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The Tseel Terrane in SW Mongolia contains abundant Devonian and Permian granitoid intrusions that formed during
the evolution of the Central Asian Orogenic Belt (CAOB). The newly obtained SHRIMP zircon ages for three granitoid
intrusions in the central part of the Tseel are all Permian, 281.3+1.1 Ma, 279.1+0.8 Ma and 278.0+1.6 Ma (25). On
the La/Gd vs. La diagram the granitoids are classified into two groups, whereby Group 1 has higher La concentrations
and La/Gd ratios than Group 2. Although the number of dated samples is limited, Devonian and Permian ages are
assumed for the Group 1 and 2, respectively. Group 1 shows enrichment in Large lon Lithophile Elements, as well as
negative anomalies for High Field Strength Elements such as Nb, Hf, and Zr in Primitive mantle-normalized spiderplots.
This may indicate a contribution of slab-derived fluids to melting or anatexis of upper continental crust. The Group 2
is poorer in Ba, Eu, Sr, Ti and LREE indicating fractionation of feldspar, + Bt with Mnz and opaque mineral(s). These
findings, combined with the results of previous petrological and chronological studies, suggest that the Devonian grani-
toids were generated by relatively deep melting, within garnet stability field; they were emplaced at mid-crustal levels,
during regional high-T and low-P metamorphism. On the other hand, the Permian intrusions solidified from a highly
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fractionated melt, probably in a relatively shallow crust.
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1. Introduction

The Central Asian Orogenic Belt (CAOB) is one of the
largest orogens worldwide, and extends from the Urals
in the west through Kazakhstan, Mongolia, southern
Siberia, northern China to the Okhotsk Sea in the east
(Fig. 1a). The CAOB contains several high-temperature
metamorphic zones associated with the intrusion of gran-
itoids (Kozakov et al. 2002; Wei et al. 2007; Windley et
al. 2007; Burenjargal et al. 2014; Broussolle et al. 2015).
The geochemical characteristics are of special importance
for constraining the tectonic setting of these intrusions and
their relations to the high-T/low-P metamorphism that oc-
curred during the evolution of the CAOB.

The immense region of Mongolia makes up much of
the CAOB (Fig. 1a) and is subdivided into the northern
and southern domains separated by the Main Mongo-
lian Lineament (MML; Fig. 1b). The northern domain
contains many granitic plutons of various ages and
compositions, occurring in association with Precambrian
and Lower Paleozoic metamorphic rocks (Badarch et al.
2002). The southern one is composed of middle to Late

Paleozoic arc-related assemblages (Zonenshain et al.
1975; Badarch et al. 2002) and fragments of ophiolites
and serpentinite mélanges (Rippington et al. 2008).

The Tseel Terrane is located in SW Mongolia imme-
diately south of the MML (Fig. 1b), and it extends east—
west for more than 600 km. The Tseel Terrane is a high-T
and low-P crustal segment of an early Paleozoic arc sys-
tem within the CAOB (Kozakov et al. 2002; Burenjargal
et al. 2012, 2014; Jiang et al. 2012; Fig. 1). Burenjargal et
al. (2014) proposed that two metamorphic events oc-
curred in the Tseel Terrane: the Silurian (450-400 Ma)
high-P/low-T metamorphism, and the Devonian (377 =
30 Ma) low-P and high-T metamorphism. The later event
suggests elevated geotherms during the Devonian caused
by the ongoing intrusion of granitoid bodies and/or by
radioactive heat production subsequent to the granitoid
intrusions (Burenjargal et al. 2014). Previous studies have
examined the petrology of metamorphic rocks and geo-
chronology of few granitoids in the Tseel area, whereas
geochemical studies of the granitoids are lacking.

In this contribution, we investigate the age and geo-
chemistry of granitoids in the Tseel area in order to un-

WWW.jgeosci.org



Ulziiburen Burenjargal, Atsushi Okamoto, Noriyoshi Tsuchiya, Masaoki Uno, Kenji Horie, Tomokazu Hokada

300 km

I
050 0 u

\

West Siberian Ulaanbaatar y
7

Basin

44°

MML — Main Mongolian Lineament

Tibet Plateau
L
90°E

[] Sedimentary cover
B Granitoids
Metapelites

Il Amphibolites
Faults

[—] Foliation

Fig. 1a — Main tectonic components of the Central Asian Orogenic Belt (CAOB). Blue areas indicate Archean to Mesoproterozoic cratons (modified
after Jahn et al. 2000). b — Tectonostratigraphic map of southern Mongolia: 1 — Tseel Terrane, 2 — Gobi-Altai Terrane, 3 — Mandalovoo Terrane, 4 —
Gurvansaikhan Terrane, 5 — Edren Terrane (Badarch et al. 2002). MML, Main Mongolian Lineament. ¢ — Geological map of the Tseel area showing
the locations of granitoid samples analyzed in this study. Mineral zones are after Burenjargal et al. (2014): Grt = garnet zone, St = staurolite zone,
Sil = sillimanite zone, and Crd = cordierite zone.

Mineral zone o
pelitic gneisses (PI, + Qtz)

Grt Grt zone (Grt + Bt)

St St zone (Grt + Sil + St + Bt)
Sil Sil zone (Grt + Sil + Bt)

Crd Crd zone (Grt + Sil + Crd + Bt)

o Sample localities of granitoids
¢ Aluminosilicate-bearing quartz veins

derstand their nature and the tectonic setting of the Tseel
Terrane. We present differences in geochemical charac-
teristics between Devonian and Permian granitoids, and
discuss their relation to the metamorphic development
of the Tseel area.

2. Geological setting

The CAOB extends from the Urals to the Pacific Ocean
and from the Siberian and East European (Baltica)
cratons to the North China (Sino—Korean) and Tarim
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cratons (Sengor et al. 1993; Jahn et al. 2000; Windley et
al. 2007). The CAOB was formed through the accretion
of island arcs, ophiolites, oceanic islands, seamounts, ac-
cretionary wedges, and microcontinents at a convergent
margin (e.g. Khain et al. 2002; Windley et al. 2007). The
Tseel Terrane in SW Mongolia is characterized by high-
T metamorphism and abundance of granitoid intrusions
(Kozakov et al. 2002; Burenjargal et al. 2012, 2014).

The Tseel area, which lies in the eastern block of the
Tseel Terrane (Fig. 1b), is composed mainly of pelitic
gneisses and amphibolites intruded by numerous granit-
oids (Figs 1c and 2). The rocks in this area mainly have
an E-W striking foliation that locally curves around
granitoid bodies (Fig. 1c).

Four mineral zones have been identified in the Tseel
area based on index minerals in the metapelites: garnet,
staurolite, sillimanite, and cordierite (Fig. 1¢; Burenjargal
et al. 2014). The distribution of mineral zones is sym-
metrical about an E-W trending axis, with the high-grade
sillimanite assemblages occurring along a central strip,
and the grade decreasing to a sillimanite-absent biotite
+ garnet assemblage to the north and south (Fig. 1c).
Petrological analyses of the pelitic gneisses in the Tseel
area have revealed two metamorphic events: an earlier
high-P and low-T metamorphism (kyanite stability field)
and a later low-P and high-T metamorphism (sillimanite
stability field) (Burenjargal et al. 2012, 2014). The former
event is mainly recorded in the garnet zone, and the latter
in the sillimanite and cordierite zones. The garnet in the
staurolite zone preserves imprint of both metamorphic
stages (Burenjargal et al. 2012, 2014). Granitoids are
common in the sillimanite and cordierite zones, but rare
in the garnet zone (Fig. 1c; fig. 14 of Burenjargal et al.
2014). The sillimanite and staurolite zones of the Tseel
area are cut by aluminosilicate-bearing quartz veins (Bu-
renjargal et al. 2012, 2014). These veins contain all three
aluminosilicate polymorphs, which formed in the order of
Ky — Sil — And (Burenjargal et al. 2012, 2014).

@)

Granitoid massif

3. Analytical techniques

3.1. Whole-rock geochemistry

Major and trace elements were determined by ICP-AES
and ICP-MS at the Graduate School of Environmental
Studies, Tohoku University, Japan. Half a gram of
each finely ground sample was treated with 10 ml of
perchloric acid (HCIO,) and nitric acid (HNO,) (1:1
mixture), followed by a double treatment with 15 ml
of HCIO, + hydrofluoric acid (HF) (1:2 mixture) in a
polytetrafluoroethylene (PTFE) beaker on a hot plate.
The residue was heated with 5 ml of HNO, and dis-
solved by the addition of 30-50 ml of H,O with gentle
boiling and finally made up to 100 ml. The final solu-
tions were stored in plastic bottles until measurement.
After a 10-100x dilution, the acid digests were analyzed
by ICP-MS for trace elements. Indium was used as an
internal standard (‘YYamasaki 1996, 2000). The working
standards were prepared from a series of SPEX Multi-
Element Plasma Standards (XSTC-1, XSTC-7, XSTC-8,
and XSTC-13) supplied by SPEX Industries (New
Jersey, USA). A quadrupole type ICP-MS, (HP-4500,
Hewlett Packard, now Agilent Technologies, Palo Alto,
CA, USA) was used for analyzing most of the trace ele-
ments (>0.1 mg kg sample).

3.2. Zircon dating

The U-Pb dating of the samples was carried out using
a SHRIMP Il at the National Institute of Polar Research
(NIPR), Japan. Zircon grains for SHRIMP analyses were
separated from rock samples (about 500 g) using standard
crushing, grinding, sieving, and heavy-liquid and mag-
netic separation techniques, followed by hand picking
under a binocular microscope. We carried out magnetic
separation twice with ferrite magnet and neodymium

(b)
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Pelitic gneisses 20 cm
I

Fig. 2 Field photographs of the rocks in the Tseel area. a — Granitoid intrusion at Tseel town and its contact with amphibolite. b — Granite interla-
yered with pelitic gneisses (AbQ — aluminosilicate-bearing quartz vein).
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magnet, respectively. Zircon grains isolated from each
sample were mounted together with standards in an epoxy
resin disc. After curing, the discs were polished to reveal
the internal parts of the mounted grains. To investigate
the internal structures of individual zircon crystals,
backscattered electron (BSE) and cathodoluminescence
(CL) images were obtained using a JEOL JSM-5900LV
scanning electron microscope (SEM) housed at the NIPR.
These images were then used as guides in choosing sites
for analysis. Prior to analysis, the surfaces of each grain
mount were washed with 2% HCI to remove any lead
contamination (Amelin et al. 2003) and then coated with
a thin (~100 A) layer of gold. During analysis of zircon in
polished grain mount, an O* primary ion beam was used
to sputter analytical spots of ~20 um in diameter. The
procedures for Pb and U isotopic analyses of zircon fol-
lowed closely those outlined in Compston et al. (1984),
Williams (1998), and Horie et al. (2006). In this study,
TEMORAZ2 (?°Pb/?®U age = 416.8 Ma; Black et al. 2004)
and SL13 (U concentration 238 ppm; Claoué-Long et al.
1995) were used as calibration standard materials for the
U-Pb analyses and concentration standard for U analysis,

Fig. 4a — Total alkali-silica diagram (TAS) for the studied granitoids,
Middlemost (1994). b — A/CNK vs. A/NK plot (Maniar and Piccoli
1989). ¢ — AFM diagram. The boundary between the tholeiitic and
calc-alkaline series is after Irvine and Baragar (1971).

respectively. The U-Pb data were reduced in a manner
similar to that described by Williams (1998), using the
SQUID2 add-in for Microsoft Excel (Ludwig 2009).
Common Pb was corrected on the basis of the measured
204pp content and the two-stage model of terrestrial
Pb isotope evolution proposed by Stacey and Kramers
(1975). Therefore, the individual SHRIMP U-Pb ages
presented in this study are all calculated after this initial
correction for common Pb, and the final pooled ages
were then calculated using Isoplot/Ex software (Ludwig
2008). The analytical uncertainty for individual SHRIMP
analyses is reported at the lo level, and errors on final
pooled ages are quoted at the 2c level.

4. Results

4.1. Petrology

In the Tseel area, granitoids intruded to pelitic gneisses
and amphibolites. The granitoids are even grained, and
occur as large, kilometer-scale massive bodies or as lay-
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ers up to several meters thick (Fig. 2a—b). Their main
constituents are (in vol. %): quartz (20—40), plagioclase
(22-42), K-feldspar (10-18), biotite (4—14), minor
garnet, amphibole and muscovite with accessory mag-
netite, zircon, apatite and monazite. Plagioclase forms
subhedral crystals 0.6—0.8 mm across. K-feldspar occurs
as anhedral grains, 0.5-1 mm in size, associated with
quartz, plagioclase, biotite and muscovite. Biotite flakes
are large, 0.3—-0.5 mm in size. Garnet occurs as rare and
small crystals up to 0.3 mm across.

4.2. Whole-rock geochemistry

Eleven granitoid samples were selected for major- and
trace-element analyses. The localities of the analyzed
samples in the Tseel area are shown in Fig. 1c.

4.2.1. Major elements

The SiO, contents of the granitoids range from 69.82 to
75.73 wt. % (Tab. 1; Fig. 3). Harker diagrams reveal neg-
ative correlations between SiO, and Al,O,, Fe,O.t, MgO,
Ca0, MnO, TiO,, and K,O (Fig. 3). The Na,O content
is largely constant regardless the SiO, value; the K,O/
Na,O ratio (by weight) shows a wide range from 0.16 to
3.40 (Tab. 1). The Mg number [molar 100xMgO/(MgO
+ FeO, )] ranges from 23.2 to 59.0 (Tab. 1). The total
alkali-silica (TAS; Middlemost 1994) diagram indicates
that all the granitoid samples are subalkaline granites
(Fig. 4a). Except for sample M2605, which shows higher
AlQ, and lower K,O contents (Tab. 1), the granitoid
samples yield Shand’s index {A/CNK, [molar ALO,/(CaO
+Na,0 + K,0)]} values of 0.93-1.22, and A/NK [molar
ALO./(Na,O + K,0)] values of 1.21-1.52 (Fig. 4b). The
felsic granitoids are poor in ferromagnesian elements and
rich in alkalis in the AFM diagram, and thus cannot be
used to decipher their calc-alkaline vs. tholeiitic character
(Irvine and Baragar 1971) (Fig. 4c).

4.2.2. Trace elements

On the Y + Nb vs. Rb tectonic discriminant diagram
(Pearce et al. 1984), almost all the granitoid samples
plot in the volcanic-arc granite field (Fig. 5a), except for
sample G1103 that falls in the within-plate granite field.

On the La vs La/Gd diagram (Fig. 5b), the granitoid
samples form two clusters: Group 1 is characterized by
higher La and La/Gd compared to Group 2.

The Y contents of the granitoid samples are less than
25 ppm (Fig. 5¢) and the Sr content ranges from 64 to
531 ppm (Tab. 2). For Group 1 samples, the Sr/Y ratio
broadly increases with decreasing Y contents (Fig. 5c),
which results in a shift from the field for normal volcanic-

Tab. 1 Whole-rock major-element (wt. %) data for granites from the Tseel area

G0807
N45° 36' 4.8"

G0709

G0903
N45° 33' 25.5" N45° 33' 32.9"

S0805 G1101
N45° 35' 1.8"
E95° 52' 3.6"

N45° 29' 47.3"

G1103
N45° 36' 36"
E95° 31'1.3"

G1102 M2505 M2701 S0806
N45° 23'5.3" N45° 33' 47.5"

N45° 34' 28.4" N45° 30' 28.7"

M2605
N45° 34' 0.7"

Sample

Latitude

E95° 47' 51.7"

E95° 40' 8.5"

E95° 29' 19.1"

E95° 40' 31.3"

E95°19'13"  E95°32'5.1" E95°14'45.6" E95°56'31.3" E95°39'51"

Longitude
Sio,

TiO,
ALO,
Fe,0,
MgO
MnO
CaO

71.37

73.37

75.37
0.11
13.18
1.02
0.19
0.02
1.37
3.83
381
0.07
0.02
99.00
1.00
26.8

72.00

70.59

69.82

74.08

74.66 71.04 73.97 74.75

0.09
15.50

0.13
13.51

0.12
14.27

0.19
14.78

0.43
14.54

0.34
14.80

0.07
13.85

0.23
13.80
1.82
0.46
0.06
0.47
3.64
4.18
0.12
0.12
99.64
1.15
334

0.18

13.22

0.34
15.16

1.23
0.19
0.03
1.88
2.09
7.09
0.12
0.12
97.76

1.12
0.24
0.04
1.27
3.53
4.75
0.08
0.09

98.87

1.69
0.38
0.18
1.35
3.71
5.27
0.08
0.45

100.08

2.27
0.69
0.02
2.05
3.48
4.71
0.16
0.11
99.05

2.29
0.67
0.07
2.30
3.92
4.12
0.16
0.16
98.65

0.56
0.15
0.06
0.59
3.64
4.74
0.10
0.10
97.94

1.05
0.17
0.02
1.14
3.27
5.13
0.06
0.47
98.68

2.28
0.81
0.05
2.55
3.74
3.52
0.14
0.09

99.72

1.11
0.81
0.02
242
3.24
0.51
0.13
0.06
98.54
0.16
59.0

Na,0
K,0

PZOS
Lol

Total

3.40
23.2

0.94 1.57 1.30 1.05 1.35 1.42 1.35
24.5 33.9 36.7 375 31.1 29.5

41.4

K,0/Na,0
Mg#

1.22
0.93

1.52 1.21 1.31 1.25 1.36 1.34 1.25 1.27 1.30
1.02 1.22 1.14 0.98 1.00 1.04 1.02 1.08

1.04

2.64

AINK

1.51

A/CNK
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arc rocks to the adakite field on the Y vs. St/Y diagram
(e.g., Defant et al. 1991). Most of the Group 2 samples
show lower Sr/Y ratios (< 10), only one has Sr/Y reach-
ing nearly 40.

The REE (Fig. 6a, c) and a broader selection of trace
elements (Fig. 6b, d) are presented in spider diagrams
normalized to Primitive mantle (Sun and McDonough
1989). Heavy rare-earth element (HREE) contents display
large variations within each group, whereas light rare-
earth element (LREE) patterns are rather homogeneous.
Group 1, however, shows higher La, and steeper LREE
gradients (Fig. 6a), in accord with its definition based on
elevated La and La/Gd values (Fig. 5b).

According to classification by Eby (1990) and Whalen
et al. (1987), the high Mg-number and low value of Zr +
Nb + Ce +Y (<200 ppm; Tab. 2) in the studied samples
indicates that they are not A-type granitoids, but S- or I-
type. It is difficult to determine the type of the analyzed
granitoids (S- or I types), because they plot at around the
boundary of metaluminous and peraluminous fields (Fig.

La/Gd

100

] ®)

T Group 1
M25@

10
¥ Group 2
: G070 0903
4 Gosor
1 ——— ——
1 10 100

La [ppm]

Fig. 5a — Y + Nb vs. Rb tectonic discriminant diagram (Pearce et
al. 1984). Syn-COLG = syn-collisional granite, WPG = within-plate
granite, ORG = ocean ridge granite, VAG = volcanic arc granite. b —
La vs. La/Gd diagram. ¢ — Y vs. St/Y diagram (Defant et al. 1991).

4b; e.g., Chappell and White 1974). However, absence of
inherited zircon in the analyzed samples, and high Na,O
contents (>3.2 wt. % except for G0807) may suggest that
these are I-type granites (e.g., Chappell and White 1974).

Group 1 granitoids are characterized by negative
anomalies in Nb, Hf, Zr and Ti, and no anomalies in
Ba, Sr and Eu (Fig. 6b). Group 2 granitoids have trace-
element characteristics similar to each other, except for
sample M2605 (Fig. 6d). Most of the Group 2 granitoids
show negative anomalies in Ba, Sr, Eu, Zr, Ti and LREE.
Sample M2605 has negative anomaly in Hf and positive
anomaly in Sr.

4.3. Zircon U-Pb dating of granitoids

Our previous work (Burenjargal et al. 2014) revealed
that sample M2505, which belongs to Group 1, yielded
a Devonian age (385+7 Ma). In this study, three Group
2 granitoid samples (G0709, G0903, and G0807) were
selected for SHRIMP U-Pb zircon age dating. These
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Tab. 2 Whole-rock trace-element (ppm) data from the Tseel area

Sample M2605 G1102 M2505 M2701 S0806 G1103 S0805 G1101 G0903 G0709 G0807
Rb 8.9 55.9 103 83.7 113 184 113 72.6 74.8 133 193
Ba 78.2 979 894 204 125 223 1166 724 271 242 243
Th 2.9 6.6 8.1 55 10.7 17.9 13.1 19.1 14.0 9.0 13.0
Nb 0.6 7.2 8.8 9.9 25.1 81.2 15.1 5.0 12.0 18.4 18.6
Sr 256 531 237 92.1 50.8 64.2 339 271 74.8 69.6 114
Hf 1.1 15 12 2.1 2.1 5.1 1.8 1.7 3.2 2.7 2.9
Zr 16.3 32.4 21.5 46.7 30.5 62.5 445 37.7 67.1 47.7 67.3
Y 6.2 8.0 5.2 11.2 8.2 9.8 15.0 21.0 8.9 10.0 24.7
La 8.9 22.1 25.2 9.2 9.9 11.4 29.0 38.4 10.5 9.2 9.4
Ce 18.6 445 46.0 23.6 21.8 26.7 67.3 74.3 22.3 20.4 23.6
Pr 2.2 4.5 4.3 2.8 2.6 34 6.7 8.0 2.6 24 2.7
Nd 8.7 15.8 13.8 11.3 9.1 12.3 23.7 27.0 10.5 9.4 11.0
Sm 2.1 2.6 2.0 2.8 2.4 4.5 4.1 5.2 2.9 2.5 3.1
Eu 0.9 0.8 0.6 0.4 0.3 0.4 0.8 0.9 0.5 0.4 0.6
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Granitoids

Fig. 7 Representative cathodolumine-
scence images of zircon grains from
the dated granites (samples G0709,
G0903, and G0807). Scale bar is 200
pum in all cases.

samples were collected from a granitoid body (G0903;
Fig. 1c) and from granitoid veins (G0709 and G0807)
which are concordant with pelitic gneiss (Fig. 2b) in the
sillimanite zone of the Tseel area (Fig. 1c).

Representative cathodoluminescence (CL) images
of zircons for dated samples are shown in Fig. 7. The
granite samples contain large (>100 um) euhedral zircon
grains. Zircon grains show oscillatory zoning, character-
ized by alternation of bright and dark zones. The most
zircon cores display bright CL, while the mantles and
rims are CL-dark.

The weighted mean age for granite G0709 (n = 20) is
281.3£1.1 Ma (20; MSWD = 1.3; Fig. 8a—b). The Th/U
ratios range from 0.30 to 0.58 (Tab. 3).

The weighted mean age for granite G0903 (n = 40)
is 279.1£0.8 Ma (MSWD = 1.3; Fig. 8c—d). The Th/U
ratios of zircon range from 0.16 to 0.72.

The weighted mean age for granite G0807 (n = 15)
is 278.0+ 1.6 Ma (MSWD = 0.95; Fig. 8e—f). The Th/U
ratios of zircons range from 0.09 to 0.78.

5. Discussion

5.1. Contrasting geochemical features of the
Devonian and Permian granitoids

The ages of granitoids in the Tseel Terrane range from
580 to 270 Ma (Bibikova et al. 1992; Kozakov et al.
2002; Demoux et al. 2009; Jiang et al. 2012; Buren-

&
Fig. 6 Chondrite-normalized REE plots (Boynton 1984) and trace-
-element spider diagrams normalized to Primitive mantle (Sun and
McDonough 1989) for a, b — Group 1 and ¢, d — Group 2 granitoids.

N
~--
~

1
1
1
[
]
1
1
1
.

jargal et al. 2014 and this work), with peaks in Middle
Devonian (400-380 Ma) and Permian (277-282 Ma).
However, it has been unclear so far how the geochemical
characteristics of the granitoids vary with age.

In this study, we analyzed the whole-rock composi-
tions of 11 granitoid samples from the Tseel area and
identified two groups (Fig. 5b) with contrasting trace-
element characteristics (Fig. 6). Although only four
samples were dated [one Devonian (Burenjargal et
al. 2014), and three Permian granitoids in this work],
the Devonian sample is classified into Group 1 and the
three Permian samples belong to the Group 2. There-
fore, it is possible that the Group 1 and 2 granitoids
formed in the Devonian and Permian, respectively.
The Y + Nb vs. Rb discrimination diagram (Fig. 5a)
indicates that for both the Devonian and Permian
granitoids the melts (or their sources) formed in a
volcanic-arc setting.

The Devonian granitoids (Group 1) show nega-
tive anomalies in HFSE such as Nb, Hf, and Zr (Fig.
6b), indicating a contribution by fluids derived from
a subducting slab (e.g., Pearce et al. 2005) or melting
of ordinary upper continental crust. The large range
in HREE concentrations among the samples can be
produced by the fractionation of garnet (e.g., Irving
and Frey 1978; Ma et al. 2015), indicating that melting
occurred at depths within the stability field of garnet.
As a consequence of relatively deep melting, several
analyses fall in the adakite field in a Sr/Y vs Y diagram
(Fig. 5¢) (Moyen 2009).

The geochemistry of the Permian granitoids (Group
2) is more evolved (see negative anomalies in Sr, Eu, Ba
and Ti as well as depletion in LREE) than that of Group
1, indicating fractionation of feldspars + biotite, monazite
and opaque phase(s).
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Fig. 8a, ¢, e — Tera—Wasserburg diagram of U-Pb zircon ages from granites G0709, G0903, and G0807. b, d, f — Comparison of all age data for
samples G0709 (n = 20), G0903 (n = 40), and GO807 (n = 15). The error ellipses in the concordia plots are 1c.
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tions in the Tseel Terrane are roughly
divided into two groups: high-P and
(Burenjargal et al. 2014). The high-P
and low-T conditions are 520-570°C
and 4.5-7 kbar, in the kyanite sta-
bility field. The low-P and high-T
conditions are 570-680 °C and 3-6
kbar, in the sillimanite stability field
(Fig. 9; Burenjargal et al. 2014). The
textural relationships among the three
aluminosilicate polymorphs (Ky-Sil—-
And) in quartz veins reveal that they
formed in the order of Ky — Sil —
P and high-T conditions (Burenjargal
et al. 2012). Such an evolution has
Altai (Wei et al. 2007), which is the
eastward continuation of the Tseel
Terrane.

The results of zircon age dating
of the metapelites in the Tseel area
metamorphism occurred at 450—400
Ma and was followed by the low-P
and high-T metamorphism at 377 +30

Given the negative anomalies of
Nb, Hf, Zr and Ti (Fig. 6b), the pa-

Ma (Burenjargal et al. 2014). Based
on the spatial correlation between

granitoid distribution and peak tem-
es, Burenjargal et al. (2014) suggested

that Devonian granitoids (385+7 Ma)
were the possible heat source respon-
sible for a high geothermal gradient
at middle to upper crustal levels
(10-20 km depth) during the Middle

Devonian (37730 Ma) (Fig. 9).
melts, which could have heated the

5.2. Tectonic implications
Based on petrological analyses of
the garnet-bearing pelitic gneiss, the
estimates of metamorphic P-T condi-
low-T (Grt and St zones), and low-P
and high-T (St, Sil, and Crd zones)
And (Burenjargal et al. 2012, 2014),
which suggests a transition from
high-P and low-T conditions to low-
been also reported from the Chinese
revealed that the high-P and low-T
perature distribution of pelitic gneiss-
The signature of garnet fractionation
in the Devonian granitoids (i.e., the
HREE trends in Fig. 6a) is consistent
with the deep source of the granitic
surrounding pelitic gneisses.
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Table 3 Contd.

@
206p b /238U
Age

(1)
Age
288 £ 13

(©)
207pp/206ppy  208PH/232TH

Age
1.2 05 332+83
1.0 0.6 243+31
1.1 04 38475
1.2 04 37074

err
corr
1.1 09

+%

@
206phy*/238]J

+%

@
207phy*/2351J

+%

)
207pp*[206pp*

+%

)
238(J/206pph*

%

22Th/?%®U  Discor-
dant

+17
~14
+28
+25

4-corr
ppm
ZOGPb"

Th

U

ppm - ppm

c

%
206pp

+%

204ppy/206phy

Spot

275+ 3

0.0436
0.0439
0.0440
0.0439
0.0437
0.0432
0.0457
0.0444
0.0451
0.0441
0.0482
0.0442
0.0438
0.0445
0.0443
0.0438

0.4

0.3487
0.3571
0.3546
0.3644
0.3497
0.3477
0.3630
0.3617
0.3638
0.3574
0.3888
0.0509
0.3496
0.3608
0.3644
0.3546

3.7

0.0531
0.0511
0.0543
0.0540
0.0522
0.0521
0.0524
0.0526
0.0521
0.0513
0.0527
0.0519
0.0526
0.0523
0.0517
0.0526

1.2
1.0
1.1
1.2
1.1
1.3

2.9

22.93
22.79
22.74
22.79
22.86

23.17

0.54
0.42
0.44
0.51
0.29
0.48
0.10
0.57
0.09
0.59
0.29
0.35
0.43
0.78
0.38
0.65

159 345 180 13
39

48

15

255

14

0.00087

G0807-1.1

277+3

2725

0.4

1.4
3.3

0.32 1028 415
2.33 1259
0.77

20

0.00017

G0807-2.1

277 3

2157

0.4

540
195

6
20

0.00127

G0807-3.1

277 £3

292 +8

0.6

3.3

394

0.00042

G0807-4.1

295+4  276+3

295+ 9

2.2
0.5

0.4
1.1
0.7

+6
+6
+5
+10

0.13 6242 1745
0.20 1715

11
19

0.00007

G0807-5.1

272+ 4

2715

1.3 0.6 290+25
29 10 302=x17
1.0 05 310%42
1.0 09 288+10
1.0 05 253+50

64
179

796

0.00011

G0807-7.1

288 +8

296 + 11

14
1.6
0.4
11

21.89
22.54

22.17
22.69

13 0.15 4268 408
0.52

0.00008

G0807-8.1

280+3

288+5

1.9
0.4
2.2
2.8
15

0.8

1.0
1.0
1.0
1.1
2.2

26
95
13
93
43
106

370
212
200
628

672

20

0.00029

G0807-9.1

284 +3

279 +£5

+1
-10

0.00004 20 0.07 2449
24 0.46

0.00025

G0807-10.1

278 +3

262 +6

348

G0807-11.1

304 £3

11 04 314+x64 304x11

22 08 282+35
1.1 09 312+18
1.0 05 299+26

1.0
38.6

20.74
22.61
22.82
22.49
22.58

+3
+1
+11

0.81 2256
0.14 1137

14

0.00044
0.00008

G0807-12.1

2796

217 7

381

35
12

G0807-14.1

276 + 3

255+ 3

0.9

1.1
1.0

1.1
1.0

0.35 2714 1135

0.00019
0.07

G0807-16.1

280+ 3

279+ 4

1.0
1.0

0.5

1.1
0.3

+6
-2
+12

20
233

534 405

0.00004

G0807-17.1

306+3 279+3

2714 £ 7
10 04 312+44

1.1 09

0.02 5528 2027

25
0.57

0.00001

G0807-18.1

276 + 3

282+ 7

1.9

22.85

553 33

873

16

0.00031

G0807-19.1

Errors are 1-sigma; Pb_and Pb” indicate the common and radiogenic portions, respectively.

Error in standard calibration was 0.35 % (not included in above errors but required when comparing data from different mounts).

(1) Common Pb corrected using measured 2Pb.

rental magmas could have been produced in a
subduction zone setting, catalyzed by slab-derived
fluids, or by melting of upper continental crust. In
contrast, the ~280 Ma Permian granitoids, includ-
ing the bodies analyzed in this study (Figs 1c, 8),
were emplaced after the main metamorphic events
(Fig. 9). The P-T evolution and its relation to the
granitoid bodies of the Tseel Terrane (Fig. 9) shows
similarity to those during the crustal evolution of
the other orogenic belts, including the Hercynian
crustal section in the Serre Massif, in the southern
Italy (e.g., Angi et al. 2010).

In summary, high-P and low-T metapelitic rocks
of the Tseel area occurred in close relationship to
Devonian granitic magmatism, perhaps in a subduc-
tion zone setting. Consequently, the conditions of
metamorphism in the area changed from high-P and
low-T (450-400 Ma) to low-P and high-T (37730
Ma) (Burenjargal et al. 2014). The Permian granit-
oids intruded after the low-P and high-T regional
metamorphism.

6. Conclusions

We documented the geochemical characteristics of
Devonian and Permian granitoids in the Tseel area
of the Tseel Terrane, SW Mongolia. Presented are
three new Permian (281-271 Ma) zircon SHRIMP
ages for granitoids in the central part of the Tseel
area. In spite of the differences in age, the studied
granitoids all share a geochemical signature of arc-
related magmatism. On the La-La/Gd diagram, the
11 granitoid samples are classified into two groups.
The Primitive-mantle normalized spiderplots for
Devonian granitoid samples (Group 1) are charac-
terized by negative anomalies in Nb, Hf, Zr and Ti,
indicating the contribution of slab-derived fluids
or melting of upper continental crust. In contrast,
Group 2, which includes all the Permian samples,
shows negative anomalies in Ba, Sr, and Eu, docu-
menting fractionation of feldspars with or without,
biotite. The depletion in LREE and Ti in addition
underlines the importance of monazite and opaque
mineral(s) fractionation.

These features, combined with the results of
previous petrological and geochronological studies
of the pelitic gneisses, suggest that the Devonian
granitoids intruded into the middle crustal levels, re-
sulting in regional high-temperature metamorphism,
whereas the Permian granitoids were emplaced at
relatively shallower levels, after the main metamor-
phic events.
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