metallic 
U, Pb – PbSe, Th – ThO2, P – fluorapatite, Y – YAG, La 
– LaB6, Ce – CeAl2, Pr – PrF3, Nd – NdF3, Sm – SmF3, 
Gd – GdF3, Dy – DyPO4, Er – YErAG, Yb – YbAG, 
Al – almandine, Si, Ca, Fe – andradite, Mn – rhodonite, 
W – scheelite, S – barite, F – topaz, As – InAs, Nb – 
columbite, Ta – CrTa2O6, Ti – titanite, Zr – zircon, and 
Sc – ScVO4, Mg – pyrope and Sr – SrSO4. Raw data 
were reduced by the PAP correction (Pouchou and Pi-
choir 1985). The detection limits were as follows – Si, 
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Al, Ca, Cr: 100–200 ppm; Mg, Na, K, Fe, Mn,V, Y, Cl, 
Ti, Nb, As, P, S: 200–500 ppm; F, Ni, Zn, La, Ce, U, 
Th, Pb: 500–1000 ppm; Pr, Nd, Sm, Gd, Dy, Er, Yb, Ba, 
Ta, W: >1000 ppm. The mineral abbreviations used are 
after Kretz (1983). 

X-ray powder diffraction data were acquired us-
ing the Phillips X’pert MPD System (Cu radiation, 
graphite secondary monochromator) at CGS, Prague by 
I. Haladová. The data were processed by the Bede ZDS 

Search/Match software (Ondruš and Skála 2004). This 
method was mainly used for mineral identification in 
hydrothermally altered rocks including contact metaso-
matic rocks.

For the radiogenic isotope determinations, samples 
were dissolved using a combined HF–HCl–HNO3 diges-
tion. Strontium and neodymium were isolated from the 
bulk matrix by the exchange chromatography techniques 
using Triskem’s Sr resin (equivalent to Sr.spec) and Ei-

Tab 1 List of samples analysed

No Rock GPS  
coordinates Locality Major minerals 

(>10 %)
Minor minerals  

(1–10 %) 
Accessory  
minerals

Minerals of 
miaroles / 
secondary 
minerals

MS
Analytical 

method 
applied

Ju57
amphibole 

granite  
(granophyre)

10°12'59.7"N 
84°51'00.8"W Guacimal

quartz, 
plagioclase, 
K-feldspar

amphibole 5 %, 
magnetite 2 %

biotite, titanite, 
apatite, zircon 

epidote, 
actinolite, 
chlorite

2–8 CHA

Ju98
leucogranite 

with amphibole 
and biotite

10°16'01.9"N 
84°49'32.7"W San Luis

quartz, 
plagioclase, 
K-feldspar

amphibole 3 %, 
biotite 1 %, 

magnetite 1 %

titanite, apatite, 
zircon 

epidote, 
actinolite, 
chlorite

5–20 CHA

Ju311
amphibole 

granite with 
biotite

10°14'06.8"N 
84°41'42.0"W

San  
Antonio

quartz, 
plagioclase, 
K-feldspar

amphibole 5 %, 
biotite 2 %,  

magnetite 1 %

titanite I, ilmenite, 
zircon, apatite, 
orthopyroxene, 

pargasite

 epidote, 
chlorite, 

actinolite, 
titanite II

13–15

CHA, 
EMPA, 
DAT,  

Sr–Nd

Ju328 amphibole 
granite

10°16'15.3"N 
84°49'18.4"W San Luis

quartz, 
plagioclase, 
K-feldspar

amphibole 5 %, 
magnetite 2 %

biotite, titanite, 
zircon, rutile, 
chalcopyrite

chlorite, 
epitote 7–16

CHA, 
EMPA, 
DAT,  

Sr–Nd

Ju346
leucogranite 

with biotite and 
amphibole

10°14'13.4"N 
84°45'00.8"W

San  
Martín 
Norte

quartz, 
plagioclase, 
K-feldspar

biotite 3 %, 
amphibole 1 %, 
magnetite 1 %

titanite, ilmenite, 
apatite, zircon, 

thorite

quartz,  
K-feldspar, 

epidote,  
chlorite, 
actinolite

21–27

CHA, 
EMPA, 
DAT,  

Sr–Nd

Ju348 amphibole 
quartz diorite

10°15'53.0"N 
84°50'02.0"W Guaria

plagioclase, 
amphibole II 
(actinolite)

amphibole I, 
K-feldspar, 

epidote, quartz, 
magnetite

titanite, ilmenite, 
apatite

c. 70 % 
secondary 

assemblage
60 CHA, 

EMPA

Ju321a hornfels  
(cornubianita)

10°17'22.6"N 
84°49'40.9"W San Luis

diopside, 
plagioclase, 
K-feldspar, 
wollastonite

epidote,  
andradite, 

quartz, calcite, 
chlorite

titanite, zircon
completely 
secondary 

assemblage
0.20

XRD, 
CHA, 
EMPA

Ju323 hornfels  
(cornubianita)

10°17'27.5"N 
84°49'30.8"W San Luis

quartz, calcite, 
epidote,  

plagioclase, 
diopside 

chlorite, pyrite, 
smectite

completely 
secondary 

assemblage
0.1–0.5 XRD, CHA

Ju327 hornfels  
(cornubianita)

10°16'18.9"N 
84°47'53.7"W San Luis

clinozoisite– 
epidote,  

actinolite, 
prehnite

quartz,  
plagioclase titanite

completely 
secondary 

assemblage
0.3–0.5 CHA, 

EMPA

MS – magnetic susceptibility (10-3 SI)
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chrom’s TRU.spec and Ln.spec (Pin et al. 1994; Pin and 
Zalduegui 1997; Míková and Denková 2007). Isotopic 
analyses of Sr and Nd were performed on a Finnigan 
MAT 262 thermal ionization mass spectrometer housed 
at CGS in dynamic mode using a single Ta filament for Sr 
and double Re filament assembly for Nd. The 143Nd/144Nd 

ratios were corrected for mass fractionation to 146Nd/144Nd 
= 0.7219 (Wasserburg et al. 1981), 87Sr/86Sr ratios as-
suming 86Sr/88Sr = 0.1194. External reproducibility is 
estimated from repeat analyses of the JNdi-1 (143Nd/144Nd 
= 0.512100 ± 26 2σ, n = 7) and NBS 987 (87Sr/86Sr = 
0.710244 ± 24 (2σ), n = 14) reference materials.
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Fig. 2 Geological map of the studied area with the sample locations. a – The section from the eastern part of the geological map 1 : 50 000, sheet 
3246-IV Juntas (Žáček et al. 2010c). b – Geological sketch map of the Guacimal Pluton, complemented by unpublished manuscript geological 
map (of Vladimír Žáček) in the neighbouring sheet San Lorenzo.
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Zircon grains for the laser ablation ICP-MS dating 
were mounted in 1 inch epoxy-filled blocks and polished 
to obtain even surfaces suitable for cathodoluminescence 
(CL) imaging and laser ablation inductively coupled 
plasma mass spectrometry (LA ICP-MS) analysis. Prior 
to analysis by LA ICP-MS, the sample surfaces were 
cleaned in 5 % HNO3, deionized water and ethanol. 
Isotopic analyses followed the technique described in 
detail by Košler et al. (2002). A Thermo-Finnigan Ele-
ment 2 sector field ICP-MS coupled to a 213 NdYAG 
laser (New Wave UP-213) at the Bergen University was 
used to measure Pb/U and Pb isotopic ratios in zircons. 
The sample introduction system was modified to enable 
simultaneous nebulisation of a tracer solution and laser 
ablation of the solid sample (Horn et al. 2000). Natural 
Tl (205Tl/203Tl = 2.3871– Dunstan et al. 1980), 209Bi and 
enriched 233U and 237Np (> 99 %) were used in the tracer 
solution, which was aspirated to the plasma in an Ar–He 
carrier gas mixture through an Apex desolvation nebu-
liser (Elemental Scientific) and a T-piece tube attached 
to the back end of the plasma torch. A helium gas line 
carrying the sample from the laser cell to the plasma was 
also attached to the T-piece tube. The laser was set up to 
produce energy density of ca 1.5 J/cm2 at a repetition rate 
of 20 Hz. The sample was placed in a low volume (c. 2 
cm3) tear-drop ablation cell, which was mounted on a 
computer-driven motorised stage of a microscope. During 
ablation, the stage was moved beneath the stationary laser 
beam to produce a linear raster (c. 50–100 × 60 µm) in 
the sample. Typical acquisitions consisted of a 35 second 
measurement of analytes in the gas blank and aspirated 
solution, particularly 203Tl – 205Tl – 209Bi –233U – 237Np, 
followed by measurement of U and Pb signals from zir-
con, along with the continuous signal from the aspirated 
solution, for another 120 seconds. The data were acquired 
in time resolved – peak jumping – pulse counting mode 
with 1 point measured per peak for masses 202 (flyback), 
203 and 205 (Tl), 206 and 207 (Pb), 209 (Bi), 233 (U), 
237 (Np), 238 (U), 249 (233U oxide), 253 (237Np oxide) 
and 254 (238U oxide). Raw data were corrected for dead 
time of the electron multiplier and processed off line in a 
spreadsheet-based program (Lamdate; Košler et al. 2002) 
and plotted on concordia diagrams using Isoplot (Ludwig 
1999). Data reduction included correction for gas blank, 
laser-induced elemental fractionation of Pb and U and 
instrument mass bias. Minor formation of oxides of U 
and Np was corrected for by adding signal intensities 
at masses 249, 253 and 254 to the intensities at masses 
233, 237 and 238, respectively. Details of data reduction 
and corrections are described in Košler et al. (2002) and 
Košler and Sylvester (2003). Zircon reference material 
GJ-1 (609 Ma – Jackson et al. 2004) was periodically 
analysed during this study and it yielded a concordia age 
of 598 ± 12 Ma.

4.	Geology of the Guacimal Pluton

The Guacimal Pluton is situated in the mountainous area 
of S and SW slopes of the Cordillera de Tilarán in the 
NW Costa Rica (Guanacaste and Alajuela departments). 
The pluton is approximately limited by grid co-ordinates 
N 10°11′–10°17′ and W 84°43′–84°50′W. Majority 
(c. 85 %) of the pluton surface is exposed on the Juntas 
map sheet (Žáček et al. 2010c, see Fig 2a), only its east-
ernmost part belongs to the neighbouring San Lorenzo 
sheet. The Guacimal Pluton was first described by Chaves 
and Sáenz (1974), several chemical analyses were pub-
lished by Alcorn (1981) and Cigoliny and Chaves (1986), 
and its petrography with geochemistry were summarized 
by Kussmaul (1987). The pluton, originally called “For-
mación granito–gabro de Guacimal”, consists of three 
predominant rock types: granite (leucogranite, porphy-
ritic granite and granophyric granite), monzodiorite, 
and gabbro. The emplacement of the Guacimal Pluton 
was followed by extensive hydrothermal alteration and 
associated mineralization of the Costa Rican Gold Belt 
(Cigolini and Chaves 1986).

The Guacimal Pluton forms an oval-shaped body, 
strongly elongated in the NW–SE direction; its length 
is ~15 km and the width varies between 4 and 6 km. 
The NE contact is situated near San Luis, whereas its 
SE contact is located E of San Martín Norte and Bajo 
Caliente on the San Lorenzo map sheet (Fig. 2b). The 
exposed surface of the pluton does not exceed 60–70 km2, 
although previous workers described a much larger extent 
of up to 200 km2 (e.g., Kussmaul 1987). Nevertheless, the 
Guacimal Pluton still represents the largest plutonic body 
in the NW Costa Rica. Fresh rocks are mainly found in 
the river valleys (Guacimal and Aranjuez) as well as in 
numerous streams. However, most of the pluton surface 
is deeply weathered, forming sandy to loamy eluvia of 
conspicuously light colour (see Fig. 3a–d).

The pluton intruded into the mafic volcanic rocks 
of the Aguacate Group and is surrounded by a large 
metasomatic aureole, which is nearly continuous. The 
metasomatic rocks, derived from basalts, basaltic an-
desites and volcaniclastics of the Aguacate Group have 
their primary textures only rarely preserved. However, 
frequently they are completely recrystallized showing 
both secondary structures and mineral assemblages. Char-
acteristic rocks of the metasomatic aureole are greenish 
to black, very fine-grained to massive hornfelses (cornu-
bianitas in Spanish) with conchoidal fracture. They con-
sist of epidote, clinopyroxene, K-feldspar, plagioclase, 
wollastonite, grossular–andradite, quartz, calcite and 
pyrite. Hence, they represent a typical Ca-rich contact 
metasomatic assemblage. Similar to other occurrences 
associated with the granitic intrusions of the Cordillera 
de Talamanca (Drummond et al 1995; Kussmaul 2006; 
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Ulloa and Delgado 2010), metasomatic rims rich in epi-
dote can be observed. 

The southern or south–eastern contact of the pluton 
has a tectonic character and follows an important NW–SE 
trending fault zone (up to 1 km wide “El Encanto” fault 
system) associated with intense hydrothermal alteration, 
mainly silicification, which is younger than the contact 
metasomatic aureole. A small portion of the pluton and 
much of its metasomatic aureole close to its N and NE 
limits are covered by Early Pleistocene Monteverde lava 
platform (Fig. 3d) and by large Late Quaternary debris 
flows and landslides. 

5.	Petrology and mineral chemistry

5.1.	Granitic rocks

The dominant rocks of the Guacimal Pluton are light, 
whitish or pinkish monzogranites to granodiorites with 

variable, but generally low amounts of amphibole, brown 
biotite and secondary epidote (Fig. 4a–d). Majority of 
these granites are leucogranites as the amount of mafic 
minerals is mostly varying between 2 and 5 vol. %. The 
individual samples are characterized by similar modal 
and mineral composition but can show slightly differ-
ent textures. The granites are mostly medium-grained, 
weakly porphyritic to equigranular, without any preferred 
mineral orientation. The size of phenocrysts rarely ex-
ceeds 5 mm; granophyric (micrographic) intergrowths are 
frequent. Most of the samples contain abundant miarolitic 
cavities, 0.5–4 mm across, filled by a variety of second-
ary minerals (Figs 5a–f, 6). 

The dominant primary minerals are quartz, plagio-
clase, and K-feldspar with subordinate biotite, amphi-
bole (magnesiohornblende to edenite), and magnetite. 
Pargasite, orthopyroxene, Mn-ilmenite, titanite I, rutile, 
apatite, zircon, thorite, and chalcopyrite (primary in-
clusions) are the typical accessory phases. Presence 
of accessory tourmaline, mentioned by Kussmaul 

a b

c d

Fig. 3 Field appearance and mode of weathering of the Guacimal Pluton. a – Morphology of the Guacimal Pluton outcrops in its central part, 
between Cerro San Antonio and Cerro Ojo de Agua. Deep whitish granite eluvia are uncovered by numerous shallow landslides promoted by de-
forestation and subsequent extensive pasture. b – Residual granite blocks on the mountain crest 1 km E of the Cerro San Antonio (sampling loca-
lity Ju311). c – Granite exposure in a creek near San Martín Norte (sampling point Ju346). d – The contact of deeply weathered granite with over-
laying younger andesite lava of the Pleistocene Monteverde Formation. Occasional road south of the Cerro San Antonio. The photographs in this 
plate and also in Figs 4–5 and 8–10 were taken by Vladimír Žáček.
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a b

c d

e f

Fig. 4 Hand specimens of the granites and quartz diorite. The granites show a similar appearance, white spots correspond to plagioclase phenocrys-
ts, the greyish or pinkish groundmass is formed by fine K-feldspar and quartz. Observed are tiny dark prismatic amphibole and/or biotite crystals 
as well as locally green accumulations of secondary minerals with dominant epidote filling miarolitic cavities. Compare related microphotogra-
phs (Figs 5 and 8). a – Whitish to pinkish, medium-grained granite with amphibole and Mg-biotite from the central part of the pluton. The mate-
rial was obtained from a residual block near Cerro San Antonio (see Fig 3b). b – Whitish to pinkish medium-grained leucogranite with scarce am-
phibole and biotite from the exposure at San Martín Norte (see Fig. 3c). c – Whitish to greyish, slightly porphyritic amphibole granite with scar-
ce phenocrysts of plagioclase up to 2 mm long. The sample comes from rock exposure at the bridge near the village of San Luis (sampling point 
Ju328). d – Greyish micrographic granite (granophyre) sampled in the village of Guacimal from a big isolated block (c. 4 m) transported most pro-
bably by river (sampling point Ju57). e – Quartz diorite with conspicuous phenocrysts of amphibole from the dyke 3–5 m thick penetrating hor-
nfels at the road from Guaria to San Luis (sampling point Ju348). f – The same rock with well preserved prismatic amphibole from the boulder 
sampled in the Alto Aranjuecito River. The diameter of the coin is 3 cm, the bar corresponds to 1 cm. 
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c

Ju346

Ju328 Ju328

Ju57 Ju57

Ju311

e f

d

ba

Fig. 5 Photomicrographs of the studied granites (crossed polarizers if not specified otherwise). a – Medium-grained granite with biotite and am-
phibole (Ju311). The phenocrysts of plagioclase show fine oscillatory zoning and reach the size of 2–6 mm, but the matrix is also relatively coar-
se grained (0.1–1 mm). Micrographic intergrowths are locally observed. The rock contains brown biotite and pale-brown amphibole up to 3 mm 
long. Occasional small miarolitic cavities are filled with secondary chlorite and epidote. b – Medium-grained porphyritic granite with biotite, lo-
cally showing micrographic structure. The plagioclase phenocrysts (or their clusters) are up to 5 mm across, matrix is also relatively coarse grai-
ned (0.5–1 mm). Abundant are tiny miarolitic cavities filled by euhedral secondary minerals. c – Porphyritic granite with amphibole (Ju328), the 
size of the phenocrysts reaches 0.5–2 mm. Relatively abundant brown amphibole forms long-prismatic phenocrysts up to 3 mm long. Prevailing 
matrix (c. 60 %) is fine-grained (0.05–0.2 mm). Plane polarized light. d – The same sample, crossed polarizers. e – Porphyritic medium-grained 
granite (granophyre) with phenocrysts of plagioclase up to 5 mm long (Ju57). Very fine micrographic (granophyric) intergrowths of quartz and  
K-feldspar are seen. The rock contains prismatic brown amphibole up to 2 mm long. Biotite, if originally present, was completely chloritized. 
Abundant miarolitic cavities are filled by euhedral epidote, actinolite and chlorite. Plane polarized light. f – The same sample, crossed polarizers. 
The white bar in each photomicrograph is 1 mm long. 
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(1987), was not confirmed. Among mafic minerals, 
amphibole mostly prevails over biotite. In the sample 
Ju311, two generations of plagioclase were observed: 
(1) a single oval xenocryst 5  mm across with numer-
ous anhedral inclusions of edenite (up to 150 µm long) 
and scarce orthopyroxene (up to 20 µm long, always 
rimmed by edenite) in the centre of the xenocryst, and 
(2) predominant prismatic plagioclase. The xenocryst 
was probably not in equilibrium with other minerals in 
the groundmass and it probably represents a relic of a 
crystal captured from a more basic magma. 

The amphibole in the groundmass is brown to pale 
brown, slightly pleochroic. It forms euhedral to sub-
hedral, mostly prismatic crystals up to 3 mm long. Its 
amount can reach up to ~5 vol. %. Locally, it is partially 
replaced by pale brown secondary actinolite or chlorite. 
Biotite is brown, strongly pleochroic, subhedral, reach-
ing 2  mm across but mostly smaller. It accounts for 
up to ~  4  vol. % but in some samples it is completely 
lacking. Biotite is more or less (sometimes completely) 
chloritized. Magnetite is ubiquitous, occurring as euhe-
dral to anhedral equant grains up to 0.5 mm in diameter, 
amounting to 0.5–2 vol. %. Titanite I forms subhedral 
grains up to 200 µm long in the interstitial space among 
the primary minerals. Secondary minerals, which ei-
ther replace mafic primary phases or occur as euhedral 
crystals in miarolitic cavities and interstitial space in 
the groundmass, are quartz II, K-feldspar II (adularia), 
epidote, chlorite, amphibole II (actinolite), ilmenite II 
and titanite II. Epidote is the most abundant second-
ary mineral, forming yellow–green euhedral (prismatic 
to acicular) crystals up to 2 mm long in the miarolitic 
cavities. Alternatively it can be microscopic, occurring 
as clusters of subhedral crystals replacing plagioclase in 

the matrix. Ilmenite II occurs as rosette-like aggregates 
up to 100 µm long grown in miarolitic cavities as the 
oldest phase. Titanite II occurs either as euhedral crystals 
in miarolitic cavities or as rims of ilmenite II.

Chemical composition of rock-forming minerals was 
analyzed by electron microprobe in samples Ju311, Ju328 
and Ju346 (Tab 2, Appendix 1–6) and it is illustrated in 
Fig. 7.

Plagioclase is labradorite to andesine (rarely albite) 
with calcic centres and more sodic rims (An58–04), poor in 
SrO (< 0.20 wt. %) and BaO (< 0.19 wt. %) but with in-
creased K2O contents (0.13–0.97 wt. %). Rare xenocryst 
of plagioclase in the sample Ju311 shows discontinuous 
zoning with small core strongly enriched in Ca (An86) 
and a wide oscillatory-zoned rim (An48–13), with a gap 
between An30 and An21. In addition, inclusions of edenite 
and orthopyroxene occur in the calcic centre.

K-feldspar contains sharply bound domains rich in 
BaO (4.2–5.6 wt. %); outside of these domains the con-
centration of BaO ranges between 0.16 and 1.29 wt. %, 
whereas the Na2O content is 1.70–3.83 wt. %. The 
K-feldspar from miarolitic cavities is both Na- and Ba-
poor (1.40 wt. % Na2O and 0.72 wt. % BaO).

Mg-rich biotite (XMg = molar Mg/(Mg + Fe) ratio 
= 0.66–0.75) is rich in TiO2 (2.92–5.43 wt. %) and F 
(1.55–2.40 wt. %) with high Cl concentrations (0.31–0.40 
wt. %). Primary amphibole I corresponds to magnesio-
hornblende, less frequently to edenite (Si  = 6.96–7.46 
apfu, (Na + K)A ~ 0.3–0.6 apfu, XMg = 0.67–0.78) 
whereas fibrous secondary amphibole II is actinolite (Si 
= 7.72–7.78 apfu, XMg = 0.80). Amphibole occurring as 
inclusions together with orthopyroxene in the plagioclase 
(sample Ju311) is edenite (Si = 6.91 apfu, (Na + K)A = 
0.66 apfu, XMg = 0.70).

a b

Ttn II
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Kf sII

Fig. 6 Back-scattered electron (BSE) images of miarolitic cavities in the Guacimal granites. a – Miarolitic cavity in the sample Ju363 filled by K-
feldspar II (adularia, Kfs II), chlorite (Chl), epidote (Ep) and hornblende II (Act). Other groundmass minerals are K-feldspar (Kfs I), albite (Ab), 
quartz (Qtz), ilmenite (Ilm) and titanite (Ttn). b – Miarolitic cavity in the sample Ju328 filled by clearly secondary ilmenite II, titanite II, chlori-
te and epidote (for symbols see Fig. 9a). Note calcic cores (Pl-c) and sodic rims (Pl-r) of the large crystals of plagioclase. Photomicrographs by 
Radek Škoda. 
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Tab 2 Chemical composition of amphiboles (wt. %, apfu) and Hbl–Pl geothermobarometry

sample JU 346 JU 328 JU 328 JU 328 JU 311 JU 311 JU 311 JU 348 JU 348 JU 348
rock granite granite granite granite granite granite granite diorite diorite diorite
comment secondary primary primary secondary primary primary primary primary* secondary secondary
SiO2 52.18 47.92 48.09 54.80 46.51 46.89 46.95 41.12 48.60 53.55
TiO2 0.61 1.63 1.46 0.08 1.60 1.65 1.62 2.30 1.29 0.35
Al2O3 3.57 6.13 5.83 1.72 6.36 6.44 6.19 12.22 5.90 2.66
Fe2O3

calc 1.84 2.57 2.95 1.91 0.70 1.02 2.10 6.87 2.86 2.10
FeOcalc 7.38 9.83 9.71 6.36 11.78 11.21 10.34 5.51 7.52 6.44
MgO 17.90 15.25 14.83 18.58 15.32 15.77 15.60 14.33 17.23 19.14
MnO 0.75 0.43 0.50 0.64 0.54 0.43 0.45 0.18 0.40 0.33
CaO 11.42 11.50 11.72 12.64 11.16 11.28 11.28 11.55 11.85 12.28
Na2O 1.76 1.61 1.44 0.60 2.14 1.96 1.40 2.51 1.17 0.48
K2O 0.50 0.54 0.47 0.12 0.59 0.55 0.57 0.46 0.63 0.23
F 2.10 0.81 0.82 0.72 1.82 1.40 0.82 0.90 0.63 0.49
Cl 0.12 0.13 0.12 0.04 0.14 0.15 0.16 0.00 0.19 0.17
H2Ocalc 1.07 1.62 1.61 1.76 1.12 1.33 1.59 1.58 1.72 1.83
-O=F+Cl 0.91 0.37 0.37 0.31 0.80 0.62 0.38 0.38 0.31 0.24
Total 99.94 96.10 97.62 98.00 98.59 98.64 97.25 97.25 97.97 98.01
Formula after Holland and Blundy (1994) assuming 24 O+OH+F+Cl) and OH+F+Cl = 2
Si 7.435 6.994 7.050 7.749 6.901 6.897 6.934 6.053 7.015 7.571
Aliv 0.565 1.006 0.950 0.251 1.099 1.103 1.066 1.947 0.985 0.429
Sum T 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
Alvi 0.035 0.050 0.057 0.036 0.014 0.013 0.012 0.172 0.019 0.015
Ti 0.065 0.179 0.160 0.008 0.178 0.183 0.179 0.254 0.140 0.037
Fe3+ 0.197 0.283 0.325 0.203 0.078 0.113 0.233 0.761 0.311 0.224
Mg 3.801 3.317 3.239 3.915 3.388 3.457 3.433 3.143 3.706 4.034
Mn 0.091 0.053 0.062 0.077 0.067 0.053 0.056 0.022 0.049 0.040
Fe2+ 0.811 1.119 1.156 0.752 1.275 1.181 1.087 0.647 0.776 0.650
Sum M1, 2, 3 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Fe 0.068 0.081 0.035 0.000 0.187 0.198 0.191 0.030 0.133 0.112
Ca 1.744 1.799 1.841 1.906 1.775 1.777 1.786 1.821 1.833 1.860
Na 0.188 0.120 0.125 0.094 0.038 0.025 0.023 0.148 0.035 0.029
Sum M4 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
Na 0.298 0.336 0.285 0.069 0.578 0.534 0.378 0.567 0.294 0.102
K 0.091 0.100 0.087 0.022 0.111 0.103 0.107 0.087 0.116 0.042
Sum A 0.390 0.436 0.372 0.091 0.689 0.636 0.485 0.654 0.410 0.144
OH 1.023 1.590 1.586 1.665 1.108 1.309 1.576 1.576 1.665 1.739
F 0.948 0.378 0.384 0.325 0.857 0.653 0.385 0.425 0.289 0.221
Cl 0.029 0.032 0.030 0.010 0.035 0.038 0.039 0.000 0.046 0.040
Sum OH-site 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
Sum cations 15.390 15.436 15.372 15.091 15.689 15.636 15.485 15.654 15.410 15.144
Mg/(Mg + Fe2+) 0.760 0.663 0.648 0.783 0.678 0.691 0.687 0.629 0.741 0.807
Fe3+/(Fe2++ Fe3+) 0.183 0.191 0.214 0.213 0.051 0.076 0.154 0.529 0.255 0.227
Altot 0.599 1.055 1.007 0.287 1.112 1.117 1.078 2.120 1.004 0.444
XAb 0.602 0.564 0.442 0.403 0.452
XAn 0.351 0.398 0.536 0.580 0.528
T and P results based on Anderson´s spreadsheet for Hbl–Pl thermobarometry (Anderson 1996) using Holland and Blundy (1994) Hbl–Pl ther-
mometry calibration for the reaction: edenite + albite = richterite + anorthite. T Otten – temperatures based on Ti in amphibole following 
Otten (1984)
T (AS) (°C) 763 769 784 762 720
P (AS) (kbar) 0.9 0.7 0.8 1.2 1.7
T Otten (°C) 760 738 760 765 761 851
T, P and fO2 results calculated by spreadsheet of Ridolfi et al. (2010)
T (°C) 802 791 855 857 842 984
uncertainty 22 22 22 22 22 22
P (kbar) 0.87 0.81 0.93 0.93 0.88 4.01
uncertainty 0.10 0.09 0.10 0.10 0.10 0.44
depth (km) 3.3 3.1 3.5 3.5 3.3 15.2
∆NNO 1.6 1.6 1.9 2.0 2.1 1.0
log fO2 –12.2 –12.5 –10.9 –10.7 –10.9 –9.5
uncertainty 0.4 0.4 0.4 0.4 0.4 0.4

* the composition used for geochemical modelling
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feldspars. b – En–Fs–Wo plot for pyroxenes. c – The diagram for calcic amphiboles characterized by the following site occupancies: CaB >1.5, CaA 
<0.5, Ti<0.50 and (Na + K)A<0.5 apfu, only the shaded compositions correspond to amphiboles with (Na + K)A>0.5 apfu (calculated on the basis of 24 
(O + OH + F), assuming OH + F = 2, following Leake at al. 1997). d – Mg/(Mg + Fe) vs. Altot plot (apfu) of dark mica (calculated on the basis of 12 
(O + OH + F + Cl), assuming OH + F + Cl = 2). e – Si vs. Mg/(Mg + Fe) plot for chlorites (calculated on the basis of 18 (O+OH), assuming 8 OH).



Miocene Guacimal Pluton, Costa Rica

	 63	

Orthopyroxene is Fe-rich enstatite (XMg = 0.62–0.67) 
with increased Al2O3 (0.51–2.02 wt. %) and CaO con-
centrations (0.92–2.68 wt. %). Magnetite is relatively 
poor in minor elements: 0.24–1.18 wt. % TiO2, 0.13–1.65 
wt. % Al2O3, 0.27–0.68 wt. % V2O3. A small inclusion of 
chalcopyrite was found enclosed in magnetite. Relatively 
abundant accessories are apatite and zircon. Thorite up 
to 3 µm across is very rare. Ilmenite forms (1) individual 
poikilitic aggregates intergrown with apatite, (2) thin 
exsolution lamellae in magnetite, or (3) crystallized 
in miarolitic cavities as the oldest secondary phase. 
All types of ilmenite are rich in MnO (8–21 wt. %), 
which corresponds to 17–44 mol. % of the pyrophanite 
component; the highest Mn concentrations were found 
in the exsolution lamellae. Titanite I found in the rock 
matrix is poor in Al2O3 and F, unlike titanite II in the 
miarolitic cavities and titanite overgrowths on ilmenite 
with 5.9–8.2 wt. % Al2O3 and 2–3 wt. % F. Epidote con-
tains 10.5–15.8 wt. % of Fe2O3

tot; chlorite corresponds 
to clinochlore (Si = 2.88–2.95 apfu, XMg = 0.65–0.68); 
see also Fig. 7. 

5.2.	Quartz diorite

The only quartz diorite sample studied is strongly 
porphyritic and composed essentially of dominant pla-
gioclase and pale green amphibole II. Minor constitu-
ents are brown amphibole I, K-feldspar and quartz; an 
opaque mineral, epidote, chlorite and titanite are com-
mon accessories. Amphibole I, K-feldspar and magnetite 
are primary phases formed by magmatic crystallization, 
and were mostly replaced by a mosaic of fine prismatic 
(probably recrystallized) plagioclase, pale green amphi-

bole II and yellowish epidote. Overgrowths of highly 
aluminous titanite replacing epidote were observed 
(Figs 4e–f, 8). 

Brown amphibole I is titanian pargasite (Si = 6.05–
6.15 apfu, Ti = 0.26–0.29 apfu, XMg = 0.68–0.69). Primary 
K-feldspar is enriched in Na2O (0.68–1.98 wt. %), BaO 
(0.82–3.74 wt. %) and SrO (0.08–0.16 wt. %). Plagio-
clase is mostly oligoclase but rarely as calcic as labrador-
ite (An24–62) poor in BaO (< 0.09 wt. %) but with slightly 
increased K2O (0.48–0.64 wt. %) and SrO contents 
(0.10–0.17 wt. %). Amphibole II is magnesiohornblende 
to actinolite (Si = 7.06–7.67 apfu, XMg = 0.75–0.83). Mag-
netite contains 0.31–0.88 wt. % TiO2, 0.04 wt. % Al2O3 
and 0.49 wt. % V2O3, ilmenite hosts 5.3–8.3 wt. % MnO, 
corresponding to 13–18 mol. % pyrophanite. Epidote is 
relatively Fe-rich (11.4–12.7 wt. % Fe2O3

tot = 0.66–0.73 
Fe3+ apfu). Titanite, which is found as overgrowths on 
epidote, is extremely rich in Al2O3 (11.26 wt. %) and F 
(3.93 wt. %). 

6.	Country rocks of the Guacimal Pluton

The Guacimal Pluton is surrounded by thermal aureole 
several hundred metres to c. 1.5 km wide, which over-
prints the Aguacate Group country rocks. The exocontact 
is transitional, with the intensity of thermal effects de-
creasing gradually away from the contact with granite. 
The contact aureole is most probably continuous but 
along the northern contact it is locally hidden below 
the younger Monteverde Formation. In its SW part, the 
pluton is truncated by the El Encanto zone (Fig. 2b), a 
fault system striking NW–SE, which follows the granite 

a Ju348 b Ju348

Fig. 8a – Photomicrographs of the quartz diorite sample Ju348 (see also Fig. 4e). Primary mineral assemblage was formed predominantly by pris-
matic brown amphibole (up to 7 mm long), plagioclase and some quartz. However, the rock is strongly recrystallized to a fine mosaic of secon-
dary prismatic plagioclase, acicular greenish actinolite with abundant epidote and chlorite, occurring both in the matrix and in veinlets. It is dif-
ficult to recognize primary and secondary phases due to cloudy matrix. Plane polarized light. b – The same sample, crossed polarizers. The bar 
corresponds to 1 mm. 
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a b

c d

Fig. 9 Field photographs of metasomatic hornfelses from the thermal aureole of the Guacimal Pluton. a – Exposure of greyish–green banded horn-
felses at the Guacimal River near San Luis (Ju323). b – Banded and undulated sequence of black fine-grained hornfelses in the metasomatic zone 
at the road to Bajo Caliente near the El Encanto reservoir dam. c – Sample of medium-grained speckled hornfels composed mainly of clinozoisi-
te–epidote, chlorite, actinolite and calcite from the mountains E of San Luis (Ju327). d – Fine grained hornfels with the veinlet of andradite which 
represents typical hornfels “cornubianita”. North-west of San Luis, sample Ju321a. The bar is 1 cm long. 

a b Ju327Ju321a

Fig. 10 Photomicrographs of contact metasomatic rocks shown in Figs 9c–d. a – The sample Ju321a with an andradite veinlet. The matrix is com-
posed of fine-grained mosaic with dominant diopside, quartz, wollastonite, K-feldspar and andradite. b – Microstructure of the sample Ju327 for-
med by prevailing hornblende, clinozoisite–epidote, prehnite and chlorite. Crossed polarizers, bars correspond to 1 mm.
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contact for at least 15 km. This structure is accompanied 
by intense hydrothermal alteration, mainly silicifica-
tion with subordinate amounts of pyrophyllite, alunite, 
sericite, kaolinite, and several other, rather rare minerals 
(Fig. 2a–b).

Contact metasomatic rocks are highly variable with 
apple green, dark grey–green to nearly black colour 
(Fig.  9a–b). Two main types can be distinguished:  
(1) fine- to medium-grained speckled rocks with relics 
of primary volcanic structures and magmatic minerals 
(e.g., former phenocrysts), and (2) very fine-grained 
hornfelses with conchoidal fracture, where primary 
minerals and structures were completely obliterated by 
a newly formed assemblage (Fig. 9c–d). The contact 
metasomatic rocks can also show bands, several cm–dm 
thick, which differ in colour and grain size. Altered 
rocks including hornfelses are also characterized by 
mostly low magnetic susceptibilities (0.1–0.5 × 10-3 
SI), which indicate that the original magnetic mineral 
was decomposed. 

The coarse-grained contact-metasomatic rocks con-
sist of abundant epidote–clinozoisite and chlorite, with 
rare accumulations of calcite. The amount of epidote, 
which is the most characteristic secondary mineral, 
increases from several up to over 50 vol. %. The calc-
silicate hornfelses are very fine-grained with character-
istic conchoidal fracture. They contain pyrite (dissemi-
nated and veinlets), epidote or, rarely, andradite-rich 

garnet. The following phases were identified by X-ray 
diffraction or electron microprobe: Ca-rich garnet, 
clinozoisite–epidote, plagioclase, hedenbergite, amphi-
bole, K‑feldspar, wollastonite, chlorite, prehnite, quartz, 
calcite, pyrite, titanite, and smectite (see Fig.  10a–b). 
Mineral chemistry of hornfelses was studied in two 
samples (Appendix 5–6). 

In the sample Ju321a, plagioclase is poorly zoned 
andesine–labradorite, An47–53 with elevated concentra-
tions of K2O (0.35–1.17 wt. %) and FeOt (0.52–0.81 
wt. %). K-feldspar contains slightly elevated Na2O 
(1.15–1.85 wt. %) and BaO contents (0.37–0.52 wt. %). 
Clinopyroxene is hedenbergite (XMg = 0.33–0.41) with 
0.74–1.19 wt.  % Al2O3 and 0.27–0.31 wt. % Na2O. 
Ca-rich garnet corresponds to andradite–grossular 
solution (Grs04–52 Adr44–98 Sps<04), poor in oxides of Ti, 
Cr and Mg (all < 0.10 wt. %). Epidote contains 9.65 
wt. % Fe2O3

tot.
The sample Ju327 is composed mainly of quartz, am-

phibole, plagioclase, clinozoisite–epidote, and prehnite. 
Amphibole corresponds to magnesiohornblende or parga-
site (Si = 6.34–7.17 apfu, XMg = 0.59–0.57). Plagioclase 
is labradorite to bytownite (An65–82) poor in BaO and with 
elevated SrO (0.04–0.35 wt. %). Clinozoisite–epidote oc-
curs as several successive generations with the Fe2O3

tot 
varying widely between 3.08 and 9.42 wt. %. Prehnite 
formed as the youngest phase. Accessory titanite is poor 
in Al2O3 (1.72 wt. %) and F (0.09 wt. %). 

Tab 3 U–Pb dating 

ISOTOPIC RATIOS CALCULATED AGES (Ma)
Analysis 207Pb/235U ± 1 σ 206Pb/238U ± 1 σ Rho 238U/206Pb ± 1 σ 207Pb/206Pb ± 1 σ 207Pb/235U ± 1 σ 206Pb/238U ± 1 σ
Sample JU-311, U–Pb age 6.3 ± 0.5 Ma
#1 0.0184 0.0021 0.0010 0.0001 0.31 980.4 68.6 0.1310 0.0193 18.5 2.1 6.6 0.5
#2 0.0145 0.0032 0.0010 0.0001 0.21 1016.1 93.0 0.1070 0.0169 14.6 3.2 6.3 0.6
#3 0.0161 0.0028 0.0011 0.0001 0.28 908.1 89.6 0.1063 0.0188 16.3 2.8 7.1 0.7
#4 0.0257 0.0079 0.0012 0.0002 0.30 841.0 155.5 0.1568 0.0344 25.8 7.8 7.7 1.4
#5 0.0241 0.0037 0.0011 0.0001 0.38 931.4 110.9 0.1627 0.0233 24.2 3.7 6.9 0.8
#6 0.0193 0.0027 0.0011 0.0001 0.31 918.3 80.7 0.1288 0.0203 19.4 2.7 7.0 0.6
#7 0.0069 0.0014 0.0011 0.0002 0.37 883.8 133.0 0.0444 0.0080 7.0 1.4 7.3 1.1
#8 0.0052 0.0020 0.0011 0.0001 0.18 930.2 124.1 0.0352 0.0076 5.3 2.0 6.9 0.9
Sample JU-328
#9 0.0126 0.0015 0.0013 0.0001 0.23 748.6 41.7 0.0684 0.0081 12.7 1.5 8.6 0.5
#10 0.0177 0.0045 0.0015 0.0001 0.14 683.3 48.4 0.0878 0.0123 17.8 4.5 9.4 0.7
#11 0.0104 0.0023 0.0015 0.0001 0.13 683.2 40.9 0.0514 0.0076 10.5 2.3 9.4 0.6
#12 0.0114 0.0028 0.0011 0.0001 0.21 930.7 98.2 0.0772 0.0144 11.5 2.9 6.9 0.7
#13 0.0128 0.0027 0.0015 0.0001 0.23 687.1 65.1 0.0637 0.0172 12.9 2.7 9.4 0.9
#14 0.0063 0.0009 0.0009 0.0001 0.27 1145.1 86.0 0.0526 0.0066 6.4 0.9 5.6 0.4
Sample JU-346, U–Pb age 6.0 ± 0.4 Ma
#15 0.0131 0.0034 0.0010 0.0001 0.16 999.5 84.7 0.0951 0.0230 13.2 3.4 6.4 0.5
#16 0.0126 0.0017 0.0009 0.0001 0.24 1066.8 71.1 0.0977 0.0097 12.7 1.7 6.0 0.4
#17 0.0073 0.0015 0.0010 0.0001 0.17 986.0 69.9 0.0519 0.0074 7.3 1.5 6.5 0.5
#18 0.0257 0.0041 0.0011 0.0001 0.30 944.5 92.0 0.1757 0.0249 25.7 4.1 6.8 0.7
#19 0.0316 0.0071 0.0013 0.0002 0.29 790.6 102.2 0.1810 0.0262 31.6 7.0 8.1 1.1
#20 0.0419 0.0054 0.0013 0.0001 0.34 774.5 68.2 0.2355 0.0263 41.7 5.2 8.3 0.7
#21 0.0586 0.0102 0.0015 0.0002 0.46 657.6 105.3 0.2795 0.0374 57.8 9.8 9.8 1.6
#22 0.0104 0.0023 0.0009 0.0001 0.19 1066.1 88.4 0.0802 0.0130 10.5 2.3 6.0 0.5
#23 0.0306 0.0063 0.0011 0.0001 0.22 913.0 84.9 0.2023 0.0299 30.6 6.3 7.1 0.7
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7.	Thermobarometry and oxybarometry of 
magmatic crystallization 

The temperature and pressure of magmatic crystal-
lization were assessed using amphibole–plagioclase 
thermobarometry (Anderson and Smith 1995; Anderson 
1996). The temperature and pressure were estimated 
iteratively by a spreadsheet that was kindly provided by 

L. Anderson. The temperature estimates are based on the 
amphibole–plagioclase thermometric calibration of the 
reaction edenite + albite = richterite + anorthite (Holland 
and Blundy 1994), and on the Ti solubility in amphibole 
(Otten 1984). Amphibole equilibria were also used to 
estimate oxygen fugacity (Ridolfi et al. 2010) (Tab. 2). 

The temperatures calculated for five amphibole and 
plagioclase pairs from the felsic Guacimal suite fall 

in the interval 720–857 °C (mostly 
ranging between 760 and 800 °C). 
The pressures vary between 0.7 and 
1.7 kbar with a distinct maximum at 
0.8–0.9 kbar. One sample from the 
mafic suite yielded temperatures be-
tween 851 and 984 °C and pressure of 
c. 4 kbar. Oxygen fugacity estimated 
for the felsic suite is 1.6–2.1 log units 
above the nickel–nickel oxide buffer 
(NNO), whereas the estimate for the 
mafic suite is ΔNNO = +1.0.

8.	 LA ICP-MS zircon age

Zircon from granite samples Ju311, 
Ju328 and Ju346 forms prismatic and 
stubby crystals up to 150 μm long. The 
CL imaging revealed oscillatory zoning 
combined with sector zoning, which 
are both indicative of crystallization 
from the melt for most of the grains 
(Corfu et al. 2003). However, some 
zircon grains, especially in the sample 
Ju328, also contain discrete domains in 
their cores that can be interpreted as an 
older, inherited component.

Results of the LA ICP-MS dating 
are summarized in Tab. 3 and the 
data are shown on inverse concordia 
diagrams in Fig. 11. Most of the data 
points plot away from the concordia 
curve suggesting presence of vari-
able amounts of common Pb in the 
analysed zircons. Since the accurate 
correction for common Pb via mea-
surement of 204Pb is difficult due to 
isobaric interference of 204Hg pres-
ent in the ICP gas, we have used the 
inverse Tera-Wasserburg projection 
to calculate U–Pb ages for the radio-
genic Pb component. The data regres-
sion lines were anchored to common 
Pb composition corresponding to the 
two-stage model of crustal Pb evolu-
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Fig. 11 Inverse concordia diagrams for the samples Ju311 and Ju346.
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Tab. 4 Major- and trace-element whole-rock geochemical data

Sample Detection Ju348 Ju98 Ju328 Ju57 Ju311 Ju346 Ju327 Ju323
Rock type limit qtz diorite granite granite granite granite granite hornfels hornfels
SiO2 0.01 54.51 68.83 69.56 69.81 70.73 71.55 45.38 55.86
TiO2 0.01 0.92 0.43 0.40 0.33 0.35 0.29 0.51 0.63
Al2O3 0.01 16.20 14.91 14.53 14.70 14.48 14.15 14.48 13.52
Fe2O3t 0.04 10.04 3.02 3.18 2.66 2.59 2.26 8.78 5.01
MnO 0.01 0.15 0.11 0.08 0.10 0.07 0.10 0.15 0.05
MgO 0.01 4.14 0.77 0.85 0.78 0.79 0.64 9.69 2.98
CaO 0.01 6.45 2.44 2.43 2.82 2.50 2.21 13.92 7.51
Na2O 0.01 3.40 3.56 3.60 3.73 3.61 3.55 0.96 1.98
K2O 0.01 1.07 3.86 3.44 3.59 3.68 4.00 0.15 5.87
P2O5 0.01 0.17 0.11 0.09 0.07 0.08 0.07 0.05 0.16
C(tot.) <0.02 <0.02 0.03 0.04 <0.02 0.03 0.09 0.65
S(tot.) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.04
LOI 2.60 1.60 1.50 1.10 0.80 0.90 5.50 6.10
Total 99.69 99.68 99.71 99.75 99.72 99.77 99.68 100.36
K2O/Na2O 0.32 1.08 0.96 0.96 1.02 1.13 0.16 2.97
A/NK 2.40 1.49 1.51 1.47 1.46 1.39 8.31 1.41
A/CNK 0.88 1.03 1.03 0.97 1.00 1.00 0.54 0.58
mg# 45.0 33.6 34.6 36.7 37.7 35.9 68.6 54.1
CaO/Na2O 1.90 0.69 0.68 0.76 0.69 0.62 14.50 3.79
Cs 0.1 2.2 1.5 0.9 2 1.2 1.4 0.3 1.6
Rb 0.1 20.8 89.1 85.4 84.1 88.2 93.7 2.4 184.6
Sr 0.5 540.7 352.5 348.4 410.8 367.7 307.0 464.3 449.3
Ba 1 619 1927 1553 1695 1930 1679 79 907
Th 0.2 1.7 6.2 5.1 5.7 5.4 6.5 0.2 3.1
U 0.1 1.1 2.3 2.0 2.6 2.3 2.9 0.1 5.4
Zr 0.1 82.3 198.7 193.1 163.4 179.1 147.6 19.9 145.3
Hf 0.1 2.2 5.4 4.4 4.4 4.6 4.0 0.6 3.9
Nb 0.1 3.6 8.8 7.2 6.8 6.9 7.0 0.6 5.9
Ta 0.1 0.2 0.5 0.4 0.4 0.4 0.4 0.1 0.4
Pb 0.1 3.2 9.7 2.8 5.2 2.7 10.5 1.0 1.1
Ga 0.5 17.0 13.1 13.1 12.9 12.9 13.1 13.7 8.6
Sn 1 1 1 <1 <1 <1 <1 <1 <1
Ni 0.1 5.4 6.9 6.8 4.1 4.6 7.8 42.0 32.3
Co 0.2 24.0 5.0 5.8 4.5 4.6 3.8 42.5 10.3
V 8 313 62 66 45 52 35 291 100
Sc 1 28 8 9 7 7 6 43 17
Cu 0.1 49.9 28.2 39.8 19.1 16.8 17.6 53.4 78.0
Zn 1 29 36 31 33 25 33 13 46
As 0.5 6.1 3.6 1.9 1.0 0.6 1.8 4.4 9.7
W 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.5
Au (ppb) 0.5 3.0 4.8 8.1 4.0 1.6 4.4 3.5 3.3
K/Rb 427.0 359.6 334.4 354.4 346.4 354.4 518.8 264.0
Rb/Sr 0.04 0.25 0.25 0.21 0.24 0.31 0.01 0.41
Rb/Ba 0.03 0.05 0.06 0.05 0.05 0.06 0.03 0.21
Y 0.1 21.6 26.7 21.4 21.4 20.2 19.0 10.6 24.6
La 0.1 8.9 27.1 18.2 25.8 21.0 24.0 1.9 11.8
Ce 0.1 22.6 54.2 36.7 48.4 41.9 46.0 4.2 26.0
Pr 0.02 3.32 6.69 4.32 5.67 4.79 5.14 0.67 3.46
Nd 0.3 15.7 24.4 17.6 21.5 17.3 19.3 3.5 15.2
Sm 0.05 3.98 4.67 3.57 3.75 3.46 3.35 1.17 3.59
Eu 0.02 1.09 0.93 0.71 0.81 0.75 0.68 0.45 0.81
Gd 0.05 4.21 4.21 3.36 3.23 3.20 3.07 1.58 3.71
Tb 0.01 0.68 0.71 0.56 0.53 0.52 0.50 0.28 0.66
Dy 0.05 4.09 4.13 3.41 3.30 3.27 2.98 1.82 3.95
Ho 0.02 0.79 0.87 0.69 0.67 0.64 0.61 0.38 0.78
Er 0.03 2.29 2.76 2.28 2.14 2.09 1.90 1.15 2.51
Tm 0.01 0.34 0.43 0.34 0.32 0.32 0.32 0.16 0.36
Yb 0.05 2.29 3.02 2.39 2.44 2.27 2.33 1.04 2.48
Lu 0.01 0.33 0.47 0.37 0.38 0.34 0.35 0.15 0.38
Eu/Eu* 0.81 0.64 0.63 0.71 0.69 0.65 1.01 0.68
LaN/YbN 2.62 6.05 5.13 7.13 6.24 6.94 1.23 3.21
LaN/SmN 1.41 3.65 3.21 4.33 3.82 4.51 1.02 2.07
ΣREE 70.6 134.6 94.5 118.9 101.9 110.5 18.5 75.7

Major- and minor elements in wt. %, trace elements in ppm (except for Au, which is in ppb)
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tion for the assumed granite age of 6 Ma (207Pb/206Pb = 
0.8361 ± 0.0836, i.e., with 10 % uncertainty; Stacey and 
Kramers 1975). It can be demonstrated that variation of 
the age of common Pb based on the Stacey–Kramers 
model by several Ma does not have a significant effect 
on the resulting zircon age calculated for the studied 
samples. Regression of data points for samples Ju311 
and Ju346 yielded statistically identical U–Pb ages of 6.3 
± 0.5 and 6.0 ± 0.4 Ma, respectively. However, analyses 
of zircons from sample Ju328 show variable presence of 
inherited component, possibly combined with variable 
content of common Pb that does not allow a reliable 
age calculation.

9.	Whole-rock geochemistry

9.1.	Major and trace elements

We have analyzed five samples from the felsic suite of the 
Guacimal Pluton (Tab. 4) and included three additional 
samples published previously by Cigolini and Chaves 
(1986). The mafic suite is represented by a single analysis 
(Ju348, Tab. 4) but additional major-element data were 
given by Alcorn (1981) with Cigolini and Chaves (1986) 
for four and three samples, respectively. Unfortunately, 
there is a dearth of high-precision trace-element analyses. 
Only Cigolini and Chaves (1986) have presented a hand-
ful of trace elements determined by XRF (Cr, Co, Ni, Cu, 
Zn, Rb, Sr, Y, Zr, Nb and Ba).

9.1.1.	Felsic suite

Despite some textural and modal variation, the felsic 
suite shows a remarkable geochemical homogeneity. 
Using CIPW normative proportions for plotting the QAP 
diagram (Streckeisen 1974) (Fig. 12a), these samples 
can be classified as transitional between monzogranites 
and granodiorites (SiO2 = 68.8–71.6 wt. %; analyses by 
Cigolini and Chaves 1986 reaching up to 75.4 wt. %). 
Such a conclusion is in line with the P–Q multicationic 
plot (Debon and Le Fort 1983; 1988; Fig. 12b), which, 
however, employs the obsolete term ‘adamellite’, now 
discredited by the IUGS. The ternary diagram Na2O – 
Al2O3 – K2O (mol. %, Fig. 12c) demonstrates that the 
contents of both alkalis are roughly balanced (K2O/Na2O 
= 0.96–1.21 in wt. %). 

The rocks are subaluminous as shown by the values 
of Shand’s alumina saturation index, A/CNK (molar 
Al2O3/(CaO + Na2O + K2O) uncorrected for apatite) of 
0.97–1.03 (Tab. 4; but analyses by Cigolini and Chaves 
1986 yield A/CNK values up to 1.13) as demonstrated 
also by the multicationic diagram B–A (Debon and Le 
Fort 1983; 1988) (Fig. 12d). Additionally, this plot can 

serve to express the contents of mafic components Fe, Mg 
and Ti (= B) and thus the characteristic mineral assem-
blage. Typical of the felsic suite are low B values, mostly 
fulfilling the definition of leucogranitoids (B < 50), and 
this, together with the A values oscillating around zero, 
points to essentially biotite-bearing assemblages, with, 
or without, some amphibole. The AFM and SiO2 vs. K2O 
diagrams (Figs. 12e–f) document that the felsic suite is 
clearly high-K calc-alkaline in character (3.4–4.0 wt. % 
K2O). 

The NMORB-normalized spiderplots (Sun and Mc-
Donough 1989) for the felsic suite are characterized by 
a strong enrichment in incompatible elements (RbN = 
150–167 × NMORB) over the more compatible ones (LuN 
= 0.75–1.03 × NMORB) (Fig. 13a). Superimposed are 
positive anomalies in Ba, U, K and Pb, as well as troughs 
in Nb, P and Ti, which are generally considered as typical 
of fractionated subduction-related magmas (Pearce and 
Peate 1995; Tatsumi and Eggins 1995). The total REE 
concentrations are rather high, 94.5–134.6 ppm, and 
the chondrite-normalized REE patterns (Boynton 1984) 
for felsic samples are all subparallel, featuring a strong 
LREE/HREE enrichment (LaN/YbN = 5.1–7.1; LaN/SmN 
= 3.2–4.5; Fig. 13b, Tab. 4), MREE depletion (DyN/YbN 
< 1, Fig. 14a) and deep negative Eu anomalies (Eu/Eu* 
= 0.63–0.71 where Eu* = √SmNGdN). The concentrations 


Fig. 12 Major-element based diagrams for magmatic rocks of the Guaci-
mal Pluton (for data sources, see the text). a – The QAP diagram (Strec-
keisen 1974). Instead of modal proportions, CIPW normative composi-
tions are plotted as follows: Q = Quartz (Qz), A = Alkali feldspar (Or), 
P = Plagioclase (Ab +An); b – Multicationic plot P–Q (Debon and Le 
Fort 1983, 1988) (P representing the proportion of K-feldspar to pla-
gioclase and Q the quartz content): gr = granite, ad = adamellite, gd 
= granodiorite, to = tonalite, sq = quartz syenite, mzq = quartz mon-
zonite, mzdq = quartz monzodiorite, dq = quartz diorite, s = syenite, 
mz = monzonite, mzgo = monzogabbro, go = gabbro; c – Ternary plot 
Na2O – Al2O3 – K2O (mol. %). Dashed lines define the following com-
positional fields: peraluminous + metaluminous, (Na2O + K2O)/Al2O3 
< 1; peralkaline, (Na2O + K2O)/Al2O3 > 1; perpotassic, K2O/Al2O3 > 
1 and K2O/Na2O > 1; potassic, 1 < K2O/Na2O < 3; and ultrapotassic, 
K2O/Na2O ≥ 3 in mol. % (or K2O/Na2O ≥ 2 in wt. %, which is equi-
valent to the definition of ultrapotassic igneous rocks by Foley et al. 
1987); d – Multicationic plot B–A (B being proportional to the amount 
of mafic minerals and A expressing the alumina saturation) (Debon and 
Le Fort 1983,1988); e – AFM diagram (A = Na2O + K2O, F = FeOt, M 
= MgO: Irvine and Baragar 1971) illustrating the calc-alkaline trend 
defined by the Guacimal Pluton analyses; f – SiO2–K2O plot (wt. %) 
with discrimination boundaries between the (low-K) tholeiitic, (medi-
um-K) calc-alkaline, high-K calc-alkaline, and shoshonitic rocks after 
Peccerillo and Taylor (1976). The colour fields denote the variation in 
other Neogene plutonic bodies of Costa Rica (in brackets are referen-
ces and number of analyses in the database): Talamanca Intrusive Su-
ite (Tournon 1984 – 1, Drummond et al. 1995 – 8, Gräfe 1998 – 41, 
Abratis 1998 – 13, Ulloa and Delgado 2010 – 15); Puerto Nuevo Gab-
bros (Henningsen 1966 – 2, Abratis 1998 – 2); Escazú monzonites–gab-
bros (Bergoeing 1982 – 2), Guayacan teschenite (Azambre and Tour-
non 1977 – 4), Desmonte monzogabbro (Tournon 1984 – 1) and Do-
minical gabbros (Gazel et al. 2009 – 2).
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of HREE and Y markedly decrease with increasing silica 
(e.g., Fig. 14b). 

The negative SiO2–Zr correlation (Fig. 14c) for felsic 
samples is taken as evidence that zircon saturation was 
reached early in the fractionation process (Hoskin et al. 
2000; Janoušek 2006). Therefore, the zircon saturation 
calculations (Watson and Harrison 1983) were employed 
to provide an upper constraint on the liquidus temperature 
of the granitic melt (due to possible inheritance). The 
obtained median value for the new analyses is 790.7 

± 24.8 °C (2σ); the temperatures calculated for data by 
Cigolini and Chaves (1986) range from 798 to 810 °C. 

9.1.2.	Mafic suite 

The mafic rocks are rather variable in composition (SiO2 
= 45.9–61.2 wt. %), but are all exclusively metaluminous 
(A/CNK = 0.71–0.95) and sodium-rich (K2O/Na2O = 
0.27–0.59 wt. %, Tab. 4, see also Fig. 12c–d). In the QAP 
and P–Q diagrams (Streckeisen 1974; Debon and Le Fort 
1983, 1988), sample Ju348 corresponds to quartz diorite 
(Fig. 12a–b). The literature data straddle the boundaries 
of the adjacent quartz monzodiorite/quartz monzogabbro 
and tonalite domains (P–Q plot) . However, not all mafic 
samples represent liquid compositions; at least some seem 
to contain a significant proportion of cumulus material 
rich in calcic plagioclase and biotite. For instance, the 
gabbro G12 is very basic and aluminous (SiO2 = 45.92 
wt. %, Al2O3 = 21.3 wt. %) and, indeed, this sample shows 
as much as 53.9 vol. % of plagioclase (Alcorn 1981). The 
degree of fractionation, expressed by mg# [molar 100 × 
MgO/(MgO + FeOt)], is also highly variable (35.5–66.0). 
The rocks are mostly normal-K calc-alkaline (K2O = 
0.9–1.8 wt. %), with exception of the sample G-5, which 
is more potassium-rich (K2O = 2.6 wt. %) (Fig. 12e–f). 

The NMORB-normalized pattern of the sample Ju348 
(Fig. 13a) shows features similar to the felsic suite. Still, it 
contains much lower concentrations of LILE (Rb, Ba, U, 
Th and K), and the troughs in Ti and P are shallower. On 
the other hand, the Nb anomaly is prominent, the LREE 
contents are significantly lower (LaN = 28.7 × NMORB) 
but the HREE abundances are similar to some members of 
the felsic suite (LuN = 0.73 × NMORB). As a consequence, 
the sample is rather REE poor (Σ REE = 70.6 ppm) and its 
chondrite-normalized REE pattern (Fig. 13b) is much flat-
ter, in particular in its LREE segment (LaN/YbN = 2.6; LaN/
SmN = 1.4). The negative Eu anomaly is still significant, 
but somewhat less conspicuous (Eu/Eu* = 0.81).

9.2.	Sr–Nd isotopes

Whole-rock isotopic ratios for three granites–granodiorites 
of the Guacimal Pluton are presented in Tab. 5 and plotted 
in Fig. 15. The Sr and Nd isotopic data are all remark-
ably uniform (87Sr/86Sr6 ~ 0.70388, ε6

Nd ~ +7.4 to +7.6) 
and primitive, thus documenting a short crustal residence 
of their source (two-stage Nd model ages after Liew and 
Hofmann (1988), TD

N
M
d , ranging between 0.196 and 0.213 

Ga). The Rb–Sr isotopic compositions would even form a 
crude linear array (errorchron) with slope corresponding 
to an age ~ 7 Ma. 
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10.  Discussion

10.1.  Crystallization conditions and age

The granitic rocks of the Guacimal pluton contain prima-
ry magmatic assemblage of quartz, plagioclase, K-feld-
spar, Mg-rich biotite, amphibole, magnetite, and titanite. 
The presence of quartz, magnetite and titanite indicates 
relatively high oxygen fugacity (Wones 1989). This is 
supported by estimates of oxygen fugacity (Ridolfi et 
al. 2010), which fall in the interval of 1.6–2.1 log units 
above the NNO buffer. Together with the geochemical 
evidence for plagioclase and biotite accumulation in more 
mafic samples, these calculations indicate that the felsic 
members of the pluton were emplaced at shallow depth 
of ~3 km at a relatively high fO2, whereas the mafic rocks 
could represent deeper (~ 15 km) cumulates.

The intrusive rocks contain ubiquitous secondary 
minerals, which are mostly present in interstitial space 
in the rock matrix or as fillings of miarolitic cavities. 
They include quartz II, K-feldspar II (adularia), epidote, 
chlorite (clinochlore), amphibole II (actinolite), ilmenite 
II and titanite II. The secondary titanite is extremely rich 
in Al2O3 (5.19–11.26 wt. %) and F (1.46–3.93 wt. %). 
The heterovalent substitution of titanium by aluminium 
was first recognized by Sahama (1946): Al3+ + (OH, F)– 

= Ti4+ + O2–. Following Franz and Spear (1984) such a 

mechanism is favoured either by high pressure or low 
temperature, in addition to high fluorine activity. 

New LA ICP-MS dating of zircons from two granite 
samples of the Guacimal Pluton yielded statistically 
identical U–Pb ages of 6.3 ± 0.5 and 6.0 ± 0.4 Ma. This 
broadly agrees with the K–Ar age on a monzonite (bio-
tite: 3.9 ± 1.0 Ma, alkali feldspar: 5.0 ± 0.2 Ma; Schulz et 
al. 1987) and a quartz diorite (whole rock: 7.2 ± 1.4 Ma; 
Alvarado et al. 1992). The Guacimal Pluton thus ranks 
to the youngest Neogene plutonic rocks in Costa Rica, 
being comparable in age to the Escazú Pluton (6.3–2.2 
Ma), the youngest plutonic member of the Talamanca 
Igneous Suite (7.8–3.89 Ma), the Guacayán Intrusion (4.5 
Ma) and the Desmonte monzogabbro (2.1 Ma) (all K–Ar 
data – Bellon and Tournon 1978; Patino 2007).

10.2.  Whole-rock geochemistry

The major-element whole-rock composition of the Gua-
cimal Pluton closely resembles the other Costa Rican 
Neogene plutonic rocks, especially the Talamanca Intru-
sive Suite (Fig 12). This argues for comparable sources 
and processes involved in generation of granitic magmas 
along the whole (now extinct) arc. However, some intru-
sive rocks from the back arc (Guayacán teschenite) are 
alkaline and clearly had different genesis associated to 
their likely OIB source (Gazel 2003). 
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Tab 5 Sr–Nd isotopic data 

Sample Rb 
(ppm)

Sr 
(ppm)

87Rb/86Sr 87Sr/86Sr 2 se (m) 87Sr/86Sr6
* Sm 

(ppm)
Nd 

(ppm)
147Sm/144Nd 143Nd/144Nd 2 se (m) 143Nd/144Nd6

* ε6
Nd

* TD
N

M
d 

JU311 88.2 367.7 0.69400 0.703937 0.000012 0.703878 3.46 17.3 0.12093 0.513025 0.000011 0.513020 7.6 0.195
JU328 85.4 348.4 0.70920 0.703942 0.000014 0.703882 3.57 17.6 0.12264 0.513013 0.000008 0.513008 7.4 0.213
JU346 93.7 307.0 0.88306 0.703958 0.000011 0.703883 3.35 19.3 0.10495 0.513021 0.000010 0.513017 7.5 0.200

*	Subscripts indicate age to which were isotopic ratios corrected; 
epsilon values calculated using Bulk Earth parameters given by Jacobsen and Wasserburg (1980); 
TD

N
M
d  are two-stage Nd model ages based on Liew and Hofmann (1988)
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The trace-element compositions of the Guacimal in-
trusive suite are well within the range of the Talamanca 
Intrusive Suite (Fig 13), the former only show more 
pronounced Eu anomalies. Vogel et al. (2004) pointed 
out that the trace-element distribution in the Costa Rican 
silicic ignimbrites resembles that in the plutonic rocks 
(granites and granodiorites of the Talamanca Intrusive 

Suite; Drummond et al. 1995; Abratis 1998). Moreover, 
it is close to the composition of the average upper conti-
nental crust, a conclusion valid for the Guacimal samples 
as well.

The rocks of the felsic Guacimal suite show only mod-
erate negative Eu anomalies accompanied by a marked 
depletion in MREE (e.g., low DyN/YbN = 0.83–0.94), cor-
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responding to the low-temperature, hydrous and oxidized 
suite of high-SiO2 rhyolites as defined by Bachmann 
and Bergantz (2008). This is in agreement with rather 
low estimated temperatures of magmatic crystallization 
(c. 760–800 °C). The observed MREE depletion is in line 
with an important role of amphibole and/or titanite either 
in the residue after melting, or, more likely, in the frac-
tionating assemblage (Gromet and Silver 1983; Tiepolo 
et al. 2002, 2007; Davidson et al. 2007). 

10.3.  Sr–Nd isotopes

As shown in Fig. 15, the Sr–Nd isotopic signatures for 
the Guacimal granites–granodiorites form a rather tight 
cluster slightly off to the right of the Mantle Array. 
When compared with the subduction-related Costa Rican 
volcanic rocks, they fall into the most primitive (low 
87Sr/86Sr, high 143Nd/144Nd) corner of the field occupied 
by the analyses from the extinct Cordillera de Talamanca 
volcanic front; they also coincide with the top (most 
radiogenic Nd) part of the nearly vertical isotopic data 
array for the recent volcanic arc, including most of the 
silicic ignimbrites (see “trend 1” in fig. 23.8 of Vogel et 
al. 2007). On the other hand, they definitely have less 
radiogenic Nd and more radiogenic Sr than the current 
behind-volcanic front (BVF) volcanics of the same arc. 
The Sr–Nd isotopic compositions of the Guacimal Pluton, 
however, compare particularly well with the previously 
determined data (87Sr/86Sr6 = 0.70380–0.70413, ε6

Nd ~ +7.3 
to +7.9) from Neogene intermediate–acid calc-alkaline 
plutonic rocks from Costa Rica (tonalite to alkali granite 
samples CHI 116, INA 85, TAL 79 and 19 of Abratis 
1998 and Gräfe 1998). 

10.4.  Magma source and evolution 

In the Guacimal Pluton, the homogeneous Sr–Nd isotopic 
compositions exclude open-system processes such as con-
tamination by evolved continental crust or magma mixing 
between primitive, mantle-derived melts and magmas 
generated by anatexis of isotopically contrasting conti-
nental crust (see also Vogel et al. 2004). The available 
data for the extinct arc in Cordillera de Talamanca (seven 
diorites of Gräfe 1998, tholeiitic gabbro INA-84 and calc-
alkaline monzodiorite ALT 95 from Abratis 1998) span 
identical range as the Guacimal suite does in both Nd (ε6

Nd 
~ +7.2 to +8.0) and Sr (87Sr/86Sr6 = 0.70381–0.70389), 
and this appears to support the origin by differentiation 
in a closed system. 

The observed slight shift to the more radiogenic Sr 
(right from the Mantle Array) in intrusive rocks, includ-
ing the Guacimal Pluton, probably reflects a role of 
hydrous, subduction-related fluids that tend to be rather 
Sr-rich but Nd-poor (Feigenson and Carr 1986). As dis-

cussed by Janoušek et al. (2010), subducted metabasic 
rocks of the Cocos Plate should have significantly el-
evated Sr isotopic ratios due to the seawater alteration, 
and this is indeed shown by the analyses of the Galápa-
gos-influenced ocean-floor lavas (Sadofsky et al. 2009) 
(Fig.  15). Such an effect is even more clearly seen in 
the recent Nicaraguan volcanic-front lavas, which are, 
in particular in the NW Nicaragua, thought to have been 
derived from a strongly depleted mantle wedge (Carr 
et al. 2007 and references therein; Hoernle et al. 2008; 
Sadofsky et al. 2009).

As there are only very limited reliable data for the 
mafic rocks, we shall exclusively focus on the felsic 
suite. Its rather homogeneous, radiogenic Nd and fairly 
unradiogenic Sr isotopic signatures require: (1) partial 
melting of young, immature metaigneous crust (including 
a subrecent basic magma underplate, which is believed 
to form near the Moho level of long-lived igneous arcs 
– Atherton and Petford 1993), or (2) direct fractionation 
from fairly depleted mantle-derived magmas (see also 
Vogel et al. 2004, 2006). 

The presence of marked negative Eu anomalies in the 
Guacimal granitic rocks would be compatible with an 
anatexis of a feldspar-rich source, leaving much of this 
mineral in the residue. The CaO/Na2O ratios in anatectic 
magmas are controlled mostly by the protolith’s plagio-
clase/clay ratio (Sylvester 1998; Jung and Pfänder 2007). 
The felsic suite is characterized by high CaO/Na2O ratios 
(0.62–0.76; Tab. 4), pointing to mainly a plagioclase-rich, 
and thus not metapelitic, source. Such a conclusion is in 
line with the subaluminous nature, as well as low Rb/Sr 
and Rb/Ba ratios of the Guacimal granites (Harris and 
Inger 1992; Tab. 4). In addition, in the binary plot Al2O3 
+ FeOt + MgO + TiO2 vs. Al2O3/(FeOt + MgO + TiO2) of 
Jung et al. (2009) the felsic Guacimal samples fall clearly 
into a domain occupied by experimental melts of interme-
diate metaigneous or metapsammitic parentage (Fig. 16). 

Roberts and Clemens (1993) as well Sisson et al. 
(2005) concluded, based on experimental data, that the 
high-K calc-alkaline granitic magmas – such as those 
in Guacimal Pluton – may be derived exclusively by 
intracrustal partial melting of hydrous, calc-alkaline to 
high-K calc-alkaline, mafic to intermediate metaigneous 
rocks. The modal composition of the Guacimal granitic 
rocks rules out partial melting of common K-poor me-
tabasites as it should lead to tonalitic–trondhjemitic and 
not granodioritic–granitic melts (e.g., Wolf and Wyllie 
1994; Rapp and Watson 1995; Johannes and Holtz 1996). 
On the same basis can be effectively discounted the 
model of Atherton and Petford (1993) invoking remelt-
ing of the deep crustal metabasic underplate. Moreover, 
the magmas parental to the Guacimal granitoids were 
apparently too cold to have formed by dehydration melt-
ing of amphibole at reasonable depths (e.g., Miller et al. 
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2003). If true, the partial melting model would require a 
K-rich, rather young, intermediate metaigneous source, 
that is volcanics, volcaniclastics or immature graywackes, 
rich in the arc-derived volcanogenic detritus. All such 
lithologies would be characterized by primitive Sr–Nd 
isotopic composition and time-integrated low Rb/Sr and 
high Sm/Nd ratios. 

The hypothesis involving closed-system fractionation 
from primary, mantle-derived magmas, however, re-
mains to be tested. Were all rock types in the Guacimal 
Pluton a part of a single ‘line of descent’ from primary, 
mantle-derived magmas, one would expect to encounter 

large volumes of mafic cumulates and increasingly less 
abundant products of the magma differentiation. In real-
ity, the distribution is close to bimodal, with the bulk of 
the intrusion being built by the felsic types. The mafic 
rocks are rather rare, forming only infrequent, small 
discrete bodies. Moreover, there is conspicuous discon-
tinuity in the geochemical trends (e.g., the SiO2 – K2O 
plot, Fig. 12f or the REE patterns, Fig. 13b). This rea-
soning is valid only for conventional models of crystal 
fractionation, whereby the individual crystals or their 
clusters separate from prevailing melt, though. Based 
on Bachmann and Bergantz (2004), Vogel et al. (2004, 
2006, 2007) proposed an alternative scenario for genesis 
of the silicic ignimbrites in Costa Rica. In their view, 
the parental silicic magmas represent limited amounts 
of fractionated liquid squeezed out from lower crustal 
crystal mush (containing ~ 50–60 % of crystals accord-
ing to Bachmann and Bergantz 2008), mainly amphibole 
and plagioclase, along with lesser amounts of pyroxene 
(Vogel et al. 2007). 

In order to test the prospective role of fractional crys-
tallization in genesis of the felsic suite, constrained least-
squares method (Albarède 1995) has been applied to the 
major-element analyses using an unpublished R language 
routine written for the GCDkit (Janoušek et al. 2006). The 
input data were the composition of the most primitive 
(parental) melt (the least siliceous sample Ju98), that of 
the presumed residual magma (the most SiO2-rich sample 
Ju346) and those of the likely crystallizing mineral phas-
es. The model took into account SiO2, Al2O3, FeOt, MnO, 
MgO, CaO, Na2O and K2O. The calculation suggests that 
the compositional spectrum of the felsic suite can be re-
produced by limited fractionation (~15 %) of 54.9 % Pl, 
22.4 % Kfs, 9.2 % Hbl, 8.1 % Bt and 5.4 % Mgt (Tab. 6). 
The fit is good, as indicated by the low value of the sum 
of squared residuals (R2 = 0.23). Moreover, the calculated 
cumulate composition falls within the compositional 
range known from the mafic suite. 
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Tab 6 Least-squares modelling of fractional crystallization

15.1% fractional crystallization of (wt. %)
Parent 54.9% 22.4% 9.2% 8.1% 5.4% Daughter
Ju98 Pl Kfs Hbl Bt Mgt Ju346 Calculated Difference Cumulate

SiO2 68.83 60.46 63.42 41.12 38.25 0.01 71.55 71.41 0.14 54.30
TiO2 0.43 0.00 0.00 2.30 4.16 0.31 0.29 0.41 -0.12 0.57
Al2O3 14.91 24.01 18.79 12.22 12.80 0.13 14.15 14.09 0.06 19.56
FeOt 2.72 0.38 0.13 11.69 12.30 94.25 2.03 1.89 0.14 7.37
MnO 0.11 0.00 0.00 0.18 0.12 0.11 0.10 0.12 -0.02 0.03
MgO 0.77 0.00 0.00 14.33 17.64 0.00 0.64 0.42 0.22 2.75
CaO 2.44 5.98 0.09 11.55 0.00 0.04 2.21 2.10 0.11 4.37
Na2O 3.56 8.12 1.98 2.51 0.51 0.02 3.55 3.27 0.28 5.17
K2O 3.86 0.64 13.19 0.46 9.28 0.00 4.00 3.82 0.18 4.10

R2 = 0.230
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11.  Conclusions 

The Guacimal Pluton forms an oval-shaped body (~15 
by 4–6 km), strongly elongated in the NW–SE direction. 
By its exposed surface of 60–70 km2 it represents the 
largest plutonic mass in the NW Costa Rica. The pluton 
intruded the Aguacate Group and is surrounded by a 
wide metasomatic aureole of calc-silicate rocks, derived 
from mafic volcanics. The pluton is formed by a felsic 
(granite–granodiorite) and a mafic suite (mainly quartz 
diorite to quartz monzodiorite/monzogabbro); the former 
strongly prevails. 

The new LA ICP-MS zircon dating from granites 
yielded statistically identical U–Pb ages of 6.3 ± 0.5 and 
6.0 ± 0.4 Ma. The late Miocene Guacimal granites thus 
belong to one of the youngest Neogene intrusions in 
Costa Rica, together with the Escazú Pluton, the youngest 
plutonic members of the Talamanca Igneous Suite and 
the Guacayán Intrusion.

Based on amphibole geobarometry, the emplacement 
depth of the Guacimal Pluton was approximately 3 km. 
Such a shallow solidification level is also supported by 
the occurrence of micrographic structures and abundant 
miarolitic cavities. The near solidus crystallization tem-
peratures of c. 760–800 °C were estimated by plagio-
clase–amphibole and zircon saturation thermometers. The 
presence of the assemblage quartz, magnetite, titanite, 
and Mg-rich amphibole indicates a relatively high oxygen 
fugacity, 1.6–2.1 log units above the NNO buffer. During 
solidification, high Al and F contents in titanite and the 
presence of epidote and chlorite in miarolitic cavities doc-
ument increasing activity of volatiles (fluorine and water). 

The Sr–Nd isotopic signatures of the Guacimal mon-
zogranites and granodiorites are primitive and show 
only very limited variation, which precludes for open-
system processes such as magma mixing or assimilation 
of isotopically contrasting upper continental crust. The 
conventional extensive fractionation of depleted-mantle 
derived magmas is considered unlikely, as it would 
produce only relatively small volume of felsic magmas 
and large amounts of cumulates, for presence of which 
any evidence is lacking. Instead the Sr–Nd isotopic data, 
together with the rest of the whole-rock geochemical 
signature, indicate either crystallization from a highly 
fractionated melt separated from a plagioclase–amphi-
bole-dominated crystal mush in a putative deep crustal 
reservoir, or partial melting of older arc-related rocks (see 
the characteristic LILE/HFSE enrichments as well as the 
slight shift to more radiogenic 87Sr/86Sr ratios caused by 
slab-derived fluids). If true, the latter scenario would re-
quire a source with relatively unradiogenic Sr, radiogenic 
Nd, low time-integrated Rb/Sr and comparably high Sm/
Nd ratios and thus could have encompassed intermediate 
lavas or volcaniclastics or immature psammitic sedi-

ments, such as graywackes rich in volcanogenic detritus. 
Limited variation observed in the felsic suite was most 
likely produced by low degrees (~15 %) of closed-system 
fractional crystallization of an assemblage dominated by 
feldspars (c. 55 % plagioclase, 23 % K-feldspar, 9  % 
amphibole, 8 % biotite and 5 % magnetite). At least 
some of the rocks of the volumetrically subordinate mafic 
suite may represent lithologies rich in the complementary 
cumulates.
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