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Much of the Mid-European basement has been consolidated during the Variscan Orogeny and includes large volumes 
of granitic intrusions. Gamma radiation spectroscopic measurements in three study areas along the western margin of 
the Bohemian Massif give a record of radiogenic element concentrations in the Variscan granites. Most intrusions of the 
Fichtelgebirge (except for the Tin Granite) and intrusive complexes in the Bavarian Forest show Th/U ratios exceeding 
unity, most likely related to abundance of monazite. In contrast, some of the Oberpfalz granites located near the Saxo-
thuringian–Moldanubian boundary (Flossenbürg, Steinwald and Friedenfels types) are characterized by higher uranium 
concentrations and thus Th/U < 1. The low Th/U ratios here are in agreement with a possible U mobilisation along the 
Saxothuringian–Moldanubian contact zone observed in previous studies. Heat production rates of granites in the three 
study areas vary between 3.9 and 8.9 µW/m3, with a mean of 4.9 µW/m3. This classifies the intrusions as moderate- to 
high-heat-producing granites. Considering the huge volume of granitic bodies in the Variscan crust of the Bohemian 
Massif, the contribution of in situ radiogenic heat production had to have a major impact and should be considered in 
further thermal modeling. 
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on the surface heat flow. Hasterok and Chapman (2011) 
estimated that 26 % of the surface heat flow is generated 
by the upper continental crust. The new database GRAN-
ITE2017 has been set up to compile available data on 
worldwide granitic terrains of all ages (Artemieva et al. 
2017). Based on statistical analysis, first conclusions have 
been made on variation of bulk heat production of granites 
through geological time. These results show a peak in the 
Middle Proterozoic times and a gradual decrease towards 
younger (Cenozoic) intrusions. In contrast, Gard et al. 
(2019) found the heat production relatively constant from 
2.8 Ga to present. However, as there are strong variations 
in radioelement concentrations within individual granitic 
suites, more data are necessary to substantiate the database 
on radiogenic-heat production (RHP) of granites.

Much of the basement in Mid-Europe has been con-
solidated during the Variscan Orogeny (Fig. 1a). Large 
granitic terrains within the Variscan Belt are exposed e.g. 
in Central Iberia (Bea et al. 2003), the Corsica–Sardinian 
Batholith (Casini et al. 2015) and the Cornubian granites 
(Floyd 1972; Edwards 1984). Specific examples for heat 
flow anomalies include the Cornubian geothermal prov-
ince (Beamish and Busby 2016), the Iberian Peninsula 
(Fernández et al. 1998) or the Erzgebirge as part of the 
Bohemian Massif (Förster and Förster 2000).

1.	Introduction

From global geochemical models, the average heat 
production of the continental crust is estimated to be 
below 1 µW/m3 (Jaupart et al. 2016). Heat production 
rates of granites with a mean of 3.54 µW/m3 (Hasterok 
and Webb 2017) are well above this value and granites 
will represent distinct anomalies in the total crustal heat 
budget. These anomalies vary in magnitude depending on 
the age and composition of the granites that cause them 
(Vilà et al. 2010; Mareschal and Jaupart 2013; Jaupart et 
al. 2016). Heat is generated by the decay of radiogenic 
isotopes (mainly 40K, 232Th, 238U, 235U), the latter two 
elements mostly concentrated within accessory minerals 
such as zircon and monazite. These minerals are gener-
ally enriched in felsic magmas and granitic intrusions 
and (are considered as) main cause of accumulation of 
heat-producing elements in the upper crust (e.g., Bea 
1996, 2012). Especially granitic terrains are therefore 
in the focus of worldwide geothermal prospection (e.g., 
McLaren et al. 2003; Beardsmore 2004; Ledésert and 
Hébert 2012; Siégel et al. 2012; Chandrasekharam et al. 
2014; Adams et al. 2015; Lüschen et al. 2015). 

As radiogenic heat contributes significantly to the ther-
mal budget of the continental crust it has a major influence 
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The Bohemian Massif represents the largest exposure 
of Variscan crust in Europe and it was intruded by numer-
ous granitic bodies related to its long Variscan history 
(Fig. 1b; for review see Žák et al. 2014). It was charac-
terised by episodic melt generation with several magma 
pulses from Visean to Permian times (Schaltegger 1997). 
The orogenic processes triggered large-scale anatexis of 
the Variscan orogenic crust, exposed e.g. in the Bavar-
ian Forest (Kalt et al. 1999; Siebel et al. 2012). Wrench 
tectonics at the late stage of crustal convergence has also 
initiated melt propagation along fracture zones (Trzeb-
ski et al. 1997; Žák et al. 2014). In the Saxothuringian 
Zone, late- to post-Variscan uplift and exhumation was 
accompanied by intense felsic I-, S- to A-type magma-
tism (Förster and Romer 2010; Breiter 2012). Granites 
reflecting this complex history exposed along the western 
margin of the Bohemian Massif (e.g. Siebel et al. 2003; 
Finger et al. 2009; Siebel and Chen 2010; Fig. 1b) are 
target of this study. 

In addition to their significance for present-day heat 
flow anomalies in the Mid-European crust, the contribu-
tion of radioactive heating is also discussed as trigger 
mechanism for orogenic processes during the Variscan 
convergence (Gerdes et al. 2000; Lexa et al. 2011). 
However, inferences are based on thermal models that 

require reliable input data. Heat production data can be 
calculated from the radioelement concentrations in rock 
units (Rybach 1988), in turn obtained by geochemical 
analyses or by gamma radiation spectroscopic measure-
ments. The latter method is a widely used surveying 
technique both in rocks and soils (e.g. Frattini et al. 2006; 
Šimíček et al. 2012; McCay et al. 2014; Puccini et al. 
2014; Scharfenberg et al. 2016; Harley et al. 2017). In 
granitic terrains, an advantage of gamma-ray spectros-
copy over chemical analysis is the easier mapping and 
therefore better regional coverage (Gnojek et al. 2018; 
Scharfenberg et al. 2019). 

In this paper we have compiled heat production data 
from three study areas along the western Margin of the 
Bohemian Massif (Fig. 1b). The granites studied here 
are representative of Variscan intrusions with different 
petrogenetic signatures (Hecht et al. 1997; Siebel et al. 
1997). They cover the Saxothuringian Zone (Fichtelge-
birge, area 1), the Moldanubian Zone (Bavarian Forest, 
area 3) and the granite exposures in the transition zone 
in between these two Variscan units (Oberpfalz, area 2). 
We show here differences in heat production rates, Th/U 
ratios and radioelement concentrations between the 
studied areas, and attribute these to the regional changes 
in the petrogenetic evolution producing extensive I-type 
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magmatism in the Bavarian Forest and I- to S- type mag-
matism in the Saxothuringian Zone.

2.	Variscan granites along the western 
margin of the Bohemian Massif

During the Variscan Orogeny, thickening of the crust 
and northward directed propagation resulted in Car-
boniferous thrusting and stacking and associated 
metamorphism at 315–325 Ma (O’Brien et al. 1997). 
Late to post-orogenic granites (I-, S- and A-type) 
intruded this setting over a period of about 60 Myr 
(326 to 286 Ma; Siebel et al. 1997, 2003; Siebel and 
Chen 2010; Breiter 2012). Within all studied areas 
(Fig. 1b), the granite intrusions were related to a se-
quence of magmatic events. The Fichtelgebirge and 
Oberpfalz granites (study areas 1 and 2, see Fig. 1) 
are peraluminous to metaluminous S- to I-type granites 
that formed through anatexis of metasedimentary and 
metaigneous rocks in the middle or lower crust. The in-
trusions are commonly divided into an older (OIC) and 
a younger (YIC) granitic suites (Richter and Stettner 
1979; Hecht et al. 1997). Precursors of the granites, 
the redwitzites (diorites), are predominately metalu-
minous and interpreted as products of crystallization 
of a mantle-derived mafic magma (Kováříková et al. 
2007). For the OIC, a contribution of melt from deeper 
sources is considered and these granites range from  
S-type to transitional I-/S-type (Siebel et al. 1997, 
2003 and references therein). Granites in the Bavarian 
Forest (study area 3) are classified as monzogranites 
varying from weakly peraluminous biotite granites to 
moderately or strongly peraluminous biotite ± musco-
vite granites (Siebel and Chen 2010 and references 
therein). Table 1 gives an overview of the petrography, 
ages and textural facies of the studied granites.

2.1.	Area 1: Fichtelgebirge

Intrusions of dioritic to granodioritic composition 
(redwitzites, local name for diorites) occurred at c. 323 
Ma (Siebel et al. 2003), representing the initial phase 
of late-orogenic magmatism in the Fichtelgebirge 
(Fig.  1b). The geochemical and isotopic signatures 
show that these rocks were derived by mixing between 
mafic and felsic magmas (Siebel and Chen 2010). The 
first pulse of granitic magma, the OIC, gave crystal-
lization ages of 326–324 Ma (Hecht et al. 1997; Siebel 
et al. 2003), thus overlapping with the redwitzites. This 
first pulse of granitic magma had I-type affinity and 
the OIC–Redwitzite Suite was interpreted as a product 
of partial melting of crustal rocks triggered by, and 
mixed with, mantle-derived melts (Siebel et al. 1997, 

2003). In the Fichtelgebirge, the emplacement of the 
younger suite of S-type granites (YIC) is confined to 
an age range of 298 to 286 Ma (see Tab. 1). Besides 
the biotite–muscovite granites, a further granite type 
occurs (G2K and G3K, Kösseine granites – Förster 
2000). These granites are inhomogeneous, less evolved 
monzogranites, rich in peraluminous minerals (garnet, 
cordierite, sillimanite) due to uncomplete restite sepa-
ration. Thomas and Klemm (1994) have constrained 
the intrusion depth of the highly fractionated G4 Tin 
Granite by analysis of melt inclusions. The shallow 
intrusion (< 5 km) occurred into already uplifted OIC 
and YIC granites underlining the rapid late Variscan 
exhumation. A pre-Permian uplift of at least 7 km has 
also been inferred from microstructural analyses on 
Saxothuringian basement rocks (de Wall et al. 2019). 
Granites of the Fichtelgebirge area have been subject 
of a previous study on natural gamma radiation and 
heat production (Scharfenberg et al. 2016). Results of 
this study are included here for comparison.

2.2.	Area 2: Oberpfalz

The weakly peraluminous OIC biotite granites in the 
Oberpfalz area (Zainhammer–Leuchtenberg Granite, 
324 to 321 Ma, Siebel et al. 2003) form a NW–SE 
trending belt. Redwitzites as precursors of the gran-
ites are locally aligned. The Older Intrusive Complex 
(OIC) granite emplacement was modelled as a steep 
sheet intrusion into a transpressional wrench fault  
(Trzebski et al. 1997). The Younger Intrusive Complex 
(YIC) biotite–muscovite to muscovite granites (Falken-
berg, Steinwald, Friedenfels and Flossenbürg types), 
cover an age range of 315 to 310 Ma (Tab. 1). These 
plutons have been intruded along fault intersections 
within the Moldanubian–Saxothuringian suture zone. 
Largest intrusion of this younger suite is the Falkenberg 
Granite, whose depth of intrusion was constrained at 9 
to 12 km (Zulauf et al. 1997).

2.3.	Area 3: Bavarian Forest

The Bavarian Forest is a part of the Moldanubian 
Zone, high-grade core of the internal part of the Va-
riscan Orogen (Schulmann et al. 2009). Diorites to 
granodiorites have been emplaced along deep reach-
ing lineaments in the continental crust, e.g. the palites 
(granodiorites with mafic enclaves) along the Bavarian 
Shear Zone (332 Ma, Siebel et al. 2005). In contrast, 
diorites of the Fürstenstein Massif (334–332 Ma, Chen 
and Siebel 2004) are considered to be emplaced in 
tension gashes as an early magmatic phase (Dietl et 
al. 2006). Regional high-temperature metamorphism 
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associated with migmatization of Moldanubian rock 
in the Bavarian Forest is constrained between 326 and 
322 Ma (Kalt et al. 2000; Siebel et al. 2012). This 
event was accompanied by intrusion of large batches of 
granites, e.g. in the Fürstenstein and Hauzenberg plu-
tons, both formed by different intrusive pulses between 
330 and 320 Ma (Tab. 1). These intrusions are studied 
here in detail as representatives of the Moldanubian 
granitic magmatism. In contrast to the areas 1 and 2, 
the Bavarian Forest (Fig. 1b) exposes a deeply eroded 
middle- to lower continental crust (Kalt et al. 2000). 
Depth of the granite intrusion has been estimated at 16 
to 18 km for the Hauzenberg Pluton (phengite barom-
etry, Klein et al. 2008).

3.	Methods

3.1.	Measurements of natural gamma  
radiation

In situ gamma-ray spectra were acquired on outcrops, 
covering the various granite types and some of the 
typical host rocks. During field campaigns in 2014 
and 2018 we collected a total of 829 assays on in 
situ exposures of granitoids (granites, granodiorites, 
diorites) in the three key areas with a portable gamma-
ray spectrometer (all obtained data are summarized 
in Electronic Supplementary Material, ESM 1). In 
addition, some granitoids belonging to host rocks of 

Tab. 1 Petrography, age and textural facies of the studied granitoids 

Rock type Petrography Age
Area 1: Fichtelgebirge

Redwitzites (diorites) 
I-type diorites Fine- to medium-grained granodiorite to gabbro 323 Ma2

Older Intrusive  
Complex (OIC)
I-type to S-type  
granites

G1, porphyritic granite Porphyritic, medium- to coarse-grained biotite granite 324.2 ± 4.2 Ma2

G1R, “Reut Granite” Fine- to medium-grained, slightly porphyritic biotite granite 326 ± 2 Ma1

G1HS, “Holzmühl Granite” Medium- to coarse-grained two-mica granite,  
only local occurrence

G1S, “Selb Granite” Fine- to medium-grained two-mica granite 326 ± 2 Ma1

G1Sm, muscovite granite Fine- to medium-grained muscovite granite, occurs in the Czech 
part of the Fichtelgebirge/Smrčiny Pluton

Younger Intrusive  
Complex (YIC)
S-type granites

G2, “Rand Granite” Porphyritic, fine- to medium-grained two-mica granite 298.5 ± 3.9 Ma1

G3, “Kern Granite” Medium- to coarse-grained two-mica granite 291.2 ± 6.4 Ma1

G4, “Tin Granite” Medium- to coarse-grained two-mica granite 298.2 ± 1.61

G2*, “Rand Granite” Weakly porphyritic, fine- to medium-grained two-mica granite 289 ± 2 Ma1

G2K, “Kösseine Granite” Medium-grained, weakly porphyritic biotite granite 287 ± 3 Ma1

G3K, “Kösseine Kern Granite” Coarse-grained, garnet- and cordierite-bearing biotite granite 286 ± 26 Ma1

Area 2: Oberpfalz
Redwitzites
I-type diorites Fine- to medium-grained granodiorite to gabbro) 323 Ma2

Older Intrusive  
Complex (OIC)
I-type to S-type  
granites

Le, Leuchtenberg
Medium- to coarse-grained porphyritic  biotite monzogranite–gra-
nodiorite2); in the southern part  fine- to medium-grained muscovite 
granite1) 324–321 Ma2

Za, Zainhammer Fine–medium-grained, partly porphyritic monzogranite2)

Younger Intrusive  
Complex (YIC)
S-type granites

Fa, Falkenberg Porphyritic two-mica granite)

~315 Ma2

Li, Liebenstein Coarse-grained, ± porphyritic muscovite monzogranite2)

Fr, Friedenfels Medium-grained ± porphyritic muscovite  leucogranite2)

312–310 Ma2St, Steinwald Medium-grained ± porphyritic muscovite  leucogranite2)

Fl, Flossenbürg Medium grained ± porphyritic muscovite  leucogranite2)

Area 3: Bavarian Forest

Hauzenberg Pluton
S-type granites

Hauz1 Granite Fine- to medium-grained two-mica granite 319 ± 3 Ma3

Hauz2 Granite Medium- to coarse-grained, two-mica granite 329 ± 7 Ma3

HauzGd, “Granodiorite” Fine-grained, biotite-bearing granitoid 319 ± 4 Ma3

Fürstenstein Pluton
I-type diorites, I- to  
S-type granites

Dt, “Diorites” Fine- to medium-grained, heterogeneous diorites to granodiorites 334–332 Ma4

Bt Ms Gr/Two-mica Granite Fine- to medium-grained biotite–muscovite granite
324–321 Ma4

Ti, Tittling Granite Medium- to coarse-grained granite to granodiorite
Eb, Eberhardsreuth Granite Medium-grained biotite granite 318–312 Ma4

Sa, Saldenburg Granite Porphyritic, medium- to coarse-grained biotite granite 316–312 Ma4

 1Rb–Sr whole rock dating by Carl and Wendt (1993); 2Pb–Pb zircon evaporation dating by Siebel et al. (2003); 3U–Pb zircon and monazite dating 
by Klein et al. (2008);, 4Pb–Pb zircon evaporation dating by Chen and Siebel (2004)
Abbreviations used in Figures 3 and 6 are indicated
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influence the remaining elements (Grasty et al. 1991; 
Radiation Solutions 2007).

For quality control of the gamma radiation (GR) 
data, comparison with geochemical data is necessary. 
Previously, we have substantiated the general sig-
nificance of indirect GR measurements with the RS 
230 equipment (Scharfenberg et al. 2019). This study 
showed good correlation of U and Th concentrations 
derived from in situ measurements and data measured 
by ICP-MS.

3.2.	Heat production

For calculation of the radiogenic heat production (RHP) 
(A in µW/m3), the radioelement concentrations from 
surface measurements are considered using the equation 
of Rybach (1988):

A = 10–5 ρ(9.52cU+2.56cTh+3.48cK)

where ρ is the density of the rock in kg/m³, cU is the 
U concentration in ppm, cTh is the Th concentration in 
ppm, and cK is the K concentration in wt. %. The heat 
production constants (W/kg) are 9.52 for U, 2.56 for 
Th and 3.48 for K. These values reflect the contribu-
tion of each of the radioelements to the radiogenic heat 
production, which is highest in U, followed by Th and 
K. Densities from the literature (if available) are used 
for the calculations (see Tab. 2). Otherwise, our own 
measurements in isopropanol, applying the buoyancy 
technique (Archimedes’ principle), completed the da-
tabase (Tab. 2). 

For the Oberpfalz area (study area 2, Fig. 1b) we 
have included airborne GR measurements (Röttger et al. 
1991) in addition to the in situ values. It has been shown 
(e.g. for the Cornubian geothermal province, Beamish 
and Busby 2016) that such data sets can be helpful to 
construct maps delineating the regional thermal structure. 
However airborne measurements cannot be compared 
directly with in situ ones. This is because the former 
are strongly influenced by attenuation of soil coverage, 
whereas for the latter, fresh outcrops are selected for data 
sampling. In order to overcome the generally large differ-
ences in calibration of GR facilities, Th concentrations 
obtained by both methods have been compared (Scharf-
enberg and de Wall 2016). They show a good linear cor-
relation, and airborne data have been corrected accord-
ingly for calculation and presentation of heat production 
data (Fig. 2a). For quality control, the corrected data are 
compared with other laboratory data (field laboratory of 
the Continental Deep Drilling Program, Windischeschen-
bach) and data from Falkenberg drillhole (Haack et al. 
1991) located within this granite massif in vicinity to the 
survey area (Fig. 2b).

the intrusions have also been evaluated. This indirect 
detection of potassium, uranium and thorium by means 
of gamma-rays emitted by their decay products has 
been used as database for calculation of the radiogenic 
heat production (RHP) of granites in western sector of 
the Bohemian Massif. 

Gamma radiation was recorded with a portable 
gamma-ray spectrometer RS 230 manufactured by Radia-
tion Solutions, Ontario, Canada. The instrument uses a 
bismuth germinate (BGO) scintillation detector that, on 
account of higher material density, is about 50 % more 
precise than portable units using a sodium iodide (NaI) 
detector with a crystal of the same size. Due to its small 
size (25 cm long, 10 cm wide), and light weight (2 kg) it 
is easy to carry and use in the field. Measurements were 
taken in the “assay-mode”, i.e. each represented a single 
estimation of thorium and uranium (in ppm) and potas-
sium (wt. %) concentrations from the gamma-radiation 
spectrum. Coordinates of individual sites were recorded 
using a GPS connected to the spectrometer via Bluetooth. 
The instrument could be also useful for quick scanning 
of the total γ-radiation count of rocks, which is studied 
in its ‘survey mode’.

Acqusition time of 120 s was chosen to allow suf-
ficient time to establish a stable spectrum. The device 
integrates an area of c. 1 meter in diameter with a depth 
of c. 15–25 cm (depending on material density) when 
in direct contact with the outcrop (Radiation Solutions 
2009). The values used for stripping and background 
correction were provided by the manufacturer and are 
stored and applied in the spectrometer unit itself (Ra-
diation Solutions 2009). The manufacturer used con-
crete pads of 1 m × 1 m × 30 cm size containing known 
amounts of potassium, uranium and thorium and a 
fourth pad with none of these three elements to measure 
the background for the instrument calibration (details 
in Grasty et al. 1991). During calibration by the manu-
facturer, spectra are accumulated over a time period of 
5 minutes on the K, U and Th pads, and 10 minutes on 
the Background pad with no radioelements (Radiation 
Solutions 2008). Then stripping ratios and sensitivity 
constants are computed following Grasty et al. (1991). 
These are finally saved in the device and utilized during 
field measurements to calculate the unknown wt. % K, 
and ppm eU and eTh. 

For interpretation of the calculated K, U and Th con-
centrations, possible uncertainties during the data acquisi-
tion need to be taken into account. The three main error 
sources are: (i) statistical errors due to background noise 
during registration of the gamma rays, (ii) calibration 
errors and (iii) geometrical errors if the rock exposure 
strongly deviates from a homogenous half-space of 
material. Furthermore, possible cross interferences can 
occur as error components for a single element will also 
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4.	Results

4.1.	Natural gamma radiation of granites

Uranium and thorium concentrations as well as Th/U 
ratios are useful parameters in the characterization of 
granitic rocks (Artemieva et al. 2017). Both are incom-
patible elements, with Th slightly more incompatible than 
U in major silicates (Kirkland et al. 2015). During partial 
melting, their ratio does not change significantly and thus 
Th/U ratios often reflect source variations. 

The granite intrusions show differences in total 
radiation and distinct concentrations and ratios of the 
radiogenic elements between the three areas (Tab. 2). 
The U concentrations in the Fichtelgebirge (7 to 13 
ppm) and the Bavarian Forest (4 to 10 ppm) are com-
parable, except for G4 (Tin Granite, Fichtelgebirge) 
reaching 25 ppm. Compared to the two other areas, the 
Oberpfalz granitoids are characterized by more vari-
able and higher U content (8–22 ppm; Tab. 2). The YIC 
granites tend to have higher U concentrations than the 
OIC ones (Tab. 2). The Th content in all granites is less 

Tab. 2 Compilation of gamma radiation data

Intrusion complex Rock type N
eK [%] eU [ppm] eTh [ppm]

Th/U 1σ
density

Mean 1σ Mean 1σ Mean 1σ [kg m3]

Area 1: Fichtelgebirge(compiled from Scharfenberg et al. 2016)

Preceding intrusions Redwitzites 8 3.1 0.6 7.4 2.1 36.0 6.5 5.1 1.1 28501

OIC

G1 46 5.0 1.1 7.0 1.8 34.1 9.6 5.3 2.4 26801

G1R 19 5.0 0.7 9.6 1.8 38.3 5.0 4.1 1.1 26701

G1S 2 5.0 nd 7.9 nd 29.4 nd 3.8 nd 26401

G1HS 18 5.4 0.6 10.6 3.1 19.0 7.0 2.1 1.3 26501

MEAN OIC 93 5.1 0.2 8.8 1.4 30.2 7.2 3.8 1.1

YIC

G2 23 5.1 0.6 10.3 2.5 28.6 12.9 3.0 1.8 26401

G3 101 5.2 0.5 13.1 6.1 22.9 6.3 2.2 1.2 26441

G2K 24 5.3 1.2 10.2 3.3 20.5 5.5 2.1 0.9 26501

G3K 22 6.1  0.6 7.6 1.8 29.3 5.4 4.2 1.4 26601

G4 15 4.9 0.4 24.6 6.7 14.7 4.6 0.7 0.3 26501

MEAN YIC 185 5.3 0.3 13.1 2.0 23.2 3.0 2.4 0.5

Area 2: Oberpfalz

Preceding intrusions Redwitzites 3 2.8 0.1 2.9 0.5 17.6 0.4 6.3 1.4 28501

OIC
Leuchtenberg 22 5.0 0.5 8.4 1.9 23.5 9.5 3.0 1.5 26302

Zainhammer 6 5.9 0.5 7.6 2.6 22.2 5.8 3.6 2.4 2630
MEAN OIC 31 5.2 0.6 8.2 2.1 23.2 8.9 3.1 1.7

YIC

Falkenberg 29 5.9 0.5 14.4 3.2 40.7 4.8 2.9 0.6 26003

Friedenfels 14 4.8 0.4 14.1 3.5 9.6 1.0 0.7 0.2 25902

Steinwald 33 4.6 0.5 21.2 7.4 4.5 1.2 0.2 0.1 25902

Flossenbürg 18 5.7 0.5 27.9 16.4 21.9 2.7 1.1 0.6 26102

MEAN YIC 94 5.3 0.6 19.4 5.7 19.2 13.9 1.2 1.0

Area 3: Bavarian Forest

Hauzenberg Pluton
Granodiorite 58 4.62 0.64 4.72 2.16 21.71 10.66 4.77 1.7 26804

Hauzenberg II 62 5.61 0.56 8.77 2.95 16.23 2.49 2.06 0.76 26604

Hauzenberg I 61 5.89 0.4 9.83 2.65 24.18 6.36 2.64 1.03 26604

Host rock Granite (host rock) 24 5.47 1.17 5.58 2.17 37 13.05 7.75 4.71 26604

Fürstenstein Intrusive Complex

Diorites
Bt Qtz Diorite 12 4.4 0.95 6.2 1.86 24 6.98 4 0.63 27244

Hbl–Bt Diorite 37 5.2 0.75 7.4 2.64 24.3 6.15 3.6 1.43 26414

Granites

Tittling Granite 22 4.8 0.39 7.6 1.90 28.9 3.96 4 0.80 26954

Saldenburg Granite 89 5.6 0.67 8.5 2.92 56.7 12.63 7.4 2.68 26694

Eberhardsreuth Granite 10 4.8 0.27 4.3 0.87 24.2 2.35 5.9 1.49 26534

Two-mica Granite 41 4.6 1.02 5.4 1.60 27.1 5.02 5.3 1.45 26574

The prefix e- indicates an indirect detection of U and Th by means of gamma rays emitted by their decay products;
nd: not determined. 
Density: 1Hecht et al. (1997); 2cited in Siebel et al. (1997); 3own measurements, 4 literature data for density of the Falkenberg Granite range 
between 2620 and 2590.
Data of individual measurements, including GPS coordinates for sampling sites, are included in the Electronic Supplementary Material (ESM 1)
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than 40 ppm except for the Saldenburg intrusion in the 
Bavarian Forest that has significantly higher mean Th 
content (56.7 ppm; Tab. 2).

Differences in the radiogenic signature are best 
displayed in binary plots of Th vs. U for the three ar-
eas studied (Fig. 3). All granite batches related to the 
Fichtelgebirge Pluton (area 1), except for the youngest 
intrusion (G4) and all the granites in the Bavarian Forest 
(area 3), are characterized by Th/U ratios exceeding 1. 
In contrast, the pattern is more variable for the Ober-
pfalz (area 2). Here, the older granites (Leuchtenberg, 
Zainhammer) and the Falkenberg Granite (the oldest 
granite in the YIC; Tab. 1) plot in the Th/U > 1 field, 
whereas the younger granites (Friedenfels, Steinwald 
and Flossenbürg) have higher U and lower Th values 
with Th/U < 1.

The Th vs. Th/U plot for the three areas displays 
a single cluster and defines a linear positive trend 
(Fig. 4a). The Fichtelgebirge granites reach lower values 
than the Bavarian Forest granites (Fig. 4b). The Ober-
pfalz granites are the most variable, showing also the 
lowest values (Fig. 4c). The Bavarian Forest granites 
yield the highest Th/U ratios and Th concentrations 
(Fig. 4d).

4.2.	Radiogenic heat production

4.2.1.	Variability of heat production

The radiogenic heat production was calculated using 
the formula of Rybach (1988) considering differences in 
density of the granitoids (Tab. 2). Statistic parameters are 
shown in Tab. 3. We classified the heat potential of the 
studied intrusive rocks into low-, moderate-, and high-
heat-producing granites (Fig. 5). For this classification, 
we have used a lower limit of 4 µW/m3 for moderate and 
8 µW/m3 for high heat productions, respectively. These 
thresholds follow the scheme established by Huston ed. 
(2010) for granitic intrusions in Queensland, Australia. 

In our case, granites from the older intrusive suites 
in areas 1 and 2 are characterized by heat production 
rates of 4–6 µW/m3 and thus fall into the lower sector of 
moderate-heat-producing granites (Fig. 5). Average heat 
production rates of 4.8 and 4.0 µW/m3 are calculated 
for older granites of areas 1 and 2; the averages for the 
younger granites in these areas are slightly higher (5.5 
for the area 1 and 6.5 µW/m3 for the area 2 – Tab. 3). The 
intrusive complexes studied in Bavarian Forest (area 3) 
cannot be assigned to either older or younger complexes.
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4.2.2.	Heat production distribution

The data from the 829 assays have been used for con-
struction of heat production maps (Fig. 6). In the maps 
the average RHP values (Tab. 3), are used for defining 
heat production ranges. The average values show a 
wide spread between less than 2.5 and more than 7.5 
µW/m3. The maps visualize the RHP variability within 
studied granitic areas and highlight regions of high 
heat production. All three studied areas contain some 
granites with elevated RHP. In the Fichtelgebirge, 
the G4 granite has values greater than 7 µW/m3 (Fig. 
6, area 1); however, with an exposed area of 15 km2 
this type of granite covers only a minor part of the 

Smrčiny–Fichtelgebirge Composite Massif (less than 
250 km2). In the Oberpfalz area, the Flossenbürg and 
the Falkenberg granites with average RHP of 8.9 µW/
m3 and 6.8 µW/m3 cover larger areas of 54 km2 and 
98 km2, respectively. These intrusions have to be con-
sidered as volumetrically significant heat-producing 
bodies. Youngest intrusion within the Fürstenstein 
Intrusive Complex in the Bavarian Forest is the high-
heat-producing Saldenburg granite (6.6 µW/m3). The 
exposed area (87 km2) of this granite type accounts for 
70 % of the whole Complex. However, these exposed 
areas represent the present erosional level and for an 
estimate of the total heat contribution, volumetric 
constraints are needed. 
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5.	Discussion

5.1.	Th and U variations

The average Th/U ratio of the continental crust is estimated 
at c. 4 (Rudnick et al. 1998; McLennan and Taylor 1996; 
Jaupart and Mareschal 2003) and igneous rocks have on 
average Th/U ratios between 3 and 4 for most values of 

SiO2, even though rocks with a low silica content show a 
larger variability (Hasterok et al. 2018). Globally, there is 
a variation in the Th/U ratio in felsic rocks between less 
than 1 and over 10 (Hasterok et al. 2018). Mafic magmatic 
rocks have a slightly lower Th/U ratio compared with the 
felsic ones. Zircons from a range of mafic to felsic samples 
show a similar trend in Th/U ratios (Kirkland et al. 2015). 
While this trend is statistically significant, the variation 

Tab. 3 Calculated heat production for intrusions in the studied areas

Intrusion complex Rock type N
Mean value (Fig. 6) Boxplot (Fig. 5)**

A (µW m–3) 1σ min max Median 
 

LQ  UQ  

Area 1: Fichtelgebirge*

Preceding intrusions Redwitzite (diorites) 8 4.95 1.03 nd nd nd nd nd

OIC

G1 46 4.60 0.65 3.29 5.85 4.40 4.14 5.18
G1R 19 5.52 0.70 4.49 6.95 5.40 4.99 6.12
G1S 2 4.42 nd nd nd nd nd nd
G1HS 18 4.46 0.64 3.45 4.63 4.51 4.01 4.74
MEAN OIC 93 4.75 0.45  

YIC

G2 23 5.22 0.73 3.44 6.37 5.30 4.70 5.85
G3 101 5.32 1.57 2.31 9.57 5.07 4.31 6.26
G2K 24 4.55 0.87 3.52 6.54 4.38 4.01 4.69
G3K 22 4.47 0.53 3.20 5.27 4.61 4.23 4.81
G4 15 7.64 1.85 4.19 10.63 7.86 6.69 8.90
MEAN YIC 185 5.55 1.81  

Area 2: Oberpfalz

Preceding intrusions Redwitzite (diorites) 3 2.40 0.10 nd nd nd nd nd

OIC
Leuchtenberg 22 4.10 0.70 2.66 5.62 4.21 3.52 4.55
Zainhammer 6 3.90 0.60 2.83 4.92 3.99 3.76 4.11
MEAN OIC 31 4.00 0.10  

YIC

Falkenberg 29 6.80 1.00 4.77 8.35 7.02 6.11 7.55
Friedenfels 14 4.50 0.90 2.87 6.23 4.35 3.89 5.29
Steinwald 33 6.00 1.80 3.27 10.74 5.83 4.44 7.16
Flossenbürg 18 (26)* 8.90 4.00 3.87 16.89 8.00 5.49 12.93
MEAN YIC 94 6.50 1.60  

Area 3: Bavarian Forest

Hauzenberg Pluton
 

Granodiorite 58 3.12 1.28 1.14 4.88 3.79 1.70 4.21
Hauzenberg II 62 3.85 0.82 2.50 5.48 6.62 3.26 4.51
Hauzenberg I 61 4.68 0.76 3.34 7.17 4.58 4.14 5.10
Granite (host rock) 24 4.44 1.12 0.89 6.59 4.65 3.70 4.97
Mean 181 3.88  

Fürstenstein Intrusive Complex (FIC)  

Early intrusions
Bt Qtz Diorite 12 3.90 0.89 2.38 5.51 3.36 2.99 4.53
Hbl–Bt Diorite 37 4.00 0.83 2.60 6.36 4.02 3.49 4.57

Granites

Tittling Granite 22 4.40 0.69 3.08 6.04 4.39 3.80 4.82
Saldenburg Granite 89 6.55 1.24 4.52 10.37 6.38 5.54 7.32
Eberhardsreuth Granite 10 3.20 0.26 2.54 3.50 3.24 3.03 3.32
Bt–Ms Granite 41 3.70 0.69 2.39 5.31 3.62 3.07 4.13

  Mean FIC 211 4.24 1.10  
*	 Excluding measurements from U-enriched fault planes
**	 min (minimun) and  max (maximum) refer to lowest and highest values, median to 50 %, LQ to first quartile (25 %), UQ to third quartile  
	 (75 %) of data distribution
Data of individual measurements including coordinates for sampling sites are available in the Electronic Supplementary material (ESM 1)
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is relatively small with respect to the natural variability. 
Overall, a constant Th/U ratio of c. 4 in granites seems to 
give a reasonable estimate for the U and Th concentrations 
(e.g. Artemieva et al. 2017; Hasterok et al. 2018).

This study shows that the Th/U ratio can vary over 
two orders of magnitude even within one area (Fig. 4) 
implying that source heterogeneities are greater than 
previously assumed. The variation in Th/U ratios as 
well as Th and U concentrations caused by different 
source compositions and degree of melting may be 
further modified by fractional crystallization, fluid 
mobilization and/or magma mixing. However, except 
for the redwitzites, the magma mixing does not seem 
to have occurred on a major scale in the studied area 
(Hecht et al. 1997; Chen et al. 2003; Siebel and Chen 
2010). The Th and U heterogeneities had to be partly 
inherited from the source, because the spread in Th/U 
ratios is too large to be explained by degree of melting, 

fractional crystallization or fluid mobilization pro-
cesses alone. This is especially the case for intrusions 
of different ages or locations (see Tabs 1–2). As Th is 
more incompatible than U, more enriched sources have 
higher Th/U ratios and Th concentrations. This could 
imply that the granitoids from the Bavarian Forest 
and the Fichtelgebirge have on average more enriched 
sources compared to those from the Oberpfalz. The 
extremely low Th/U ratios (below unity) in the Ober-
pfalz granites, if compared to the other two regions, 
are mainly due to high U and low Th concentrations 
(Fig. 3). 

However, fractional crystallization of accessory miner-
als, especially zircon and monazite, but also xenotime, 
could have added to the variation of these granites (e.g. 
Miller and Mittlefehldt 1982; Hecht et al. 1997, 1999; 
Chen et al. 2003; Siebel and Chen 2010), contributing to 
the trend in Fig. 4. The fractionation of monazite lowers 
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both the Th/U ratio and the Th concentration. In contrast, 
zircon fractionation increases the Th/U ratio, because 
zircon has very high U concentrations. This could explain 
the spread within individual intrusions of the same age 
and source. For instance, the high Th/U ratios of the dio-
rites from the Bavarian Forest are probably due to zircon 
fractionation (Fig. 4). 

Hydrothermal vein-type, fault-, and shear zone-host-
ed uranium deposits are widespread in the Variscan Belt 
of Mid-Europe (Kříbek et al. 2009 and references there-
in). As the Oberpfalz granites have intruded along fault 
intersections with the Moldanubian–Saxothuringian 
contact zone and as their low Th concentrations point to 
a depleted source, it is possible that the high U concen-
trations are due to U remobilization. Paleozoic shales 
could be the source of the uranium (Romer and Cuney 
2018). Fluid mobilization can change the U, but does 

not affect the Th concentrations. The reason is that the 
U is far more mobile because of metamictization and 
increased solubility in oxidized environment, where it 
forms an uranyl anion. In contrast, Th remains firmly 
bound in the crystal lattice.

Interestingly, the YIC of the Fichtelgebirge and the 
Oberpfalz tend to have lower Th/U ratios compared 
to the OIC granites and are therefore less enriched. 
This hints to different sources of the OIC and YIC. 
Here the low Th/U ratios are mostly due to high U 
concentrations (average U concentrations in the OIC 
are less, and in the YIC more than 10 ppm. The high 
U concentrations are probably due to U remobilization. 
Addition or removal of U does have a much larger 
impact on samples with low Th concentrations, but 
could partly also have affected those with higher Th 
and U concentrations. 
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5.2.	Heat-producing classification and  
comparison with other granitic terrains

Variable average and median values of RHP in granites 
can be found in the literature, e.g. 2.83 µW/m3 and 2.43 
µW/m3 (Vilà et al. 2010) or 3.54 µW/m3 and 2.79 W/
m3 (Hasterok and Webb 2017). The difference is due 
to variations in age and petrogenetic setting within the 
compiled data sets. Artemieva et al. (2017) calculated 
an average of 2.79 µW/m3 for Phanerozoic granites 
worldwide, while Proterozoic granites show higher and 
widespread values of 3.83 ± 2.14 µW/m3. However, most 
of the data considered by Artemieva et al. (2017) were 
derived from high-heat-producing, A-type granites of 
Australia (Neumann et al. 2000; McLaren et al. 2005; 

Hasterok and Gard 2016) and thus might not be repre-
sentative. A-type granites (Loiselle and Wones 1979; 
Eby 1992) are typical of intra-plate, often anorogenic 
settings. They are the most abundant in Proterozoic 
terranes, such as the Malani Igneous suite in NW India 
(Eby and Kochhar 1990; de Wall et al. 2018), and are 
characterized by generally high radioelement concen-
trations (Scharfenberg et al. 2015, 2019) resulting in 
higher RHP (Singh and Vallinayagam 2012). Therefore 
A-type granites commonly rank to high-heat-producing 
granites (HHP granites). 

Here, we show that granites from the western mar-
gin of the Bohemian Massif display a large spread in 
RHP (see Tab. 3). Averages range 3.9–8.9 µW/m3 and 
median values 3.2–8.0 µW/m3. Such variations can 
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be either related to different source rocks, or distinct 
petrogenesis (Vilà et al. 2010; Artemieva et al. 2017), 
including fractionation of felsic magma as has been 
reported for the Fichtelgebirge and Oberpfalz granites 
(Hecht et al. 1997; Siebel et al. 1997). Precursors 
of the granites, the redwitzites (diorites), are pre-
dominately metaluminous and interpreted as mantle-
derived mafic magma (Kováříková et al. 2007). For 
the OIC, a contribution of melt from deeper sources 
is considered and these granites range from S-type 
to transitional I-/S-type (Siebel et al. 1997, 2003 and 
references therein). 

For redwitzites in the Fichtelgebirge, the mean RHP 
is higher (4.95 µW/m3) than in the Oberpfalz granites 
(2.40 µW/m3). The RHP of 4.8 µW/m3 for OIC gran-
ites in the Fichtelgebirge and 5.3–5.6 µW/m3 for YIC 
units fall in the same range as reported for I- to S-type 
granites in the Erzgebirge (Förster and Förster 2000; 
Scharfenberg et al. 2016). A-type granites with RHP > 
10 µW/m3 reported from other areas in the Bohemian 
Massif (Förster and Förster 2000; Breiter 2012) are 
not exposed in the studied areas. Nevertheless some 
of the measured granites display high RHP values, 
e.g. the G4 intrusion (7.6 µW/m3) a fluorine-enriched 
Tin Granite in the Fichtelgebirge (area 1; Irber et al. 
1997; Förster et al. 2008). Furthermore some of the 
Oberpfalz granites emplaced along the Moldanubian–
Saxothuringian suture zone (area 2) are characterized 
by higher U concentrations resulting in Th/U < 1. 
There is indication for general U enrichment along this 
lineament, associated with carbon-rich sedimentary 
units and mobilization during hydrothermal processes 
(Bültemann 1979; Stettner 1979; Dill and Weiser 
1981). High U-values are typical of the Flossenbürg 
intrusion. The long axis of the oblong shape of this 

intrusion is parallel to the late-Variscan faults and such 
setting might have caused the remobilisation of U as 
described above. Krušné hory granites in continuation 
of the suture line into the Czech Republic also show 
Th/U < 1 due to elevated U concentrations of 10 to 27 
ppm (Krešl et al. 1978).

In the Bavarian Forest, higher RHP values of the 
Saldenburg Granite are related to the high Th concentra-
tions in this latest pulse of the large composite Fürsten-
stein Massif (Chen and Siebel 2004). The high Th con-
centrations can be explained by abundance of monazite 
crystallized during this late-stage granite formation.

There is no consensus on the RHP threshold to qualify 
granite as a HHP one. The most intensely studied area for 
geothermal potential is Australia. Based on a large data 
set on RHP of igneous rocks in Queensland, granites with 
values greater than 5 μW/m3 were considered as HHP 
granites (Siégel et al. 2012). However, a report on the 
assessment of geothermal potential in North Queensland 
(Huston ed. 2010) proposed a threshold of 8 µW/m3 for 
high-heat-producing granites and a range of 4 to 8 µW/
m3 for moderate-heat-producing granites.

Based on the radioelement concentrations from all 
829 assays over the three areas studied in this project, 
a mean RHP of 4.9 ± 1.8 µW/m3 is calculated (Fig. 7). 
In summary, it can be stated that the Variscan granites 
along the Western Bohemian Massif can be regarded as 
moderate- to high-heat-producing, whereby RHP values 
in the granites of the Saxothuringian and the transition 
zone (areas 1, 2) are slightly higher than those in the Ba-
varian Forest (area 3). Taken together, the detailed heat 
production data provided here complement the existing 
compilations for heat production of granites in the Bo-
hemian Massif (Klomínský et al. 2010), with attendant 
implications for further thermal modelling. 
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5.3.	Consequences for regional tectono- 
-magmatic processes 

Melting of continental crust, migration and emplace-
ment of granitic melts is the most important mechanism 
for enrichment and redistribution of heat-producing 
elements (HPE) in the middle and upper crust (e.g. San-
diford and McLaren 2002 and references therein). San-
diford et al. (2002) emphasized that long-term tempera-
ture changes due to redistribution of HPEs occur over 
timescales appropriate to the conductive response of the 
lithosphere, while on shorter timescales the temperature 
field will include thermal transients. The large volumes 
of granitoids that have intruded the continental crust in 
the late phase of the Variscan Orogeny must have caused 
an immense thermal pulse related to (i) heat transfer by 
the granitic melts into the host rocks and (ii) subsequent 
heat generation by in situ decay of radiogenic elements 
in already emplaced granitoid plutons. Magma ascent 
would always preferentially follow zones of weakness 
within the Earth’s crust and emplacement of granitoids 
into shear zones can facilitate and trigger rapid exhu-
mation of orogens (Faccenda et al. 2008; Závada et 
al. 2018; Tiwari and Biswal 2019). This has also been 
inferred for rapid exhumation of Variscan crustal blocks 
in the Bohemian Massif, e.g. by melt-controlled strain 
softening during uplift of Moldanubian rocks along the 
Central Bohemian Shear Zone (Scheuvens and Zulauf 
2000). 

Heat generation by decay of radiogenic elements 
can result in high internal heat production especially 
in thickened continental crust. During continent–con-
tinent collision the thickness of the continental crust 
in orogenic belts can exceed 60 km instead of 25–30 
km, typical of a buoyancy-equilibrated crust. Stacking 
of crustal slices enriched in RHP elements by tectonic 
or magmatic processes and the thermal conductivity 
profile are first-order parameters determining the ther-
mal structure and gravitational instability of the crust 
(e.g. Gerya et al. 2002). The insulation of underlying 
fertile radiogenic crust by overlaying lithological units 
with relatively lower thermal conductivity is important 
for heat storage in the crust. Dörr and Zulauf (2010) 
proposed that the Variscan Bohemian Plateau was 
covered with unmetamorphosed Palaeozoic strata. 
The siliciclastic and carbonate units (Tasáryová et al. 
2018 and references therein) could have formed an 
insulating cover, which would result in an increase in 
thermal gradients (Meixner et al. 2014; de Wall et al. 
2019). Models by Bea (2012) showed that a thickened 
continental crust with an overall annual heat produc-
tion greater than 1.2 µW/m3 is able to produce granitic 
melts after 30 to 40 Myr. Thus, radiogenic heating 
might have even been a dominant heat source in parts 

of the Variscan Orogen, potentially having a major in-
fluence on further melting and metamorphism (Gerdes 
et al. 2000).

A common characteristic of the granitoid intrusions 
in all the three study areas (Fichtelgebirge, Oberpfalz, 
Bavarian Forest) is the evolution from I-type to S-type 
signatures with time. However, the evolution seems to 
be diachronous. In the Saxothuringian crust the first 
pulse (OIC granites and redwitzites in study areas 1 and 
2) started at c. 325 Ma. Melt generation involved both 
mantle and crustal inputs and granites were preferen-
tially emplaced into structural discontinuities. The main 
pulse of the younger S-type granites (YIC in study areas  
1 and 2) occurred at 315–290 Ma. The role of the high 
RHP of granites for the high-temperature metamorphism 
at c. 320 Ma (Hansen et al. 1989) and the contempora-
neous felsic melt generation in the Saxothuringian crust 
needs to be investigated in further studies.

In the Bavarian Forest, that is a part of the Moldanu-
bian Zone, the magmatic evolution started with dioritic 
intrusions at c. 334–332 Ma (Fürstenstein Complex) and 
coeval granodioritic intrusions along the Bavarian Pfahl 
Shear Zone (palite emplacement at 334 Ma, Siebel et al. 
2005), i.e. earlier than in the Saxothuringian crust. In-
terpretation of geochemical characteristics in terms of S 
and I-type classification and an assessment of a mantle 
contribution is not straightforward for the Bavarian 
Forest granites (Siebel et al. 2008). Most of granitic in-
trusions are 324–321 Ma old, followed by the last main 
pulse at ~315 Ma (Siebel et al. 2008). For the anatectic 
terrain in the Bavarian Forest, Siebel et al. (2012) distin-
guished two high-grade metamorphic events (345–330 
Ma: granulite-facies, 326–323 Ma: amphibolite-facies). 
The second was coeval with the regional uplift and 
granite intrusion. The late-orogenic high-temperature 
metamorphism and the associated magmatism could be 
triggered by radiogenic heat. Thermal-kinetic model-
ling by Gerdes et al. (2000) showed that the elevated 
radiogenic heat in the thickened Moldanubian crust 
could have caused a substantial temperature increase in 
the middle and lower crust. On the other hand, the tem-
perature–time path of Kalt et al. (2000) featured a rapid 
late- to post-orogenic exhumation of the Bavarian Forest 
that was explained by mantle delamination. Numeric 
models by Henk et al. (2000) underlined the impor-
tance of crustal thickening for the thermal structure of 
the Variscan crust and also discussed an enhanced heat 
flow during late-orogenic delamination of parts of the 
lower lithosphere. However, as has been pointed out by 
Tropper et al. (2006), it is difficult to critically evalu-
ate and test the various models for explanation of the 
late-orogenic heating in the Moldanubian crust (mantle 
delamination versus radiogenic heating) and thus further 
modelling is needed.
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6.	Conclusions

Gamma radiation measurements with a portable spec-
trometer have yielded a large and detailed data set on 
radioelement concentrations in Variscan granites along 
the western margin of the Bohemian Massif. For the total 
of 829 measurements a mean heat production rate of 4.9 
µW/m3 was obtained which is far above the global aver-
age, estimated between 2.53 and 3.54 µW/m3 by different 
research groups. The granites are identified as moderate- 
to high-heat-producing using the classification scheme 
implemented for Australian granitic terrains. The high 
RHP can be explained by crustal reworking and enrich-
ment of heat-producing elements in the Variscan crust.

Most granite intrusions studied here are characterized 
by Th/U > 1 that can be explained by a combined effect 
of enriched sources and subsequent differentiation pro-
cesses. These intrusions occur in Fichtelgebirge (except 
for the Tin Granite), Bavarian Forest (Hauzenberg and 
Fürstenstein granites) and among the older granites of 
the Oberpfalz (Leuchtenberg and Zainhammer, Falken-
berg and Liebenstein types). Enrichment in Th could be 
related to abundance of monazite, as a major carrier of 
Th in peraluminous granitic rocks.

In contrast, some of the Oberpfalz granites (Flos-
senbürg, Steinwald, Friedenfels types) are characterized 
by high U concentrations and thus Th/U < 1. This in 
agreement with U enrichment along the Saxothuringian–
Moldanubian contact, mobilized from organic-rich sedi-
ments as described in previous studies. A clear temporal 
trend from I- to S-type granites can be found within each 
of the studied areas. We identified high-heat-producing 
S-type magmatic bodies, like the Saldenburg granite in 
the Bavarian Forest, Flossenbürg granite in the Oberpfalz 
and the G4 granite in the Fichtelgebirge. 
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