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The Variscan Braszowice–Brzeźnica Massif (SW Poland) consists of gabbros and serpentinized peridotites with gabbro 
veins. Antigorite serpentinites form the western part of the Massif, whereas tremolite peridotites, tremolite serpentinites 
and lizardite–chrysotile serpentinites are found at the contact with granite intrusion in the east. Sparse relics of clino-
pyroxene, olivine and chromite were studied within the antigorite serpentinites. Clinopyroxene I (Mg# 90.9–93.47, 
1.92–3.80 wt. % Al2O3) occurs in the neighbourhood of gabbro veins. Its REE patterns are similar to those of clinopy-
roxene from the mid-ocean ridge gabbros. Clinopyroxene II (Mg# 96.0–97.0) is Al-poor (≤ 0.10 wt. % Al2O3). Olivine I 
(Fo = 90.1–92.3) contains 0.32–0.50 wt. % NiO, whereas olivine II (Fo = 86.0–91.2) is Ni-poor (0.01–0.25 wt. % NiO) 
and contains micrometric magnetite intergrowths. Chromite I (Cr# 44.9–54.0, Mg# 45.0–52.1, < 0.17 wt. % TiO2) is 
associated with olivine I and clinopyroxene I, whereas chromite II (Cr# 43.2–51.4, Mg# = 34.6–47.7, 0.49–0.74 wt. % 
TiO2) occurs in serpentinites penetrated by gabbro veins.
The serpentinites of the Braszowice–Brzeźnica Massif were formed supposedly immediately below the paleo-Moho in 
the ocean-spreading setting. Chemistry of clinopyroxene I from antigorite serpentinites resembles, in terms of major 
elements and REE, clinopyroxenes that originate due to MORB-like melt percolation through abyssal peridotites. The 
coexisting olivine I with both chromite I and II supposedly shared a similar origin. Composition of chromite suggests the 
back-arc setting of the Braszowice–Brzeźnica Massif. Clinopyroxene II and olivine II have major-element compositions 
indicative of metamorphic origin at expense of serpentine ± magnetite (deserpentinization). The deserpentinization assem-
blage occurring in serpentinites (antigorite–olivine–clinopyroxene) was formed probably under low-grade metamorphic 
conditions. The tremolite-bearing rocks record the thermal metamorphism by granite intrusion.
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constitute group of gabbroic and serpentinitic outcrops, 
with subordinate metabasalts (Kryza and Pin 2010). The 
geochemical affinity of the Central-Sudetic ophiolites has 
been relatively well studied. The Ślęża Ophiolite, which 
is the most complete ophiolitic sequence in the region, 
was considered to having originated in the mid-ocean 
ridge or back-arc setting (Pin et al. 1988).The peridotite 
members of the Central-Sudetic ophiolites are heavily 
serpentinized, nevertheless they contain non-serpentine 
phases which record information about ocean rift pro-
cesses and later metamorphism (Wojtulek et al. 2016a, b, 
and references therein). 

In this paper we describe the non-serpentine phases 
occurring in highly serpentinized ultramafic rocks from 
the Braszowice–Brzeźnica Massif, a small ophiolite 
slice belonging to the Central-Sudetic ophiolites. We 
show that some of these minerals originated due to melt 
percolation in the uppermost part of the mantle, probably 
close to the paleo-Moho. We also show that part of the 

1.	Introduction

The Rheic Ocean is considered to have formed in the 
Late Cambrian to Early Ordovician times due to drift of 
peri-Gondwanan terranes (e.g. Avalonia, Armorica, Ossa-
Morena) and to have closed in the Early Devonian (Franke 
and Dulce 2017). Remnants of the Rheic Ocean in Europe 
are preserved in the suture running from the Pulo de Lobo 
Unit of southern Iberia, through Cabo Ortegal Complex in 
north-western Spain, Lizard Ophiolite in southern Britain, 
Mid-German Crystalline Rise in Germany to the Bohemi-
an Massif in Central Europe (Murphy et al. 2006; Nance 
et al. 2010). Mariánské Lázně and the Central-Sudetic 
ophiolites are two mafic–ultramafic complexes interpreted 
to be vestiges of the Rheic Ocean in the Bohemian Massif 
(Jelínek et al. 1997; Nance and Linnemann 2009; Kryza 
and Pin 2010; Jašarová et al. 2016).

The Variscan Central-Sudetic ophiolites occur in the 
Sudetes, in the NE part of the Bohemian Massif. They 
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non-serpentine phases grew during later metamorphic 
event, which caused local deserpentinization, and that 
the Braszowice–Brzeźnica Massif recorded the processes 
similar to those identified in the peridotitic member of 
the Ślęża Ophiolite. 

2.	Geological setting

The Braszowice–Brzeźnica Massif (BBM) is one of the 
serpentinite–gabbro massifs belonging to the Central-
Sudetic ophiolites (Kryza and Pin 2010). It is located in 
the Central Sudetes Terrane in the NE Bohemian Massif 
(Fig. 1), which is interpreted as the fragmented accretion-
ary wedge placed between the Saxo-Thuringia and Brunia 
(Mazur et al. 2015). 

The small (~6 km long and ~3 km wide) Braszo-
wice–Brzeźnica Massif is positioned at the southern 
termination of the Niemcza Shear Zone. Its contacts with 
surrounding rocks are tectonic except for the eastern part, 
truncated by a small leucogranite intrusion (Fig. 2). The 
BBM consists (from N to S) of serpentinites, containing 
locally chromitite bodies (west of the Grochowiec Hill 
area), serpentinites with gabbro veins (outcrops on the 
Mnich Hill) and larger gabbro bodies (small outcrops in 
the Tarnawa area and a larger body, c. 600 m in diameter, 
in the Braszowice area). The contact between gabbros 
and serpentinites is exposed in an abandoned quarry on 
Bukowczyk Hill, where gabbros dip beneath serpenti-
nites along a NE–SW striking boundary (Finckh 1929; 
Dziedzic 1995). The relationships between gabbros and 
serpentinites cannot be assessed because of Quaternary 
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sediments cover. The drillings between Tarnawa and 
Bukowczyk revealed serpentinites with gabbro inliers 
under the Quaternary cover (Dziedzic 1995). Gabbros 
from drillings and those from Tarnawa are medium- or 
fine-grained, whereas gabbros on Bukowczyk Hill and in 
Braszowice are mainly coarse-grained (Dziedzic 1995). 

The tremolite peridotites and serpentinites with inli-
ers of lizardite–chrysotile serpentinites form the eastern 
part of the massif, whereas the western part consists of 
antigorite serpentinites with gabbro veins (Gunia 1992). 
Serpentinite–magnesite–dolomite breccias, magnesite 
veins and bodies, rodingite and pyroxenite veins or ir-
regular bodies occur mostly in the western BBM (Gunia 
1992). Serpentinites of the eastern part of the massif are 
cut by aplite veins, and chromitite bodies were described 
in the centre (Delura 2012; Wojtulek et al. 2016a). Gab-
bros occur in the southern and eastern parts of the BBM. 
They are isotropic or laminated and are moderately de-
formed (Dziedzic 1989; Delura 2012). 

The age of the serpentinites and gabbros is assumed 
to be analogous to that of the matching rock types of the 
Ślęża Ophiolite (Dziedzic and Dziedzic 2000). Few zir-
con grains from a Ślęża metagabbro were investigated by 
Oliver et al. (1993). These authors used the conventional 

U–Pb method on abraded zircons. The calculated age of 
420 + 20/– 2 Ma was related to the magmatic crystalliza-
tion of the gabbro (Oliver et al. 1993). More recently, 
magmatic crystallization of zircon grains from metagab-
bros and metabasalts in the Ślęża Ophiolite was dated at 
400 ± 10 Ma and 403 ± 6 Ma by Kryza and Pin (2010), 
by the SHRIMP method. Zircons from the contact zone 
between rodingite and serpentinite gave a U–Pb age of 
400 + 4/− 3 Ma, interpreted as timing the early serpenti-
nization (Dubińska et al. 2004). 

3.	Sampling and analytical methods

This paper is based on 42 samples (Fig. 2) collected from 
outcrops located mostly at peaks of hills and abandoned 
quarries. We used 150 µm thick sections for microscopic 
and chemical investigations. 

3.1.	Mineral chemistry

The major-element composition of minerals from 20 
samples has been analysed by Cameca SX-100 electron 
microprobe at Department of Lithospheric Research, 
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Tab. 1 Whole-rock major (wt. %) and trace (ppm) element analyses of rocks from the BBM

Sample
D

et
ec

tio
n 

lim
it Eastern part of the BBM Western part of the BBM

Braszowice quarry Grochowiec Mnich
BRA01 BRA04 BRA07 BRA12 BRA14 BRA16 BRA17 BRA18 BRA19 BRA20

Rock 
type

Tremolite 
peridotite

Tremolite 
peridotite

Tremolite 
peridotite

Tremolite 
serpentinite

Pseudomorphic  
serpentinite Metagabbro Metagabbro Antigorite 

serpentinite
Antigorite 

serpentinite
Dunite 

vein
SiO2 0.01 43.42 49.60 47.80 41.22 40.19 42.51 44.53 40.38 39.13 38.71
TiO2 0.01 0.31 0.04 0.08 <0.02 0.01 0.13 0.14 <0.02 <0.02 0.01
Al2O3 0.01 5.92 1.68 4.45 0.64 0.56 17.27 14.57 1.10 0.75 0.24
Cr2O3 0.02 0.83 0.40 0.30 0.24 0.47 0.27 0.36 0.42 0.39 0.05
Fe2O3

* 0.04 7.30 5.76 4.79 8.74 10.05 3.93 3.58 7.92 8.04 15.18
MnO 0.01 0.05 0.07 0.07 0.13 0.13 0.08 0.10 0.07 0.12 0.18
MgO 0.01 27.37 28.25 27.44 41.59 41.28 12.77 12.75 38.79 40.91 39.09
CaO 0.01 7.06 8.04 7.85 0.32 0.48 18.38 20.16 0.23 0.48 0.07
Na2O 0.01 0.04 0.05 0.05 0.02 <0.02 0.11 0.18 <0.02 <0.01 <0.02
K2O 0.01 0.01 0.02 0.02 <0.02 <0.02 0.02 <0.02 <0.02 <0.01 <0.02
P2O5 0.01 0.24 0.03 0.01 0.02 0.02 <0.01 0.02 <0.02 <0.01 0.02
LOI – 7.30 5.80 6.90 6.70 6.50 4.20 3.30 10.70 8.90 6.20
Sum – 99.85 99.74 99.76 99.62 99.69 99.67 99.69 99.61 98.72 99.75
Sc 1.0 21 13 9 8 7 21 26 11 9 6
Ba 1.0 <1 <1 10 2 <1 30 17 2 <1 2
Be 1.0 <1 <1 <1 <1 <1 <1 <1 3 <1 <1
Co 0.2 45.3 56.9 57.4 120.2 117.1 37.4 27.9 93.9 105.8 131.9
Cs 0.1 0.2 0.3 0.6 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1
Ga 0.5 3.9 1.1 3.8 <0.05 <0.05 8.8 4.0 0.7 0.9 <0.05
Hf 0.1 1.2 <0.1 0.9 0.1 <0.1 0.2 <0.1 <0.1 <0.1 <0.1
Nb 0.1 0.9 0.4 1.4 <0.1 0.8 0.3 <0.1 <0.1 <0.1 <0.1
Rb 0.1 0.3 0.2 0.8 0.4 0.2 0.4 0.3 1.3 <0.1 <0.1
Sn 1.0 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1
Sr 0.5 43.1 34.9 66.0 3.5 2.3 388.4 1850.1 19.3 2.3 3.6
Ta 0.1 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Th 0.2 2.6 <0.02 3.8 <0.02 <0.02 <0.2 <0.02 <0.02 <0.2 <0.02
U 0.1 0.5 0.7 1.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
V 8.0 120 68 62 22 47 68 107 47 38 19
W 0.5 <0.05 2.0 0.6 0.6 0.8 <0.5 <0.05 <0.05 20.1 <0.05
Zr 0.1 39.8 1.7 28.6 1.1 1.4 5.2 5.9 0.7 0.3 1.1
Y 0.1 5.0 2.2 3.2 0.2 0.1 2.3 3.8 0.3 0.1 0.4
La 0.1 5.2 0.5 1.5 0.5 0.4 0.5 1.1 0.7 0.2 0.7
Ce 0.1 10.5 0.6 3.5 0.5 0.2 0.7 1.6 0.4 <0.1 0.4
Pr 0.02 1.60 0.05 0.55 <0.02 <0.02 0.11 0.18 <0.02 <0.02 <0.02
Nd 0.03 7.00 <0.03 2.60 <0.03 <0.03 0.70 1.00 <0.03 <0.03 <0.03
Sm 0.05 1.42 <0.05 0.92 <0.05 <0.05 0.23 0.23 <0.05 <0.05 <0.05
Eu 0.02 0.12 0.04 0.18 <0.02 <0.02 0.14 0.44 <0.02 <0.02 <0.02
Gd 0.05 1.16 0.32 0.88 <0.05 <0.05 0.38 0.55 <0.05 <0.05 <0.05
Tb 0.01 0.19 0.07 0.14 <0.02 <0.02 0.07 0.12 <0.02 <0.01 0.02
Dy 0.05 1.31 0.41 0.79 <0.05 0.06 0.51 0.63 0.07 <0.05 <0.05
Ho 0.02 0.22 0.04 0.10 <0.02 <0.02 0.09 0.17 <0.02 <0.02 <0.02
Er 0.1 0.61 0.21 0.35 0.09 <0.01 0.25 0.36 0.03 <0.03 0.09
Tm 0.01 0.08 0.03 0.05 <0.01 <0.01 0.05 0.06 <0.01 <0.01 <0.01
Yb 0.05 0.62 0.24 0.24 <0.05 <0.05 0.26 0.34 <0.05 <0.05 <0.05
Lu 0.01 0.10 0.04 0.04 0.01 0.01 0.03 0.04 <0.01 <0.01 0.01
Mo 0.1 <0.01 <0.01 <0.01 0.10 0.20 0.10 0.10 <0.01 <0.10 <0.01
Cu 0.1 17.8 29.2 50.2 3.5 11.1 2.7 8.0 10.8 3.5 202.8
Pb 0.1 1.1 0.7 2.8 0.3 0.2 1.3 0.4 1.2 0.2 1.2
Zn 1.0 12 12 11 29 34 15 20 15 45 45
Ni 0.1 787 1236 1001 2487 2556 246.9 477 2075 1997.1 1870
As 0.5 1.2 1.1 1.4 2.0 1.3 0.6 <0.05 5.4 1.3 3.8
*total Fe as Fe2O3
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using analytical procedures with codes LF100 and LF300. 
Detection limits for each measured element are given in 
Tab. 1.

4.	Petrography and mineral chemistry

4.1.	Eastern part of the Braszowice–Brzeźnica 
Massif

Eastern part of the BBM consists of tremolite perido-
tites, tremolite serpentinites and amphibole–chlorite 
rocks (Fig.  2). Tremolite peridotites were described as 
“dunites” with more than 90 vol. % of olivine by Gunia 
(1992). They are relatively weakly serpentinized (~10–20 
vol. % of serpentine) and are cut by serpentine veinlets. 
The peridotites contain numerous magnesite veins in the 
vicinity of the granite intrusion. Non-serpentine min-
eral grains are isolated from each other by serpentine 
or chlorite. Tremolite content varies usually between ~5 
and 10 vol. %.

Olivine in both tremolite peridotites and serpentinites 
occurs as dismembered, up to 200 µm grains cut by 
tremolite and serpentine, enclosing magnetite inclusions 
(Fig. 3a). Olivine has mainly constant chemical compo-
sition (Fo90.5–91.1, 0.35–0.45 wt. % NiO, 0.15–0.17 wt. % 
MnO – Fig. 4, Tab. 2), however, some analyses reveal 
variation in NiO (up to 0.70 or down to 0.11 wt. %) and 
MnO (up to 0.21 or down to 0.11 wt. %) contents, but 
without correlation to a specific occurrence. Serpentine 
replaces olivine and forms a network of veins. Tremolite 
(Tab. 3) forms needle-like, elongated grains that cut ol-

University of Vienna, Austria under standard conditions 
(acceleration voltage 15 kV, sample current 15 nA, count-
ing times 10 or 20 s, natural silicates and synthetic oxides 
as standards) and using the PAP correction procedure 
(Pouchou and Pichoir 1984). The structural formulae of 
minerals were recalculated on the basis of 4 O for olivine, 
23 O for tremolite, 6 O for clinopyroxene, 3 cations for 
spinel and 2 cations for ilmenite. Chromium number, Cr#, 
is defined as atomic 100 × Cr/(Cr + Al) and magnesium 
number, Mg#, as atomic 100 × Mg/(Mg + Fe) in mineral 
formulae. Mineral abbreviations used are after Kretz 
(1983). 

The trace element-contents in clinopyroxene were 
determined by laser-ablation ICP-MS technique in a ser-
pentinite (BRA19) and a gabbro (BRA17). The former 
was analysed at the Kraków Research Centre, Institute 
of Geological Sciences, Polish Academy of Sciences. 
For details of analytical procedure see Wojtulek et al. 
(2016b). The latter was analysed at the Institute of Geol-
ogy of the Czech Academy of Science in Prague using 
an Element 2 ICP-MS coupled with an UP-213 213-nm 
NdYAG laser ablation system. The repetition rate of 
20 Hz and the output energy of 12 J/cm2 were applied. 
Circular, beam ablation spots were 60 µm in diameter. 
Sample runs were bracketed by measurements of NIST 
612 glass (Jochum et al. 2011). The electron-microprobe 
determined Ca content was used as an internal standard. 
Data were processed using the Glitter software (van 
Achterbergh et al. 2001). 

3.2.	Whole-rock geochemistry

Eight samples were crushed 
with a jaw crusher and pulver-
ized in an agate mill at Bureau 
Veritas Analytical Laboratory 
in Vancouver, Canada (http://
acmelab.com). Then, bulk-rock 
chemical compositions (major-, 
minor- and trace-elements) of 
the samples were analysed by 
inductively coupled plasma 
mass spectrometry (ICP-MS), 

a

c

d

f

h

500 µm

500 µm

500 µm

a

c

b

d

f

Ol

Mag

inclusions
Tr

OlSrp

Mag

Srp

Ol

100 µm

Mag

Chl

Tr

Srp

Ilm

Fig. 3 Back-scattered electron images 
of rocks occurring in the eastern part 
of the Braszowice–Brzeźnica Massif. 
a – Olivine with parallel magnetite 
inclusions (BRA14). b – Serpentinized 
olivine–tremolite aggregate (BRA13). 
c – Cr-rich magnetite and olivine in 
lizardite/chrysotile serpentinite from 
Grochowiec Hill (BRA04). d – Mag-
netite–tremolite–chlorite–ilmenite agg-
regate from amphibole–chlorite rock 
(BRA01).



Piotr Marian Wojtulek, Jacek Puziewicz, Theodoros Ntaflos

152

ivine (Fig. 3b) or fills veins. It be-
comes a major rock-forming min-
eral in some samples (e.g. BRA07). 
Magnetite occurs as rectangular 
inclusions in olivine up to 20  µm 
across. Magnetite grains are often 
parallel-arranged and are similar 
to magnetite occurring in bastite 
pseudomorphs. Locally, magnetite 
forms rounded or amoeboid grains 
up to 500 µm (Fig. 3c, Tab. 4). 
Minute inclusions have ilmenite 
composition, whereas larger grains 
contain up to 30.40 wt. % Cr2O3. 

The chlorite–tremolite rocks oc-
cur together with tremolite perido-
tites in the Braszowice abandoned 
quarry, closest to the leucogranite 
intrusion, but observations of field 
relationships are impossible be-
cause of high degree of weather-
ing. Thin sections show that they 
consist of chlorite, tremolite and 
accessory ilmenite. Tremolite has 
composition similar to that of the 
same phase in tremolite peridotites 
(Tab. 3). Chlorite fills interstices 
between tremolite grains (Fig. 3d). 

Tab. 2 Representative chemical analyses (wt. %) and structural formulae (O = 4) of olivine from the BBM serpentinites

Location Eastern part Western part

Olivine type Ol I Ol I Ol I Ol II Ol II Ol I Ol I Ol I Ol II Ol II Ol from 
dunite vein

Ol from 
dunite vein

Sample BRA01 BRA14 BRA40 BRA14 BRA40 BRA18 BRA21 BRA34 BRA18 BRA34 BRA20 BRA20
SiO2 40.89 41.02 41.21 41.15 41.13 41.36 41.65 40.95 41.29 40.47 39.87 39.88
TiO2 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.01
Al2O3 0.05 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00 0.00
Cr2O3 0.00 0.00 0.03 0.05 0.00 0.05 0.04 0.09 0.07 0.08 0.01 0.00
FeO* 9.42 8.81 8.41 8.80 8.69 7.90 7.06 8.48 9.65 11.92 14.96 15.74
MnO 0.18 0.16 0.16 0.16 0.15 0.27 0.26 0.31 0.57 0.97 0.26 0.25
NiO 0.38 0.39 0.44 0.29 0.27 0.44 0.45 0.44 0.15 0.18 0.22 0.23
MgO 49.00 49.63 49.94 49.49 50.06 50.16 51.36 49.99 48.67 46.25 43.93 44.14
CaO 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.04 0.13 0.14
Total 99.96 100.03 100.19 99.96 100.32 100.21 100.85 100.31 100.45 99.93 99.41 100.41
Si 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.00
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.19 0.18 0.17 0.18 0.18 0.16 0.14 0.17 0.20 0.25 0.32 0.33
Mn 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01
Ni 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01
Mg 1.79 1.81 1.81 1.80 1.81 1.82 1.84 1.81 1.77 1.71 1.65 1.65
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
%Fo** 90.09 90.80 91.21 90.77 90.98 91.63 92.60 91.02 89.46 86.47 83.72 83.11
*total Fe as FeO
**[100 × Mg/(Mg + Fe)] atoms per formula unit

Tab. 3 Representative chemical analyses (wt. %) and structural formulae (O = 23) of tremolite from 
the Eastern part of the BBM

Location Eastern part

Rock type Tremolite  
peridotite

Tremolite  
peridotite

Chlorite– 
tremolite rock

Pseudomorphic 
serpentinite

Tremolite  
peridotite

Sample BRA01 BRA04 BRA13 BRA14 BRA40
SiO2 58.62 58.80 58.58 58.73 58.75
TiO2 0.12 0.01 0.04 0.00 0.00
Al2O3 0.28 0.23 0.06 0.07 0.03
FeO* 1.80 1.56 1.31 1.40 1.62
MnO 0.04 0.07 0.04 0.04 0.06
MgO 23.80 23.93 23.77 23.82 23.88
CaO 13.46 13.14 13.61 13.81 13.57
Na2O 0.05 0.13 0.00 0.00 0.01
K2O 0.03 0.01 0.00 0.00 0.03
Total 98.20 97.88 97.41 97.87 97.95
Si 7.96 7.99 8.00 7.99 7.99
Ti 0.01 0.00 0.00 0.00 0.00
Al 0.04 0.04 0.01 0.01 0.00
Fe 0.20 0.18 0.15 0.16 0.18
Mn 0.00 0.01 0.00 0.00 0.01
Mg 4.82 4.85 4.84 4.83 4.84
Ca 1.96 1.91 1.99 2.01 1.98
Na 0.01 0.03 0.00 0.00 0.00
K 0.01 0.00 0.00 0.00 0.01
Total 15.02 15.01 14.99 15.01 15.01
Mg#** 95.9 96.5 97.0 96.8 96.3
*total Fe as FeO
**[100 × Mg/(Mg + Fe)] atoms per formula unit
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It is almost purely magnesian (Mg# = 0.93–0.95). Ilmen-
ite (Tab. 4) occurs in samples coming from the vicinity 
to granite intrusion. It forms intergrowths with tremolite 
(Fig. 3d). 

4.2.	Western part of the Braszowice–Brzeźnica 
Massif

This region consists of antigorite serpentinites with lo-
cally occurring non-serpentine phases and metagabbro 
veins (Gunia 1992, Fig. 5).

Antigorite serpentinites display mainly non-pseudo-
morphic texture (Fig. 6a); pseudomorphic bastite or mesh 
textures are rare (Fig. 6b). Serpentine constitutes more 
than 80 vol. % of the rock, forming groundmass domi-
nated by rosette-shaped aggregates. The non-serpentine 
phases occur in the serpentine groundmass in two as-
semblages: (1) clinopyroxene 
I – chromite I – olivine I – chro-
mite II and (2) clinopyroxene 
II – olivine II. Serpentine fills 
fractures in clinopyroxene paral-
lel to cleavage or forms network 
within olivine.

Olivine I and II differ by Mg 
and Ni contents: olivine I (Fo90.1–

92.3) contains 0.32–0.50 wt. % 
NiO, whereas olivine II (Fo86.0–

91.2) has only 0.01–0.25 wt. % 
NiO (Fig. 4, Tab. 2). Olivine II 
commonly contains magnetite 
inclusions which have various 
sizes (2–25 µm) and are locally 
parallel-arranged and are over-
grown by serpentine (Fig.  6c). 
Both kinds of olivine occur in 
aggregates: olivine I forms well-
crystallized, dismembered, mag-
netite-free grains included in ol-
ivine II – serpentine – magnetite 
groundmass (Fig. 6c). Olivine II 
and serpentine fills also fissures 
between dismembered grains of 
olivine I.

Clinopyroxene is diopside or 
augite (Fig. 7a, Tab. 5). Clino-
pyroxene I has Mg# 90.9–93.47 
and contains 1.92–3.80 wt. % 
Al2O3 and 0.75–1.33 wt. % 
Cr2O3 (Fig. 7b). Clinopyroxene 

I occurs in serpentinites cut by gabbro veins. Its grains 
are strongly dismembered and have well defined cleav-
age. It forms two textural varieties: 

(a) Coarse (up to 0.7 mm in size), elongated, discrete 
grains occurring in serpentine groundmass (Fig.  6d). 
They have Mg# 91.0–93.1, are Ti- and Na-rich (0.70–
0.80 wt. % TiO2 and 0.33–0.48 wt. % Na2O) and contain 
3.23–3.80 wt. % Al2O3 and 1.09–1.33 wt. % Cr2O3. The 
rare earth elements are enriched relative to primitive 
mantle (Fig. 8, Tab. 6). The REE patterns show LREE 
depletion relative to HREE and shallow negative Eu 
anomaly. Zirconium content varies between 28 and 36 
ppm.

(b) Coarse, up to 0.5 mm, anhedral grains, often elon-
gated, occurring interstitially in aggregates with olivine 
I and chromite I (Fig. 6e). These clinopyroxenes have 
Mg# 90.9–93.47 and contain 1.92–3.07 wt. % Al2O3 and 
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0.75–1.20 wt. % Cr2O3 (Fig. 7b). Their TiO2 and Na2O 
contents are very low (< 0.1 wt. % – Fig. 7c). 

Relationships between Al2O3 and Cr2O3 in clinopy-
roxene I reveal a continuous trend in which both oxides 
correlate positively (Fig. 7b). Contents of TiO2 and Na2O 

are variable on a sample scale, although clinopyroxene 
I (a) from aggregates with olivine I is generally Ti- and 
Na-poor (Fig. 7c).

Clinopyroxene II has high Mg# (96.0–97.0) and 
is Al- and Cr-poor (≤ 0.10 wt. % Al2O3 and ≤ 0.27 

wt. % Cr2O3). It occurs 
as (1)  lamellae within 
serpentine and olivine 
I and II, (2) as minute 
elongated grains, up to 
50 µm long, occurring 
in aggregates with ol-
ivine II and (3) as large 
(up to 3 mm) grains 

Tab. 4 Representative chemical analyses (wt. %) and structural formulae of spinel (sum of cations = 3) and ilmenite (sum of cations = 2) from 
the BBM serpentinites

Location Eastern part of the BBM Western part of the BBM
Mineral* 1 1 2 2 3 2 2 3 3 4 4 4 4 5 5 5 5
Sample BRA01 BRA01 BRA04 BRA14 BRA04 BRA18 BRA34 BRA18 BRA34 BRA19 BRA19 BRA35 BRA35 BRA34 BRA34 BRA39 BRA39
SiO2 0.06 0.05 0.00 0.01 0.04 0.01 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
TiO2 51.19 51.04 0.64 0.40 0.07 0.16 0.60 0.07 0.24 0.63 0.63 0.72 0.74 0.14 0.15 0.02 0.00
Al2O3 0.00 0.00 0.33 0.57 0.00 0.00 1.41 0.02 0.09 26.21 26.41 27.16 27.09 26.50 26.05 25.39 25.56
Cr2O3 0.25 0.24 30.40 27.17 0.00 16.71 31.60 0.45 2.30 38.18 38.23 31.19 31.15 39.13 38.52 40.64 41.18
FeOa 44.32 43.96 59.96 62.19 89.86 70.40 55.34 88.93 87.79 23.12 23.10 29.25 29.82 21.06 22.86 20.49 19.91
MnO 2.45 2.34 0.68 0.42 0.04 0.90 2.35 0.09 0.13 0.49 0.52 0.43 0.34 0.23 0.53 0.46 0.47
NiO 0.03 0.05 0.44 0.57 0.27 0.63 0.48 0.64 0.70 0.09 0.10 0.18 0.17 0.11 0.13 0.03 0.09
MgO 0.74 0.77 2.38 2.71 0.18 1.69 1.97 0.94 0.66 10.26 9.99 9.17 8.84 11.84 10.39 10.61 10.97
CaO 0.08 0.12 0.00 0.04 0.00 0.01 0.33 0.00 0.00 0.01 0.02 0.63 0.50 0.24 0.36 1.07 0.90
Total 99.14 98.57 99.12 98.57 94.83 94.08 90.46 90.51 94.08 91.38 91.91 98.99 99.00 98.73 98.65 99.25 99.01
Ti 0.97 0.98 0.02 0.01 0.00 0.00 0.02 0.00 0.01 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.00
Al 0.00 0.00 0.01 0.03 0.00 0.00 0.06 0.00 0.00 0.96 0.97 0.99 1.00 0.96 0.95 0.93 0.93
Cr 0.01 0.01 0.91 0.81 0.00 0.52 0.95 0.01 0.07 0.94 0.94 0.77 0.77 0.95 0.94 1.00 1.01
Fe+3b 0.06 0.05 1.04 1.19 2.00 1.49 0.98 2.01 1.91 0.13 0.07 0.31 0.23 0.12 0.12 0.14 0.12
Fe+2 0.88 0.88 0.85 0.78 0.98 0.83 0.78 0.89 0.94 0.47 0.53 0.45 0.54 0.42 0.47 0.39 0.39
Mn 0.05 0.05 0.02 0.01 0.00 0.03 0.08 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Ni 0.00 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.03 0.03 0.13 0.15 0.01 0.10 0.11 0.05 0.04 0.47 0.46 0.42 0.41 0.54 0.48 0.49 0.51
Cr# – – – – – – – – – 49.42 49.27 43.51 43.55 49.76 49.80 51.78 51.94
*1 – ilmenite, 2 – coarse, amoeboid magnetite grains, 3 – minute magnetite inclusions, 4 – chromite I, 5 – chromite II
a Total Fe as FeO
b Calculated by charge balance
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Fig. 5 Photographs of rocks 
occurring in the western part 
of the Braszowice–Brzeźnica 
Massif. a – Contact between 
serpentinite and metagabbroic 
vein. b – Chlorite–tremoli-
te–clinopyroxene assemblage 
in metagabbro.  Tremolite 
replaces clinopyroxene, BSE 
image (BRA25). c – Anhedral 
clinopyroxene aggregate in 
the serpentine groundmass of 
serpentinite, plane-polarised 
light (PPL) image (BRA19). 
d – Mylonitized dunite, PPL 
(BRA18).
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with cleavage and parallel-arranged minute magnetite 
inclusions, locally displaying mesh texture (Fig. 6f). 
Clinopyroxene II does not occur together with clino-
pyroxene I, and thus interpretation of their mutual 
relations is not possible. Trace elements were not 
measured in clinopyroxene II due to insufficient sizes 
of its grains. 

Chromite from antigorite serpentinites forms zoned 
grains up to 2 mm in size. Two types were distinguished 
(Fig. 9, Tab. 4). Chromite I (Cr# 44.9–54.0, Mg# 45.0–52.1) 
contains up to 0.17 wt. % TiO2 and occurs in aggregates 
with olivine I and clinopyroxene 
I (Fig. 6g). Chromite II (Cr# 
43.2–51.4, Mg# = 34.6–7.7) is 
richer in TiO2 (0.49–0.74 wt. %) 
and occurs in serpentinites pen-
etrated by gabbro veins. Rims of 
the zoned chromite I – chromite 
II grains consist of ferritchromite 
(Fig. 6h).

Gabbro and dunite veins 
occur in serpentinites at the 
Mnich Hill (Fig. 5, Tab. 1). 
Gabbro veins are from c. 10 
cm to more than 1 m wide. 
We found also loose gabbro 
blocks ~1.2 × 1.4 × 1.6 m in 
size displaying weak layer-
ing. Layers of variable clino-
pyroxene contents are from 
2 to 7 cm thick. Diopside 
from gabbro veins has similar 
major-element composition to 
coarse clinopyroxene Ia from 
antigorite serpentinites (Mg# 
88.0–90.5, Al2O3 3.17–3.65 
wt. %, Cr2O3 0.74–1.09 wt. %, 
TiO2 0.40–0.79 wt. %, Na2O 

0.31–0.51 wt. % – Fig. 7; Tab. 5). Shape of the REE 
patterns is similar to that in clinopyroxene I from ser-
pentinites but without negative Eu anomaly (Fig.  8, 
Tab. 6).

The dunite veins, up to 5 cm thick, cut serpentinites 
together with metagabbro veins. Olivine grains in the 
dunite veins are highly fractured, arranged parallel to 
the main fracture direction (Fig. 5d). Olivine from these 
veins is relatively Mg-poor (Fo83.4–83.7) and contains 
0.21–0.23 wt. % NiO and 0.22–0.39 wt. % MnO (Fig. 4, 
Tab. 2). 
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5.  Whole-rock geochemistry

Ultramafic rocks from both parts of the Braszo-
wice–Brzeźnica Massif have distinct whole-rock 
compositions. In the Eastern part, tremolite 
peridotites are richer in CaO (7.06–8.04 wt. %) 
and Al2O3 (1.68–5.92 wt. %) than tremolite and 
pseudomorphic serpentinites (0.32–0.48 wt.% 
CaO; 0.56–0.64 wt.% Al2O3 – Tab. 1). The for-
mer have also elevated concentrations of both 
fluid-mobile (Cs, Rb, Th and Pb) and fluid im-
mobile (REE) trace elements, whereas tremolite 
and pseudomorphic serpentinites show contents 
of most trace elements below detection limits of 
the applied method. 

In the Western part of the BBM, antig-
orite serpentinites and dunite are poor in CaO 
(0.07–0.48 wt. %), Al2O3 (0.24–1.10 wt. %) and 
trace elements (Tab. 1). They are only slightly 
enriched in Nb, Rb and Pb relative to Primitive 
mantle (McDonough and Sun 1995). Other trace 
elements are below their respective detection 
limits, except for Ba (2 ppm), Sr (2.3–19.3 
ppm), Cu (3.5–10.8 ppm), Zn (15–45 ppm), Pb 
(0.2–1.2 ppm) and As (1.3–5.4 ppm). 

Metagabbros are generally depleted in trace 
elements; their Primitive mantle normalized 
patterns show only positive anomalies in Ba, 
Pb and Sr (Fig. 10). 

6.  Discussion

6.1. E astern part of the Braszowice– 
     Brzeźnica Massif

Tremolite-bearing serpentinite in the eastern 
part resembles serpentinites from other parts 
of the BBM because it contains pseudomorphic 
bastite, mesh and non-pseudomorphic serpentine 
and magnetite-bearing olivine but modal and 
chemical compositions are different. Olivine 
including magnetite occurs also in tremolite 
peridotites, thus we suggest that both tremolite-
bearing serpentinite and tremolite peridotite 
developed from tremolite-free rocks occurring 
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in the western and central parts of the BBM. Occurrence 
of tremolite as an interstitial phase or in veins suggests 
its late crystallization. 

Since the small leucogranite outcrop is located to the 
east of the Braszowice–Brzeźnica Massif (Fig.  2), we 
assume that it induced contact 
metamorphism of the serpen-
tinites, resulting in increasing 
amphibole and decreasing ser-
pentine contents towards the 
contact. It affected the whole-
rock Ca contents in ultramafic 
rocks: unaltered serpentinites 
from Mnich Hill contain less 
CaO (0.07–0.23 wt. %) than 
tremolite-bearing serpenti-
nites from Grochowiec and 

Stróżnik hills (0.32–0.48 wt. %) and tremolite perido-
tites (7.06–8.04 wt. %). Tremolite peridotites are also 
enriched in Al2O3 (1.68–5.92 wt. %) and in numerous 
trace elements (Cs, Hf, Ga, V, Zr, Y, Nb, Ta, U, Th, W 
and REE), whereas tremolite serpentinites have trace-

Tab. 5 Representative chemical analyses (wt. %) and structural formulae (O = 6) of clinopyroxene from the Western part of the BBM serpentinites 
and metagabbros

Cpx generation* I II from metagabbro
Sample BRA19 BRA19 BRA29 BRA29 BRA21 BRA21 BRA28 BRA28 BRA29 BRA29 BRA17 BRA25
SiO2 52.18 51.90 52.62 52.65 53.77 53.66 53.11 53.39 55.05 55.36 52.59 52.04
TiO2 0.79 0.72 0.10 0.07 0.01 0.00 0.03 0.02 0.01 0.01 0.43 0.63
Al2O3 3.45 3.69 3.29 3.34 2.15 2.35 2.78 2.55 0.15 0.02 3.09 3.17
Cr2O3 1.15 1.25 1.17 1.22 0.75 0.88 1.11 0.95 0.17 0.03 0.70 0.94
FeO* 2.61 2.53 3.03 2.91 2.34 2.36 2.66 2.56 1.02 1.02 3.21 3.70
MnO 0.13 0.11 0.11 0.10 0.11 0.10 0.08 0.09 0.07 0.08 0.11 0.14
NiO 0.04 0.04 0.02 0.04 0.07 0.07 0.07 0.09 0.01 0.04 0.04 0.02
MgO 16.04 15.85 16.10 15.91 17.49 17.21 17.81 17.48 17.96 17.98 15.93 15.77
CaO 23.49 23.72 23.18 23.63 24.07 24.07 22.95 23.58 25.76 26.09 24.18 23.30
Na2O 0.35 0.38 0.43 0.43 0.00 0.00 0.04 0.04 0.04 0.00 0.35 0.44
K2O 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Total 100.22 100.21 100.05 100.30 100.87 100.83 100.65 100.74 100.23 100.64 100.64 100.14
Si 1.90 1.89 1.92 1.92 1.94 1.94 1.92 1.93 1.99 1.99 1.91 1.905
Ti 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.017
Al 0.15 0.16 0.14 0.14 0.09 0.10 0.12 0.11 0.01 0.00 0.13 0.137
Cr 0.03 0.04 0.03 0.04 0.02 0.03 0.03 0.03 0.00 0.00 0.02 0.027
Fe 0.08 0.08 0.09 0.09 0.07 0.07 0.08 0.08 0.03 0.03 0.10 0.113
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.004
Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.001
Mg 0.87 0.86 0.88 0.86 0.94 0.93 0.96 0.94 0.97 0.97 0.87 0.861
Ca 0.92 0.93 0.91 0.92 0.93 0.93 0.89 0.91 1.00 1.01 0.94 0.914
Na 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.031
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg# 91.6 91.5 90.7 90.5 93.1 93.0 92.3 92.2 97.0 96.9 90.0 88.4
* Total Fe as FeO
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element compositions similar to antigorite serpentinites 
from the western BBM. The probably small leucogranite 
intrusion is surrounded by a narrow (c. 750 m) contact 
aureole. Larger granite intrusions produce much broader 
contact aureoles in serpentinites, as seen e.g. in the 
Ohsa-yama serpentinite body (Japan), where it is up to 
2 km wide (Nozaka and Shibata 1995). The Ohsa-yama 
serpentinite changes from unaltered serpentinites (zone 
I), through serpentinites with olivine, tremolite and talc 
(zone II) to serpentinites with olivine, orthopyroxene, 
tremolite and green spinel (zone III; Nozaka and Shibata 
1995). The Malenco serpentinite (Italian Alps), which 
was affected by the Bergell tonalite, is altered from 
serpentinite consisting of antigorite, diopside, olivine 

and magnetite into serpentinites with 
abundant olivine, tremolite, talc, antho-
phyllite and enstatite (Trommsdorff and 
Evans 1972 and 1977). In the BBM, 
Ohsa-yama and Malenco aureoles oliv-
ine and tremolite are abundant, whereas 
diopside vanishes in the altered zone, 
because of olivine and tremolite for-
mation at expense of antigorite and di-
opside (Trommsdorff and Evans 1972; 
Trommsdorff and Connolly 1996). In 
the BBM, as opposite to Ohsa-yama 
and Malenco, no orthopyroxene occurs 
in the vicinity of the leucogranite intru-
sion which implies that the conditions 
of pyroxene-hornfels facies were not 
reached (Frost 1975).

6.2.	Western part of the Braszowice–Brzeźnica 
Massif

Although the whole-rock Al2O3/SiO2 and MgO/SiO2 
ratios (Fig. 11) from the western part of the BBM sug-
gest harzburgite protolith, these rocks do not contain any 
remnants of orthopyroxene. Non-serpentine minerals that 
survived serpentinization – olivine, clinopyroxene and 
chromian spinel – indicate rather wehrlite as a primary 
lithology. However, remnants of non-serpentine phases 
are scarce (< 10 vol. %) and thus not representative of 
the modal composition of the pre-serpentine protolith. 

An important message which is hidden in the bulk-
rock chemical composition is that the serpentinites 

are extremely depleted in trace 
elements, especially those pref-
erentially soluble in hydrous 
fluids that migrate through ser-
pentinites in various settings 
(As, Sb, Pb, Sr, Rb, Cs, Li, 
Ba and U, for details see Des-
champs et al. 2013). This com-
position is related to the tex-
ture of the BBM serpentinites, 
which consist of non-pseudo-
morphic serpentine ground-
mass enclosing pseudomorphic 
domains (serpentine bastite or 
mesh textures) and non-serpen-
tine minerals (olivine, clinopy-
roxene and chromian spinel). 
Textural relationships show 
that antigorite serpentinization, 

Tab. 6 Representative chemical analyses (ppm) of REE in clinopyroxenes from the western 
part of the BBM serpentinites and metagabbros

Cpx generation I from metagabbro
Sample BRA19 BRA19 BRA19 BRA19 BRA17 BRA17 BRA17 BRA17
La 0.328 0.318 0.301 0.338 0.264 0.238 0.268 0.227
Ce 2.028 1.918 1.887 1.970 1.398 1.239 1.272 1.262
Pr 0.514 0.456 0.478 0.498 0.339 0.294 0.304 0.277
Nd 3.740 3.520 3.690 3.610 2.250 1.981 2.110 1.919
Sm 1.993 1.863 1.888 1.911 1.075 0.977 1.015 0.924
Eu 0.539 0.524 0.548 0.512 0.407 0.389 0.395 0.364
Gd 3.140 2.900 3.060 2.950 1.787 1.662 1.725 1.531
Tb 0.591 0.545 0.571 0.544 0.341 0.307 0.317 0.282
Dy 3.960 3.660 3.980 3.740 2.459 2.281 2.229 2.027
Ho 0.828 0.780 0.843 0.830 0.498 0.472 0.476 0.432
Er 2.333 2.135 2.501 2.416 1.460 1.386 1.377 1.251
Tm 0.316 0.286 0.335 0.327 0.214 0.200 0.194 0.174
Yb 2.020 1.851 2.302 2.202 1.387 1.366 1.301 1.130
Lu 0.280 0.2585 0.315 0.310 0.194 0.192 0.182 0.163
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producing non-pseudomorphic rocks, overprinted the 
pseudomorphic serpentinites (Wicks and Whittaker 
1977). Serpentinites that underwent antigorite recrystal-
lization are typically depleted in fluid-mobile elements 
because during the lizardite–antigorite transition the low-
T serpentine is replaced by a high-T one containing less 
water in its structure. This results in partial liberation of 
water, which may leach fluid-mobile elements from the 
minerals (Kodolanyi and Pettke 2011; Deschamps et al. 
2013). This process takes place at temperatures above 
400 °C (Evans 2010). Similar depletion is also typical of 
metagabbro veins within the BBM serpentinites (Fig. 10) 
suggesting that they were depleted in trace elements dur-
ing the same metamorphic event like the serpentinites. 

The style of serpentinization in the BBM is similar 
to that in other serpentinite massifs belonging to the 
Central-Sudetic Ophiolites: the Gogołów–Jordanów and  
Szklary. They also recorded at least two steps of al-
teration: pseudomorphic and non-pseudomorphic ones 
(Dubińska and Gunia 1997; Wojtulek et al. 2016b). 

The non-serpentine mineral assemblages consist of 
minerals with different modes of occurrence and chemi-
cal compositions, having formed supposedly in various 
events. Clinopyroxene I grains have homogenous chemi-
cal composition (Mg#, Al2O3 and Cr2O3 contents), except 
for Na2O and TiO2, which are higher in isolated grains 
than in those coexisting with olivine I and chromite I. The 
Al2O3 content of clinopyroxene I is lower than in clinopy-
roxene from porphyroclastic residual abyssal peridotites, 
e.g. Bouvet Triple Junction in South Atlantic (3.55–4.87 
wt. % Al2O3: Brunelli et al. 2003) or Southwest Indian 
Ridge (4.21–6.35 wt. % Al2O3: Seyler et al. 2003). Thus, 
clinopyroxene I is probably not a phase coming from 

residual mantle. Its mode of occurrence and composition 
resemble clinopyroxenes that originated due to melt per-
colation, e.g. at the Mid-Atlantic Ridge (ODP Hole 1274 
A) which contain 1.9–3.62 wt. % Al2O3 and 0.50–1.58 
wt. % Cr2O3 (Seyler et al. 2007) and also form elongated, 
interstitial grains between olivine grains or at olivine 
triple-junctions (Suhr et al. 2008). This clinopyroxene 
was interpreted as a product of interaction between ba-
saltic melt and harzburgite host, replacing orthopyroxene 
along grain boundaries and/or filling interstices (Suhr et 
al. 2008). Another phase typically crystallizing during 
basaltic melt percolation is plagioclase, described both 
from oceanic (Mariana Trough – Ohara et al. 2002) and 
ophiolitic peridotites (Oman Ophiolite – Koga et al. 
2001). This mineral has not been observed in the BBM 
serpentinites nor in harzburgites from the ODP Hole 1274 
A (Seyler et al 2007). Lack of “impregnation” plagioclase 
in the BBM serpentinites is supposedly due to undersatu-
ration of metasomatising melt in this phase. 

The REE pattern of clinopyroxene I has a well-defined 
negative Eu anomaly suggesting depletion of parental 
melt in plagioclase component. In contrast, clinopyroxene 
from gabbro veins cutting serpentinite lacks Eu anomaly 
(Fig. 8). This suggests that clinopyroxene from gabbros 
crystallized before plagioclase, whereas the clinopyrox-
ene I crystallized from, or equilibrated with, melt which 
fractionated plagioclase. The REE pattern of the clino-
pyroxene I is similar to that of clinopyroxenes from mid-
ocean ridge gabbros (see Coogan et al. 2000) (Fig. 8).

The major-element compositions of clinopyroxene I 
and clinopyroxene from gabbro differ in terms of Cr2O3, 
Al2O3, Na2O and TiO2 contents. Moreover, clinopyroxene 
I itself does not form a uniform group because of variable 
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TiO2 and Na2O contents (Fig. 7c). Chemical variation of 
clinopyroxene I possibly resulted from either varying 
initial composition of the basaltic melt percolating the 
peridotite or its chromatographic fractionation.

The Cr# of chromite I and the Mg# of coexisting 
olivine I fall in the olivine–spinel mantle array (OSMA) 
defined by Arai (1994) (Fig. 12a). Chemical compositions 
of chromite I and olivine I are similar both to abyssal pe-
ridotites and supra-subduction zone peridotites. Irregular, 
amoeboid shapes of chromite I indicate its formation in 
interstices between other mineral grains, a feature typical 
of grains crystallizing from transient melt. Intermediate 
Cr# suggests that this melt was MORB-like, but not as 
depleted as boninites which crystallize high-Cr# spinels 
(Tamura and Arai 2006; Morishita et al. 2011) . Interme-
diate Mg# of chromite I (Fig. 12b) suggests back-arc ba-
salt as a potential melt from which chromites crystallized. 
Back-arc basin as potential setting for melt percolation of 
the BBM peridotites was also suggested from chromitites 
(Wojtulek 2016a).

Olivine I has similar Mg# and Ni contents as residual 
olivine from oceanic abyssal peridotites (Brunelli et al. 
2003, 2006) and as olivine that originated due to melt 
percolation together with clinopyroxene (Seyler et al. 
2007). Textural features of grains cannot serve as crite-
rion distinguishing between residual and melt-percolation 
olivine, because the grains were strongly altered and frag-
mented during serpentinization. Relationships of olivine 
I, olivine II and clinopyroxene II lamellae suggest that 
olivine II and clinopyroxene III crystallized later. 

Low Al2O3 and Cr2O3 contents and elevated Mg# in 
clinopyroxene II and low NiO with high MnO in olivine 

II are typical of metamorphic growth (Nozaka 2005; 
Plümper et al. 2012). Since coarse clinopyroxene II and 
olivine II grains display textures similar to bastite and/
or mesh textures occurring in serpentinites, we suggest 
that they crystallized from pseudomorphic serpentine. 
Presence of minute magnetite inclusions in these grains 
also confirms their development from former serpentine 
phases, because magnetite, together with lizardite, is a 
commonly crystallizing phase during low-T serpenti-
nization (Evans 2010). Clinopyroxene II and olivine II 
inherited probably serpentine textures and/or magnetite 
inclusions during deserpentinization, a process in which 
serpentine is dehydrated due to increased temperature 
and/or pressure (Plümper et al. 2012; Debret et al. 2013). 

Occurrence of olivine II solely as intergrowths with 
serpentine suggests that deserpentinization was probably 
a short process. Mineral succession in the BBM serpen-
tinites involving pseudomorphic lizardite/chrysotile, 
non-pseudomorphic antigorite and secondary olivine and 
clinopyroxene corresponds probably to three steps of 
alteration, typical of prograde metamorphism: (1) low-T  
serpentinization, (2) high-T recrystallization and (3) de-
serpentinization. 

Such a style of alteration occurs typically in orogenic 
serpentinites. For example, serpentinites from the Lanzo 
Massif in Western Alps contain similar mineral succes-
sion represented by lizardite – antigorite – secondary 
olivine associated with chlorite or secondary clinopy-
roxene, amphibole and chlorite (Debret et al. 2013). 
Serpentinites from the Ladakh Massif in Himalayas 
consist mainly of antigorite replaced by secondary olivine 
containing magnetite and antigorite inclusions (Hattori 
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and Guillot 2007). However, in contrast to Lanzo and La-
dakh massifs, mafic and ultramafic rocks from the BBM 
do not contain any minerals indicative of high-pressure 
conditions. At low-pressure conditions, formation of sec-
ondary olivine is expected at 380 °C, whereas secondary 
clinopyroxene appears at 450 °C in the system CaO–
MgO–SiO2–H2O (Fig. 13, Nozaka 2005; Andreani et al. 
2007; Plümper et al. 2012 and references therein). If true, 
this confirms general low-grade metamorphic conditions 
for the BBM serpentinites, similarly to lithologies from 
other Central-Sudetic Ophiol-
ites (Kryza and Pin 2010).

7.	Conclusions

Relationships between serpen-
tinites and gabbros occurring 
in the Braszowice–Brzeźnica 
Massif suggest that serpenti-
nites were intruded by gabbro-
ic melts which either formed 
veins or crystallized in larger 
bodies. Occurrence of chro-
mitites and melt-impregnation 
phases typically marks the tran-
sition from peridotite to gabbro 
in the oceanic lithosphere. The 
contact between serpentinites 
and gabbros is very poorly ex-
posed, and thus it can only be 
speculated that it represented 
the paleo-Moho. The serpen-
tinites contain small volume 
of non-serpentine phases: ol-
ivine, clinopyroxene, spinel 
and tremolite. Clinopyroxene 
and spinel originated due to 
MORB-like melt percolation. 
Composition of spinel suggests 

the back-arc setting of the Braszowice–Brzeźnica Mas-
sif, similarly to the previously studied chromite from 
the associated chromitites. Part of olivine originated 
during deserpentinization which affected all exposed 
serpentinites. The metamorphic event is also suggested 
by very low concentrations many of the fluid-mobile 
elements (Cs, Rb, Th, U, Pb and As), except Ba and 
Sr, which are enriched. In the eastern BBM, tremolite 
marks the contact metamorphism by the neighbouring 
granitic intrusion. 
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The Braszowice–Brzeźnica and the Gogołów–Jor-
danów serpentinite massifs in Central Sudetes display 
several features in common: predominance of non-pseu-
domorphic antigorite serpentinites, occurrence of chemi-
cally and texturally similar chromitite bodies, evidence 
for melt percolation and presence of deserpentinization 
phases. This suggests that both these serpentinite com-
plexes shared a similar geological history. 
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