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Stratabound tourmalinites are metallogenically important rocks that locally show a close spatial association with diverse 
types of mineralization, especially volcanogenic massive sulfides (VMS) and clastic-dominated (CD) Zn–Pb deposits. 
These tourmalinite occurrences span the geologic record from Eoarchean to Jurassic. Host lithologies are dominated by 
clastic metasedimentary rocks but in some areas include metavolcanic rocks, marble, or metaevaporites. Stratabound 
and stratiform (conformable) tourmalinites commonly display sedimentary structures such as graded beds, cross-beds, 
and rip-up clasts. In most cases, field and microtextural relationships are consistent with a synsedimentary to early 
diagenetic introduction of boron as a precursor to tourmaline formation. Whole-rock geochemical data for major, trace, 
and rare earth elements (REE) provide valuable insights into tourmalinite origins. Al-normalized values relative to those 
for least-altered host metasedimentary rocks suggest that tourmalinites in proximal settings at or near hydrothermal vent 
sites characterized by high fluid/rock regimes (e.g., Sullivan Pb–Zn–Ag deposit, Canada) have very different signatures 
than those in low fluid/rock, distal settings (e.g., Broken Hill Pb–Zn–Ag deposit, Australia). The high fluid/rock regimes 
at Sullivan show large mass changes of +60 % for Mg and +180 % for Mn, as well as large variations in abundances 
of light and middle REE. In contrast, tourmalinite formation in low fluid/rock regimes yields minimal Al-normalized 
changes in major elements, trace elements, and REE. Boron isotope values of tourmalinite-hosted tourmaline vary 
widely from –26.1 to +27.5 ‰, and are attributed mainly to boron sources (e.g., sediments, evaporites) with generally 
minor influence from processes such as formational temperature, fluid/rock ratio, and secular variation in seawater 
δ11B values. Laterally extensive stratiform tourmalinites formed mainly by syngenetic or early diagenetic processes on 
or beneath the seafloor. The syngenetic process is attributed to the interaction of vented B-rich brines with aluminous 
minerals in sediments, whereas the diagenetic process involves the selective replacement of aluminous sediments by 
B-rich fluids. Modern examples of tourmalinites, as yet undiscovered, may exist in metalliferous sediments of the Red 
Sea and the eastern Pacific Ocean, in altered volcaniclastic sediments within active seafloor-hydrothermal systems of 
the South Pacific, and in hydrothermal mounds and vents associated with mafic sill complexes in extensional basins as 
in the North Sea and South China Sea. Stratabound tourmalinites that contain base-metal sulfides, high Mn concentra-
tions (>1 wt. % MnO), or positive Eu anomalies can be valuable exploration guides for base-metal sulfide deposits in 
sedimentary and volcanic terranes. 

Keywords: Tourmalinite, Metallogeny, Syngenetic, Diagenetic, Boron Isotopes, Genetic Models
Received: 9 January 2022; accepted: 17 July 2022; handling editor: H. Marschall

traced along strike for up to several kilometers (Slack et 
al. 1993).

Syngenetic or diagenetic origins for stratabound and 
stratiform tourmalinites have been proposed based on 
many geological, structural, and geochemical studies 
worldwide (e.g., Slack et al. 1984; Mao 1995; Pesquera 
and Velasco 1997; Golani et al. 2002; Tourn et al. 2004; 
Ferla and Meli 2007; Čopjaková et al. 2009; Martínez-
Martínez et al. 2010; Yücel-Öztürk et al. 2015; McGloin 
et al. 2019). However, detailed studies in some areas 
have clearly documented epigenetic origins involving 
metamorphic or magmatic processes (e.g., Steven and 
Moore 1995; Raith et al. 2004; Sengupta et al. 2005; Vial 
et al. 2007; Yang and Jiang 2012; Pirajno 2013; Mahjoubi 
et al. 2016; Kalliomäki et al. 2017; Spránitz et al. 2018; 
Nabelek 2021). Such post-diagenetic tourmalinites are 
generally, although not uniformly, distinguished by a lack 

1.	Introduction

Tourmalinites are defined as rocks that contain more than 
15 to 20 vol. % tourmaline (Slack et al. 1984). These 
distinctive rocks are geologically and metallogenically 
important in recording fluid flow in sedimentary and 
volcanic terranes, and occur in spatial associations with 
a variety of mineral deposits (Slack 1996), especially 
Cu–Zn–Pb–Ag–Au volcanogenic massive sulfides (VMS) 
and clastic-dominated (CD) Zn–Pb (formerly sedex) de-
posits. Stratabound tourmalinites are broadly concordant 
with host metasedimentary or metavolcanic lithologies 
and include discordant feeder zones to overlying sulfide 
deposits. Stratiform varieties represent a more restricted 
case of a bedded and conformable geometry on out-
crop and microscopic scales. Stratiform tourmalinites, 
typically less than a few meters thick, have locally been 
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of lateral continuity (<10 m along strike) and proximity 
to shear zones and veins or to granitic intrusions. Not 
discussed here are well-documented metamorphogenic 
or magmatic-hydrothermal varieties of tourmalinites, 
the focus instead being on stratabound and stratiform 
tourmalinites that lack such associations.

This report is an update of Slack (1996) in presenting 
information on a larger number of tourmalinites as well 
as revised insights for genetic models and applications 
to mineral exploration. Included are selected whole-
rock geochemical data and a new compilation of boron 
isotopic values. Also considered are potential modern 
analogs of tourmalinites and the possible relevance of 
these chemically distinctive rocks for the evolution of 
early life on Earth. 

2.	Geological and mineralogical  
characteristics

2.1.	 Identification and timing

It is important to first emphasize that some tourmalinites 
can be easily misidentified as compositionally different 
rock types (Slack et al. 1984). For example, in weakly 
metamorphosed terranes, very fine-grained tourmalinite 
may resemble carbonaceous argillite or siltstone as at the 
Golden Dyke dome in Australia (Nicholson 1980; Plimer 
1986), carbonaceous laminae within stromatolites as in 
the Barberton greenstone belt in South Africa (Byerly and 
Palmer 1991), or dark chert as in the Belt-Purcell Super-
group in the U.S. and Canada (Slack 1993; Slack et al. 
2000b). In highly metamorphosed terranes, coarse-grained 
tourmalinite has been mistaken for hornblende amphibolite 
in the Broken Hill district of Australia (Barnes 1988; Slack 
et al. 1993). Because of potential geological and metallo-
genic significance, it is therefore critical during field work 
and related petrographic study that tourmalinites not be 
overlooked or misidentified, especially stratiform varieties 
that generally have a premetamorphic origin.

A longstanding problem is the difficulty in constrain-
ing the timing of tourmalinite formation relative to lo-
cal effects of deformation, metamorphism, or granitic 
magmatism. For example, Steven and Moore (1995) 
used detailed mapping to demonstrate that stratabound 
tourmalinites in the Neoproterozoic Damara orogen of 
central Namibia are mostly discordant to bedding, hav-
ing formed during deformation and/or metamorphism; 
however, some are stratiform and thus likely record early 
boron introduction and tourmalinite formation. In the 
Orobic Alps of northern Italy, cryptocrystalline tourma-
linites occurring along basement-cover décollements are 
attributed to the boron metasomatic replacement of tec-
tonic cataclasites (Slack et al. 1996; Zanchi et al. 2019). 

Other integrated field and laboratory studies, such as in 
the Betic Cordillera of Spain (Torres-Ruiz et al. 2003), 
suggest that stratabound tourmalinites distal from gran-
ites nevertheless have an origin directly related to felsic 
magmatism. These examples testify to the importance of 
detailed examination of the field and textural (including 
microtextural) relationships, and integration of these 
results with relevant geochemical data to properly evalu-
ate the timing of tourmalinite formation in deformed and 
metamorphosed terranes (e.g., Pesquera et al. 2005).

2.2.	Ages and geologic settings

Table 1 lists geological and metallogenic data for strat-
abound tourmalinites worldwide. Based on published de-
scriptions, such tourmalinites are considered premetamor-
phic, although detailed structural and microtextural studies 
have not been done in all cases to verify this interpretation. 
Localities are reported from all seven continents, including 
Antarctica. Ages range from Eoarchean to Jurassic, the 
former tourmalinites occurring in some of the oldest sedi-
mentary rock sequences known on Earth, in the 3.7 to 3.8 
Ga Isua supracrustal belt of West Greenland (Appel 1995). 
Metamorphic grades of host rocks to the tourmalinites 
vary widely from sub-greenschist through amphibolite to 
granulite, the last being uncommon (Slack 1996).

Host lithologies are dominated by siliciclastic metased-
iments with or without mafic to felsic metavolcanic rocks. 
Marble and metaevaporites are important in some areas, 
as are metamorphosed chemical sediments including 
chert, iron formation, and Mn-rich rocks such as coticule 
that mainly comprises fine-grained quartz and spessartine 
garnet (Spry 1990; Spry et al. 2000). Most premetamor-
phic stratabound tourmalinites spatially associated with 
base-metal mineralization are related to VMS and CD 
Zn–Pb deposits (Fig. 1a, 1b); less common are associa-
tions with cobalt or tungsten mineralization, or with iron 
formations. Importantly, many tourmalinites lack known 
links to metallic mineralization.

Some metasedimentary terranes without base-metal or 
other types of mineralization contain relatively abundant 
tourmalinite (Fig. 1b). These terranes include diverse set-
tings such as (1) tourmalinized sediments peripheral to 
growth faults and along the contacts of sandstone beds; 
(2) tourmaline-rich interlaminations with siltstone, argillite, 
and/or chert; (3) tourmalinized sediments near the borders 
of synsedimentary mafic sills; (4) stratiform units adjacent 
to or interlayered with coticule beds (Fig. 2a); and (5) tour-
malinized breccia bodies a few meters to as much as several 
hundred meters in diameter, as in the Mesoproterozoic 
Belt-Purcell Supergroup that are interpreted as tourmalin-
ized mud volcano deposits (Slack et al. 1998; Turner et 
al. 2000). On a wider scale, coticule-related tourmalinites 
represent an important association found in numerous early 
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Fig. 1 Idealized cross-sections showing domains of tourmalinite formation in volcanic- and sediment-hosted stratabound sulfide systems. a – Vol-
canogenic massive sulfide deposits based on felsic-siliciclastic-type settings (modified from Galley et al. 2007). Note the presence of tourmalinites 
below, above, and peripheral to sulfide zones. b – Clastic-dominated Zn–Pb–Ag deposits based on Sullivan-type settings (modified from Slack 
1996). Note tourmalinite occurrences in diverse locations, including footwall feeder zones; below, above, and peripheral to sulfide zones; along and 
marginal to growth faults; and in brecciated (fragmental) sedimentary rocks interpreted as mud-volcano deposits (see Turner et al. 2000). Coticule 
beds, where present, are typically interlayered with tourmalinite. The thicknesses of some units are exaggerated for clarity. Abbreviations: Ccp, 
chalcopyrite; Chl, chlorite; Gn, galena; Py, pyrite; Pyh, pyrrhotite; Sp, sphalerite.
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Paleozoic sequences of the Appalachian–Caledonian orogen 
(Kennan and Kennedy 1983; Slack et al. 1984). 

2.3.	Structures, textures, and mineral  
assemblages

Field aspects of tourmalinites vary widely partly as a 
function of superimposed metamorphic grade. For exam-
ple, cherty tourmalinites characterize lower greenschist-

facies strata of the Belt-Purcell Supergroup including in 
the footwall of the Sullivan Pb–Zn–Ag deposit (Fig. 2b). 
Other tourmalinites, however, are massive without obvi-
ous sedimentary structures (Fig. 2c). Rarely observed are 
small tourmaline-quartz veinlets that are clear feeders 
to stratigraphically overlying tourmalinites (Fig. 3a). 
Prominent sedimentary structures include graded beds, 
cross-laminations, flames, and rip-up clasts (Ethier and 
Campbell 1977; Slack et al. 1984, 2000b; Badenhorst 

(b)

(c) (d)

(e) (f)

(a)

Fig. 2 Field photographs of selected tourmalinites. a – Folded coticule (resistant beds) and interlayered tourmalinite (black), southeast Ireland. b – 
Hand specimen of cherty tourmalinite from the shallow footwall of Sullivan Pb–Zn–Ag deposit, Canada. c – Fine-grained massive tourmalinite from 
northern Broken Hill block, Australia. d – Graded beds in fine-grained tourmalinite from northern Broken Hill block. e – Layered coarse-grained 
tourmalinite from northern Broken Hill block. f – Isoclinal fold in tourmalinite (above the knife) from central Broken Hill block.
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1988; Stevens and Bradley 2018). These structures may 
be present even in tourmalinites that have been metamor-
phosed to upper amphibolite grade, on macroscopic and 
microscopic scales (Fig. 2d, 3b, 3c). However, graded 
beds, cross-laminations, and rip-up clasts do not require 
an early (syngenetic) formation of tourmaline, because 
similar structures are easily formed by the selected re-
placement of aluminous beds or laminae during diagen-
esis and metamorphism. This process may include the 
formation of rip-up clasts of tourmalinite in a tourmaline-
free matrix, by which boron-bearing fluids preferentially 
replace aluminous clasts but not the typically quartzose 
and Al-free matrix (Fig. 3c). Moreover, in areas where 
the stratigraphic younging direction is known, the typical 
concentration of tourmaline in the tops of graded beds 
(Fig. 3b) is inconsistent with a purely syngenetic process, 

such as deposition from hydrothermal plumes or density 
currents, because tourmaline has a much higher specific 
gravity than quartz (~3.1 and 2.65, respectively) and 
would settle first. In deformed and metamorphosed ter-
ranes, tourmalinites may also display layered structures 
(Fig. 2e) and various styles of folding, including isoclinal 
folds (Fig. 2f).

Textures of tourmaline in tourmalinites vary widely. 
In weakly metamorphosed terranes, tourmaline grains 
typically are ~50 to 200 μm in diameter. However, in 
some areas, the grains are very small (~5–50 μm), as 
in the Belt-Purcell Supergroup (Fig. 2b, 3d; Ethier and 
Campbell 1977; Slack 1993), the Barberton greenstone 
belt (Byerly and Palmer 1991), and the Yindongzi-
Tongmugou Pb–Zn deposits in China (Jiang et al. 1995). 
Tourmaline in such terranes is characteristically ran-
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Fig. 3 Photomicrographs of tourmalinites (all plane-polarized transmitted light unless noted otherwise). a – Irregular quartz-tourmaline vein in 
partly tourmalinized siltstone feeding overlying tourmalinite, Fork locality, northwestern Montana. b – Graded bedding in stratiform tourmalinite, 
Black Prince Pb–Zn–Ag deposit, Broken Hill district, showing fine-grained tourmaline concentrations in tops of beds (stratigraphic tops to left). 
c – Tourmaline-rich rip-up clasts in stratiform tourmalinite, Mt. Mahon locality, southeastern British Columbia; note lack of tourmaline in the 
quartz-rich matrix. d – Fine-grained tourmalinite from the deep footwall of Sullivan Pb–Zn–Ag deposit, showing abundant small (< 20 μm long) 
needles of tourmaline and partially replaced grains of detrital quartz. e – Tourmalinized sedimentary fragmental rock (mud volcano deposit) from 
the shallow footwall of Sullivan Pb–Zn–Ag deposit, showing microcrystalline tourmaline (grey) in quartz-rich clasts and abundant matrix pyrrhotite. 
f – Garnet-rich tourmalinite from tourmalinite from the shallow footwall of Sullivan Pb–Zn–Ag deposit, showing tourmaline cores in spessartine-
-rich garnets; whole-rock MnO = 3.5 wt. %. g – Folded quartz–tourmaline–sulfide tourmalinite from Globe Pb–Zn–Ag mine, Broken Hill district. 
h – Typical stratiform tourmalinite from Globe Pb–Zn–Ag mine, Broken Hill district, showing zoned tourmaline with minor spessartine, gahnite, 
and sulfides (black). i – Sulfides in Globe mine tourmalinite (reflected light). Abbreviations: Ccp, chalcopyrite; Gn, galena; Ghn, gahnite; Ilm, 
ilmenite; Pyh, pyrrhotite; Qz, quartz; Sp, sphalerite; Sps, spessartine; Tur, tourmaline.
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domly oriented, consistent with static growth, and may 
be euhedral or anhedral, and optically zoned or unzoned. 
In contrast, tourmalinites within moderately deformed 
and metamorphosed sequences commonly have optically 
zoned and aligned tourmaline prisms as much as 1 to 
3 cm in length, as in the Bohemian massif (Čopjaková 
et al. 2009). In some cases, optical and chemical zoning 
patterns observed in these settings indicate partial dis-
solution of primary tourmaline and overgrowth of new 
tourmaline with a composition stable under the attendant 
metamorphic conditions. Tourmalinite-hosted tourmaline 
grains in very high-grade terranes at upper amphibolite or 
granulite facies are distinctive in being granoblastic and 
unzoned or optically zoned, as in the Grenville Complex 
of New York State (Brown and Ayuso 1985) and in the 
southern part of the Broken Hill block of Australia (Slack 
et al. 1993), consistent with recovery and coarsening at 
high-grade followed by little to no retrograde effects. 
Fine-scale oscillatory and sector zoning in tourmaline 
from tourmalinites is uncommon relative to that in mas-
sive sulfides and other hydrothermal ores, probably due 
to the much higher fluid flux involved in the formation 
of these ore deposits (cf. Taylor and Slack 1984; Slack 
1996; Slack et al. 1997). For example, in the footwall 
tourmalinite pipe of the Sullivan Pb–Zn–Ag deposit, 
tourmaline locally forms concentric growth zones within 
small (2 mm) euhedral quartz crystals (Jiang et al. 1998, 
Fig. 3a), attesting to the hydrothermal origin of this 
tourmaline.

Mineral assemblages of tourmalinites are dominated 
by tourmaline and quartz (Tab. 1). Characteristic are al-
ternating tourmaline- and quartz-rich layers or laminae. 
In most cases, tourmaline overall is modally subequal 
to quartz, but in others, the tourmaline may constitute 
up to 90 vol. % of the rock. Muscovite, plagioclase, and 
chlorite occur in many samples. Less common phases in 
tourmalinites are biotite, apatite, amphibole, carbonate, 
graphite (or carbonaceous material), garnet, K-feldspar, 
magnetite, scapolite, ilmenite, and rutile. Sulfide-bearing 
samples typically contain pyrite and/or pyrrhotite, in 
some cases sphalerite, galena, or chalcopyrite. The Zn-
spinel gahnite is volumetrically important in metamor-
phosed tourmalinites associated with Zn–Pb–Ag deposits 
at Montauban in Québec (Bernier et al. 1987) and in 
several deposits in the Broken Hill district (Barnes 1988; 
Slack et al. 1993).

Tourmaline is mechanically and chemically very stable 
and thus is commonly retained even in high-grade meta-
morphic terranes (e.g., Marschall et al. 2009; van Hins-
berg et al. 2011). For example, stratiform tourmalinites 
are well preserved in granulite-facies rocks of the Broken 
Hill district and the Larsemann Hills of East Antarctica 
(Slack et al. 1993; Grew et al. 2013). As Marschall et 
al. (2009) discussed, the upper stability limit of tourma-

line depends on several factors, including temperature, 
pressure, and fluid composition. The complete prograde 
breakdown has been described in the migmatite zone of 
the Ryoke metamorphic belt in Japan, involving the reac-
tion of tourmaline to sillimanite + cordierite (Kawakami 
2001). On the retrograde path, within the two-pyroxene 
granulite zone at Broken Hill, small (< 1 cm) domains in 
partially retrogressed tourmalinites locally show evidence 
of a breakdown reaction of tourmaline to muscovite +  
B-rich biotite + staurolite + corundum ± margarite (Slack 
and Robinson 1990). In some low-grade metamorphic 
terranes, such as in wall rocks of the Sullivan Pb–Zn–Ag 
deposit, tourmalinite-hosted tourmaline is replaced lo-
cally by chlorite, muscovite, or albite (Leitch and Turner 
1992). The breakdown of tourmaline during metamor-
phism likely reflects the incursion of B-undersaturated 
fluids with a relatively high pH (Slack 1996).

3.	Metallogeny

3.1.	Base-metal deposits

The major deposit types spatially associated with pre-
metamorphic stratabound tourmalinites are VMS and CD 
Zn–Pb (Figs 1a, 1b). In both types of deposits, stratiform 
tourmalinites commonly form beds or lenses up to 1 m 
thick in the stratigraphic footwall and/or hanging wall of 
the orebodies, or lateral equivalents along strike. In VMS 
deposits, tourmalinites may be interbedded with iron for-
mation, metachert, and coticule, or occur in wall rocks 
and surrounding country rocks. At the Elizabeth Cu de-
posit in Vermont, USA (Slack et al. 2001) and the Prieska 
Cu–Zn deposit in South Africa (Theart et al. 1989), tour-
malinites form stratigraphic units in contact with massive 
sulfide or in adjacent metavolcanic and metasedimentary 
rocks. Appreciable tourmaline, although insufficient to 
be tourmalinite, also occurs as crystals within massive 
sulfide at many deposits (Slack 1982, 1996).

Although not stratiform, stratabound alteration zones 
in some sediment-hosted deposits can have abundant 
tourmaline. A key example is in the footwall tourmalinite 
pipe of the large Sullivan CD Pb–Zn–Ag deposit in Brit-
ish Columbia (Fig. 4) that contains ca. 20 to 60 vol. % 
tourmaline and extends at least 600 m beneath the central 
part (vent complex) of the orebody (Slack et al. 2000b). 
This pipe is distinctive in also containing both black and 
brown tourmalinites as veins that cut each other, very 
fine-grained tourmaline (Figs 2b, 3d), and tourmalinized 
conglomerates (Fig. 3e). Similar tourmalinite pipes and 
overlying sulfide zones have been described from other 
deposits in the Belt-Purcell Supergroup, as at the Fors 
prospect (Höy et al. 2000). The shallow footwall beneath 
the Sullivan orebody also contains thin stratiform units 
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of interlayered tourmalinite and sulfides, laminae of 
sphalerite + galena ± pyrrhotite within tourmalinite (Slack 
et al. 2000b), and spessartine-rich tourmalinite (Fig. 3f). 
At the Globe Pb–Zn–Ag deposit in the Broken Hill dis-
trict (Fig. 5), many tourmalinites occur stratigraphically 
close to the sulfide lodes, including quartz-rich variants 
with minor sulfides that display fold structures (Fig. 3g), 
variants with abundant gahnite and spessartine (Fig. 3h), 
and sulfide-rich variants that contain sphalerite + galena ± 
chalcopyrite (Fig. 3i). The small sediment-hosted Black 
Prince Pb–Zn–Ag deposit, in the northern part of the 
Broken Hill district, has a footwall tourmalinite pipe like 
that at the Sullivan deposit (Slack et al. 1993).

3.2.	Borate deposits

Well-documented stratabound tourmalinites associated 
with borate deposits are restricted to northeast China 
Liaoning and Jilin provinces. A similar association in 

Paleoproterozoic strata of the Aldan Shield in eastern 
Siberia was described by Mitich (1946), but limited 
data available for this occurrence preclude a meaningful 
interpretation. The deposits in China, occurring within 
Paleoproterozoic rocks intermittently over a distance of 
ca. 300 km, comprise Mg and Mg–Fe borate minerals 
within magnesian marble, Mg-silicate rock, and quartz-
feldspar rock (Jiang et al. 1997; Peng and Palmer 1995, 
2002; Xu et al. 2004). An unanswered question is how 
the Mg-rich borate minerals in these Paleoproterozoic 
deposits survived greenschist-facies metamorphism (Peng 
and Palmer 1995), given the very high solubility of such 
minerals in Tertiary and younger deposits (e.g., Crowley 
1996; Helvaci and Ortí 2004). One possible explanation 
is that these borate deposits and related tourmalinites are 
not of evaporitic origin but instead formed by skarn-type 
metasomatic processes during the emplacement of nearby 
granites and granitic pegmatites (cf. Peng and Palmer 
1995). Alternatively, these mineralogically complex de-
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posits may have formed through the combined effects of 
multistage evaporation, metamorphism, and magmatism 
(Peng and Palmer 2002; Yan and Chen 2014; Hu et al. 
2015). 

3.3.	Tungsten deposits

Some stratabound scheelite deposits are locally associ-
ated with tourmalinites (Barnes 1983; Arribas-Rosado 
1986; Plimer 1987; Appel 1988a; Raith 1988; Leake et 
al. 1989). Although most workers have generally invoked 
syngenetic or diagenetic origins for the scheelite and 
tourmalinites, major uncertainty nevertheless surrounds 
the timing of both the tungsten and boron mineraliza-
tion. For example, geological, textural, and mineral-
chemical data for the scheelite-bearing tourmalinites of 
the eastern Alps of Hungary led Spránitz et al. (2018) 
to reject a premetamorphic model and instead invoke 
a granite-related metasomatic origin. This interpreta-
tion is consistent with the lack of associated chemical 
metasedimentary rocks like iron formation and coticule 
with these tourmalinites. Notably, all tungsten-associated 
tourmalinites described in the literature lack these and 
other chemical metasediments (Tab. 1). Also relevant in 
this context are the uniformly low contents of tungsten 
(< 500 μg/g) in ancient VMS and CD Zn–Pb deposits as-
sociated with tourmalinites (e.g., Slack et al. 1993, 2000a, 
b), and the even lower concentrations of this metal in 

modern VMS deposits (≤ 100 μg/g; Hannington 2014) as 
well as in metalliferous sediments of the Red Sea (≤ 10 
μg/g; Hendricks et al. 1969). On balance, therefore, it 
seems unlikely that high tungsten concentrations form 
by premetamorphic hydrothermal processes together 
with tourmalinites, either by syngenetic processes on or 
near the seafloor or during diagenesis in the subsurface. 
More field-based research is needed to fully evaluate the 
scheelite-tourmalinite connection and timing relative to 
local syngenetic, diagenetic, and metamorphic processes.

3.4.	Gold deposits

Uncertain affinities and origins concern tourmalinites 
associated with stratabound gold deposits. In the past, the 
broadly stratabound nature of both led many workers to 
propose origins prior to deformation and metamorphism. 
A key example is the tourmalinite-hosted gold orebo-
dy at the Passagem de Mariana mine in Brazil that in 
early studies was attributed to syngenetic mineralization 
(Fleischer and Routhier 1973). However, recent work 
has convincingly shown this deposit to be an epigenetic, 
post-peak metamorphic vein that formed coevally with 
tourmalinization in a regional shear zone (Vial et al. 2007; 
Trumbull et al. 2019). A similar syn- to post-metamorphic 
origin was proposed by Kalbskopf and Barton (2003) 
for tourmalinite-hosted gold at the Zandrivier and other 
deposits in southern Africa. In contrast, tourmalinite 

formation in some deposits may 
have predated gold mineraliza-
tion, such as in the Loulo deposit 
in Mali, which was attributed to 
premetamorphic processes by 
Dommanget et al. (1993) but in 
light of more recent structural 
and geochemical data is likely 
related to late-orogenic mag-
matic processes (Lawrence et 
al. 2013). In northern Australia, 
stratabound gold deposits are 
associated with, and in places 
contained in, laterally extensive 
stratiform tourmalinites, such as 
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Fig. 5 Geological cross-section of Globe 
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rhyolite tuff (Stevens and Bradley 2018). 
Selected drill holes are shown; tourma-
linites from labeled holes were used for 
petrographic, microprobe, geochemical, 
and boron isotope analyses (Slack et 
al. 1993). 
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at the Good Shephard deposit in the Golden Dyke Dome 
(Nicholson 1980) and other gold deposits in the Pine 
Creek inlier (Plimer 1986). Importantly, the Golden Dyke 
tourmalinites, which have high whole-rock iron contents, 
are folded and cut by slaty cleavage (Slack 1996), con-
sistent with a predeformational origin during diagenesis. 
This type of stratiform and extensive tourmalinite may be 
considered a receptive host rock that localized later gold 
mineralization, as proposed by Lambeck et al. (2011) for 
gold deposits in other iron-rich sedimentary rocks of the 
region. Tourmalinites may also be favorable hosts for gold 
mineralization by having a high mechanical competency 
that is conducive to localizing fractures and permeability 
for subsequent gold deposition (Lawrence et al. 2013). 
It remains to be seen whether 
some gold-bearing tourmalinites 
formed on or near the paleo-
seafloor, which is a worthwhile 
topic for future studies.

4.	Geochemical  
signatures

4.1.	Whole-rock  
geochemistry

Many studies have reported on 
bulk composition of tourmalin-
ites, including data for major, 
trace, and rare earth elements 
(REE). Contents of major ele-
ments in most cases reflect the 
composition and proportion of 
tourmaline, whereas trace ele-
ment and REE concentrations 

mainly record proportions of accessory detrital minerals 
such as monazite, ilmenite, rutile, and zircon. In hydro-
thermal systems that formed under relatively low fluid/
rock ratios (i.e., rock-buffered), as recorded in tourmalin-
ites from the Broken Hill district in Australia that formed 
distal to hydrothermal sources (Slack et al. 1993), major 
elements can be enriched or depleted relative to unaltered 
host metasediments; trace elements and most REE con-
tents tend to be broadly similar, the latter having shale-
normalized abundances similar to those of the unaltered 
host metasedimentary rocks (Fig. 6a). Net mass changes 
calculated for these tourmalinites, based on dual Al-
normalization for each sample and for average unaltered 
metasedimentary host rock, show moderate losses only 
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Fig. 6 Shale-normalized REE data for 
tourmalinites and unaltered host metase-
dimentary rocks. (a) Distal tourmalinites 
and host rocks from Broken Hill district 
(Slack et al. 1993; Slack and Stevens 
1994), the latter including local metar-
hyolite of the Hores Gneiss (Raveggi et 
al. 2008). (b) Proximal tourmalinites and 
host rocks from Sullivan Pb–Zn–Ag de-
posit (Slack et al. 2000b; Slack and Höy 
2000). Distal tourmalinites are attributed 
to formation in low fluid/rock settings, 
whereas proximal tourmalinites formed 
in high fluid/rock settings (see text). 
Note that missing values for Pr, Gd, Dy, 
Ho, Er, and Tm for Sullivan and Broken 
Hill reflect acquisition by Instrumental 
Neutron Activation Analysis (INAA), 
which does not provide values for these 
REE; hence, calculations of Ce anoma-
lies and Y/Ho ratios are not possible.
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for Mn and Ca, and minimal differences for REE (Figs 
6a, 7a). In other cases, however, variable mobility of 
major and trace elements, as well as light REE (LREE), 
have been reported (Pesquera and Velasco 1997; Raith et 
al. 2004; Čopjaková et al. 2013; Grew et al. 2013)

Tourmalinites that formed in high fluid/rock systems 
commonly differ in having highly variable bulk composi-
tions. A key example comes from the footwall pipe of the 
Sullivan Pb–Zn–Ag deposit, for which bulk compositions 
of tourmalinites may be greatly enriched or depleted in 
certain major elements, trace elements, and LREE or 
middle REE (MREE) (Fig. 6b, 7b) relative to unaltered 
sedimentary host rocks of the area (Slack et al. 2000b). 
Data for the stratabound but non-stratiform deep footwall 
tourmalinites, collected from a long drill core 10 to 560 m 
below the sulfide ore zones, indicate average Fe and Mg 
gains of ~30 and 20 %, respectively, whereas Mn shows 
an average loss of 30 %. Large average losses of ~50 to 
90 % are evident for Ca, Na, K, Li, Rb, Cs, Ba, LREE 

and MREE. Minimal average losses of less than 10  % 
are shown by Si, high field strength elements (HFSE; Ti, 
Sc, Y, Zr, Hf, Nb, Ta, Th), and heavy REE (HREE). In 
contrast, shallow and mainly stratiform tourmalinites less 
than 10 m below the ore zones (Fig. 7b) record large aver-
age gains for Mn (180 %) and Mg (60 %), and a moderate 
average gain for Fe (20 %), accompanied by moderate 
to large average losses for Ca (50 %), Na (70 %), and K 
(90 %); Si, HFSE, and all REE (on average) show only 
small losses or gains of less than 10 %. Bulk Fe/(Fe + Mg) 
ratios of the deep vs. shallow footwall tourmalinites also 
vary locally, the highest ratios (0.45–0.58) occurring in 
a thick quartzite unit 175 to 305 m below the ore zones. 
The diversity of chemical losses and gains exhibited by 
the footwall tourmalinites at the Sullivan Pb–Zn–Ag 
deposit are compatible with a model involving focused 
hydrothermal flow under high fluid/rock conditions, by 
which the deep footwall samples record preferential 
leaching of alkali and alkaline earth elements, LREE, and 

MREE, coupled with moder-
ate Fe- and Mg-metasomatism, 
by the metasomatism of argil-
laceous sediments. In contrast, 
data for the shallow footwall 
tourmalinites, especially the ma-
jor gains shown by Mn and Mg, 
suggest similar high fluid/rock 
conditions but with a significant 
input of evolved seawater (Mg) 
during subseafloor metasoma-
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Fig. 7 Metasomatic changes (shown 
in %) calculated for major elements 
during tourmalinite formation based 
on Al-normalization relative to that of 
unaltered host metasedimentary rocks. 
a – Distal low-Mn tourmalinites from 
Broken Hill district (n = 29; Slack et al. 
1993) compared to unaltered host rocks 
(n = 22; Slack and Stevens 1994). b – 
Proximal tourmalinites from the shallow 
footwall of Sullivan Pb–Zn–Ag deposit 
(n = 41; Slack et al. 2000b) compared 
to unaltered host rocks (n = 29; Slack 
and Höy 2000). Tourmalinite data in A 
exclude those for Mn-rich tourmalinites 
at the Globe mine. Note in B that data 
shown are mainly for stratiform tourma-
linites in the shallow part of the footwall 
vent complex and exclude results for 
discordant, non-stratiform tourmalinites 
in a deep part of this complex (see Fig. 
4). Distal Broken Hill tourmalinites 
formed under low fluid/rock conditions, 
whereas proximal Sullivan tourmalinites 
in the shallow footwall formed via high 
fluid/rock ratios (see text). Abbreviati-
ons: ME, molar element; MAl, molar 
aluminum.
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tism, together with exhalative venting and the deposition 
of Mn derived from a local hydrothermal plume. The in-
ferred subseafloor processes in this shallow setting include 
major leaching of alkali and alkaline earth elements but 
no significant net changes in REE. However, the meta-
somatism there clearly remobilized LREE and MREE, 
at least on a local scale, as evidenced by the large range 
in PAAS-normalized abundances for these REE, relative 
to those for unaltered clastic metasedimentary host rocks 
of the area (Fig. 6a). Jiang (2000) also reported mobility 
of HFSE and U in the shallow footwall and hangingwall 
tourmalinites of the Sullivan deposit.

4.2.	Tourmaline compositions

Many studies have reported electron microprobe analyses 
(EMPA) for major and minor elements in tourmaline from 
tourmalinites. A comprehensive review of such data is 
beyond the scope of this paper, so the following is only 
a brief summary of published results. Overall, EMPA 
studies of such tourmalines from VMS and CD Zn–Pb 
deposits show compositions dominated by dravite–schorl 
with minor uvite and feruvite locally (Taylor and Slack 
1984; Benvenuti et al. 1991; Slack et al. 1993; Jiang et al. 
1995, 1998; Ferla and Meli 2007). Importantly, in some 
cases as at the Sullivan Pb–Zn–Ag deposit, composi-
tions vary greatly depending on location relative to the 
ore zones (Jiang et al. 1998). Tourmalines in stratabound 
tourmalinites that lack associated metal concentrations 
are predominantly dravite–schorl in composition with 
minor proportions of the uvite or povondraite (Fe3+-rich) 
endmembers (e.g., Pesquera and Velasco 1997; Tourn et 
al. 2004; Pesquera et al. 2005; Čopjaková et al. 2009; 
Yücel-Öztürk et al. 2015). Tourmaline compositions in 
such settings generally reflect the bulk host-rock chem-
istry of the precursor sediment (e.g., Slack 1996), but in 
high fluid/rock settings related to VMS and CD Zn–Pb 
deposits, Fe/(Fe + Mg) ratios can vary greatly. For ex-
ample, in unmetamorphosed to weakly metamorphosed 
deposits of this type, Mg-rich dravite can reflect a large 
seawater component in the hydrothermal fluids, whereas 
in highly metamorphosed deposits this tourmaline com-
position may also record sulfide-silicate reactions involv-
ing Fe-sulfides like pyrite and pyrrhotite (Slack 1996; 
Jiang et al. 1998; Slack and Trumbull 2011). 

Metaevaporite-hosted tourmalinites contain a greater 
diversity of tourmaline compositions. In addition to 
dominant dravite or schorl components, and local uvite, 
many such tourmalines contain minor to major propor-
tions of the oxy-dravite and povondraite endmembers, 
the latter distinguished by Na- and Mg-rich compositions 
that include significant Fe3+ substitution for Al3+ (Henry 
et al. 2008). Examples are Paleoproterozoic tourmalinites 
in northeast China (Jiang et al. 1997; Peng and Palmer 

2002) and Neoproterozoic tourmalinites in the Gariep 
belt and Damara orogen of Namibia (Frimmel and Jiang 
2001; Henry et al. 2008). As in the Namibian examples, 
the presence of a major povondraite component suggests 
that the tourmaline formed in an oxidizing environment 
from high-salinity fluids (Henry et al. 2008). 

Data for trace elements and REE in tourmalinite-host-
ed tourmaline have been obtained by several methods. 
Early work by Taylor and Slack (1984) reported emission 
spectrographic data on untreated mineral separates, but 
in most samples, these results were variably affected by 
sulfide and other mineral inclusions. Jiang et al. (1997, 
2000c) presented trace element and REE analyses of 
acid-leached tourmaline samples that also, in most 
cases, reflect the chemical influence of inclusions and 
intergrowths. The first in situ study on tourmalinites, by 
Griffin et al. (1996), used Proton-Induced X-ray Emission 
(PIXE) methods that revealed locally high contents of Zn 
(up to 2993 μg/g), Pb (up to 2379 μg/g), and Sr (up to 
973 μg/g); elevated Zn and Pb values were measured on 
samples from or related to sulfide deposits including at 
Broken Hill. More recent in situ work has utilized laser 
ablation-inductively coupled plasma-mass spectrometry 
(LA-ICP-MS) that yields higher precision and accuracy 
for a much larger suite of elements than PIXE. Examples 
include Y + REE analyses of oxy-dravite and schorl 
cores of tourmalinite-hosted tourmaline grains from 
Neoproterozoic–Cambrian metasedimentary strata in the 
Bohemian Massif, the former type showing negative Eu 
but positive Y anomalies, and the latter both positive Eu 
and Y anomalies, attributed respectively to deposition 
predominantly from seawater and hydrothermal fluids 
(Čopjaková et al. 2013). Yan and Chen (2014) reported 
contrasting amounts of trace elements and REE in the 
cores and rims of tourmalines from tourmalinites in the 
Paleoproterozoic borate deposits of northeast China, and 
suggested that the cores formed by seafloor-hydrothermal 
processes with the rims reflecting syn-metamorphic 
growth. All of these TE and REE data are important in 
documenting the geochemical environments in which the 
tourmalines grew and in providing applications to mineral 
exploration, such as from grains with high concentrations 
of metals of economic interest (e.g., Slack 1982; Taylor 
and Slack 1984; Griffin et al. 1996). However, several 
caveats remain. One is the uncertainty in some cases 
(e.g., using LA-ICP-MS) whether high metal concentra-
tions reflect submicroscopic inclusions, despite care in 
using time-resolved data reduction schemes. Another 
is the requirement when acquiring in situ data to know 
whether sector zones are being analyzed, because the 
c-sector can be enriched or depleted by a factor of up to 
2× in Li, Zn, Sr, and Sn relative to the a-sector that is 
compositionally unaffected by such zoning (van Hinsberg 
et al. 2017 and references therein). Also important is the 
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lack of published data on trace element fractionation 
between tourmaline and coexisting phases such as sul-
fides (e.g., Zn in sphalerite; Cu in chalcopyrite), oxides 
(e.g., Zn in gahnite), carbonates (e.g., Ca in calcite), and 
silicates (e.g., Zn in staurolite; REE in garnet and mona-
zite). Only two studies have addressed this issue, one 
the empirical LA-ICP-MS work of Klemme et al. (2011) 
on the fractionation of trace elements and REE between 
tourmaline and muscovite in samples from the Broken 
Hill district. In a more detailed analysis of mineral chem-
istry in a granitic pluton in Spain, Pesquera et al. (2018) 
reported that, among coexisting silicates (1) tourmaline 
preferentially concentrates Be, Sr, and LREE; (2) Li, Rb, 

Cs, Ba, Tl, W, HFSE, and HREE are incorporated into 
micas; and (3) metals such as Mn, Zn, Ni, Co, and Cu 
are preferentially incorporated into tourmaline instead 
of muscovite. In addition to these field-based studies, 
experimental work is needed on tourmaline-fluid fraction-
ation under hydrothermal and not magmatic conditions, 
for an improved understanding of the potential uses – and 
pitfalls – of tourmaline chemistry in mineral exploration.

5.	Stable isotopes

5.1.	Oxygen and hydrogen

Early insights into the stable 
isotope compositions of tour-
maline in massive sulfide de-
posits and tourmalinites were 
pioneered by Taylor and Slack 
(1984). Oxygen and hydrogen 
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Fig. 8 Histogram of boron isotope 
values (n = 243) for tourmaline from 
stratabound tourmalinites of inferred 
premetamorphic origin with and without 
associated base-metal, iron, or borate 
mineralization. Not included are data for 
tourmaline from rocks containing <15 
vol. % tourmaline, or for tourmalinites 
spatially associated with granites, peg-
matites, quartz veins, faults and shear 
zones, or metamorphic replacements. 
Data for tourmalinites associated with 
gold mineralization are not shown. 
Multiple analyses of individual grains or 
portions of grains are averaged for each 
sample. Sources of data: Palmer and 
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hyay et al. (1993), Peng and Palmer 
(1995, 2002), Jiang et al. (1995, 1997, 
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(1997), Jiang (2001), Frimmel and 
Jiang (2001), Xu et al. (2004), Tourn et 
al. (2004), Pesquera et al. (2005), Ferla 
and Meli (2007), Trumbull et al. (2008, 
2011, 2019), Garda et al. (2010), Cabral 
et al. (2011), MacGregor et al. (2013), 
Yan and Chen (2014), Yücel-Öztürk et 
al. (2015), Farber et al. (2015), Grew 
et al. (2015), McGloin et al. (2019), 
Ota et al. (2019), Arena et al. (2020), 
Franz et al. (2021), Krmíček et al. 
(2021). Ranges of boron isotope values 
and median values (black vertical bars) 
for boron reservoirs from Marschall et 
al. (2017) and Trumbull et al. (2020). 
Abbreviations: CD, Clastic-Dominated; 
MORB, Mid-Ocean Ridge Basalt; OIB, 
Ocean-Island Basalt; VMS, Volcanoge-
nic Massive Sulfide.
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isotope data, obtained on tourmaline separates (only a 
few tourmalinites), yielded δ18O and δD values mainly in 
the range of +9.5 to +15.5 ‰ and –60 to –45 ‰, respec-
tively. These values differ from those for pegmatite- and 
granite-hosted tourmalines, and suggest major influences 
on oxygen isotopes from host lithologies and on hydrogen 
isotopes from modified seawater. Note, however, that 
the D data for these samples are also consistent with a 
metamorphic fluid source that likely existed during meta-
morphically induced recrystallization of the tourmaline 
in these massive sulfide deposits (Slack 1996; Pesquera 
and Velasco 1997; Jiang 1998). 

Analyses of oxygen and hydrogen isotopes in tour-
malinite-hosted tourmalines from unmetamorphosed 
or weakly metamorphosed terranes can be especially 
informative such as in evaluating the role of evolved 
seawater in tourmaline formation. This approach has 
been used in several studies of tourmalinites from the 
Sullivan Pb–Zn–Ag deposit and enclosing Belt-Purcell 
Supergroup (Nesbitt et al. 1984; Beaty et al. 1988; Seal 
et al. 2000; Taylor et al. 2000). These studies reported 
18O and δD values of +9.3 to +14.2 ‰ and –65 to –31 ‰, 
respectively, which for the Sullivan deposit suggest tour-
maline formation from mixtures of normal and exchanged 
seawater that had interacted with marine clastic sediments 
in the stratigraphic footwall sequence. The δ18O data 
for the shallow footwall tourmalinites at Sullivan show 
values 1 to 2 ‰ higher than those for the deep footwall 
tourmalinites, suggesting slightly different formational 
temperatures of ~230 to ~280 °C vs ~250 to ~300 °C, 
respectively (Seal et al. 2000). Calculated δ18O and δD 
data for the tourmaline-forming fluids further suggest an 
origin involving brines derived from evaporated seawater, 
followed by heating deep within the Belt-Purcell basin 
(Taylor et al. 2000).

5..2.	Boron

Boron isotope data for tourmalines from inferred pre-
metamorphic tourmalinites show a large variation from 
–26.1 to +27.5 ‰ (Fig. 8). This range of δ11B values 
approaches that for tourmaline from massive sulfide 
deposits (Palmer and Slack 1989) but does not reach the 
higher values of +20 to +35 ‰ reported for tourmaline 
from other types of hydrothermal ore deposits such as 
orogenic gold, iron oxide-copper-gold, and sediment-
hosted uranium (Trumbull et al. 2020). Although the 
range of δ11B values for most natural reservoirs is rela-
tively well known, problems still remain in identifying 
the predominant source of boron in tourmalinites as well 
as in tourmaline from various types of ore deposits. This 
is a particularly difficult challenge for isotopically light 
boron, for which tourmaline δ11B values in the range 
of –16 to –4 ‰ may reflect boron derived from several 

sources, including granitic magmas, marine sediments, 
or non-marine evaporites and carbonates (Trumbull and 
Slack 2018; Trumbull et al. 2020). Other processes that 
may affect the boron isotopic composition of tourma-
line include the temperature of formation, metamorphic 
fractionation, fluid/rock ratios, extent of seawater en-
trainment, and secular variation in seawater δ11B values 
(Palmer and Slack 1989). The boron source, however, is 
likely the predominant control.

Early studies proposed that δ11B values below ca. 
–18  ‰ in tourmalines reflect boron derived from non-
marine evaporites (Palmer and Slack 1989; Slack et al. 
1989; Palmer 1991). However, a more recent Li and B 
isotope study by Romer et al. (2014) of Cambrian shales 
in Germany reported δ11B values as low as –24.0 ‰, at-
tributed to 11B depletion during intense weathering in the 
source terrane(s) of the shales. Therefore, such isotopical-
ly low values do not require a major boron contribution 
from non-marine evaporites, a model that also applies 
to tourmalinites that formed in this type of environment 
or had a boron source terrane that included sediments 
derived from a strongly weathered source. Consequently, 
a boron isotope range unique to non-marine evaporites 
(and related carbonates) cannot be robustly defined at 
present. This limitation is underpinned by recent propos-
als for very low boron isotope compositions of ancient 
seawater (Marschall 2018), including calculated values 
for Precambrian seawater of +14 to +26 ‰ (Chaussidon 
and Appel 1997; Grew et al. 2015; Ota et al. 2019) that 
are ca. 14 to 26 ‰ lower than the value of +39.5 ‰ docu-
mented for modern seawater. Available data for Archean 
and Paleoproterozoic tourmalinites (Broken Hill, Isua, 
Jervois) show δ11B values of ≤ –20 ‰ (Fig. 8), consistent 
with the hypothesis of isotopically light seawater boron 
existing during the early Precambrian, and possibly ex-
tending into the Paleozoic (Marschall 2018). However, 
δ11B values of –20.0 ‰ or lower for tourmaline are none-
theless consistent with a non-marine evaporite source, 
particularly in terranes where underlying strata are known 
to contain evaporites or metaevaporites, such as in the 
Broken Hill district where bedded albitites occur in the 
deep stratigraphic footwall to the Pb–Zn–Ag ores and 
to tourmalinites of the region (Slack et al. 1989, 1993).

Positive δ11B values, in contrast, can generally be as-
signed to a predominantly marine boron source (Fig. 8). 
More specifically, values higher than +10 ‰ likely reflect 
a source from marine carbonates and/or evaporites. Evi-
dence for such sources comes from studies of tourma-
linites hosted in metacarbonates and well-documented 
metaevaporites, including Mesoproterozoic strata in 
northwestern New York State that have tourmaline δ11B 
values of +10.5 ‰ (Palmer and Slack 1989), and Me-
soproterozoic and Neoproterozoic strata in central and 
southern Namibia with tourmaline δ11B values of +18.3 
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and +12.0 to +27.5 ‰, respectively (Palmer and Slack 
1989; Frimmel and Jiang 2001). Boron contained in these 
tourmalinites is believed to have originated via the leach-
ing of boron from evaporites or carbonate rocks followed 
by upward transport in basinal brines to shallow depths 
on or below the seafloor. It is important to note, however, 
that carbonate rocks typically lack high concentrations of 
boron (< 100 μg/g; Marschall 2018), hence such strata 
probably were not the sole boron source for tourmalinites 
except possibly thin units of limited stratigraphic extent. 
Isotopically heavy boron isotopes may also rule out non-
marine evaporite origins previously inferred from geo-
logical and mineralogical data, as evidenced by the δ11B 
value of +18.3 ‰ for finely laminated Neoproterozoic 
tourmalinite at Stolzenfeld in central Namibia (Palmer 
and Slack 1989).

Many non-marine evaporites contain minor to abun-
dant borate minerals (e.g., Helvaci and Palmer 2017) 
and hence are likely sources for the boron in abundant 
tourmalinites occurring in overlying strata. This hy-
pothesis can be tested via mass-balance calculations for 
distinguishing between marine and non-marine sources 
of boron. For example, Slack et al. (2020) used this ap-
proach in evaluating the source of the ~52 Mt of boron 
contained within tourmalinite alteration zones of the Sul-
livan Pb–Zn–Ag orebody in Canada (Fig. 4). If the boron 
source for these tourmalinites was derived only from the 
underlying low-B (avg. 22.6 μg/g) clastic sediments, a 
very large sediment reservoir of 1733 km3 is required. 
Including the volumetrically minor but widespread 
tourmalinites present in coeval strata of the Belt-Purcell 
Supergroup (Slack 1993) requires an even larger reservoir 
volume. In contrast, the leaching of deep (but unexposed) 
non-marine evaporitic borates needs a much smaller 
source volume of only 4 km3, assuming a borate deposit 
size of 200 Mt and an average grade of 13 wt. % B, based 
on data for the Boron and Kirka deposits in California 
and Turkey (Kistler and Helvaci 1994), together with an 
estimated 50% depositional efficiency for the tourmaline-
hosted boron in the deposit. This non-marine evaporite 
source model is consistent with boron isotope data for 
ore-related tourmalinites from the Sullivan deposit (n = 
57) and for non-ore-related tourmalinites from the sur-
rounding region (n = 21), which overall show a range of 
–15.4 to –2.3 ‰ with averages of –8.4 ± 2.3 and –7.3 ± 
3.5 ‰, respectively (Jiang et al. 1999, 2000a).

5.3.	Silicon

Only a few silicon isotope studies have been done on 
tourmalinite-hosted tourmaline (Marschall and Jiang 
2011). Results for tourmaline separates from tourma-
linites in the Sullivan Pb–Zn–Ag deposit and in coeval 
metasedimentary strata of the surrounding Belt-Purcell 

Supergroup range in δ30Si from –0.5 to 0.0 ‰; the un-
altered host metasediments have values of 0.0 to +0.1 
‰ (Jiang et al. 1994, 2000b). The limited available data 
show that for the ore-related tourmalinites at Sullivan, 
δ30Si values lower than –0.1 ‰ are restricted to the shal-
low footwall, consistent with a major contribution of 
hydrothermal silicon to the tourmalinites in this part of 
the deposit. Because silicon isotope values of tourma-
line (and other minerals) are not generally reset during 
metamorphism, such data may be useful as paleoenviron-
mental indicators and as stratigraphic guides for mineral 
exploration (Jiang 1998; Marschall and Jiang 2011).

Future studies that report δ18O, δ11B, δ30Si, and δD 
values for tourmalinite-hosted tourmaline could prove 
fruitful in better constraining the nature and origin of 
fluid sources involved in tourmalinite formation (Slack 
and Trumbull 2011; Cabral and Koglin 2012). Important 
advances will likely come from studies that integrate ma-
jor-element data acquired by EMP with in situ analyses 
for trace elements by LA-ICP-MS and for boron isotopes 
by SIMS or other in situ techniques (e.g., Pesquera et al. 
2005; Trumbull et al. 2008, 2011; Marschall and Jiang 
2011; Su et al. 2016; Albert et al. 2018).

6.	Discussion

6.1.	Constraints on genesis

High alumina contents of tourmaline (ca. 28–35 wt. % 
Al2O3) greatly limit plausible models of tourmalinite for-
mation. The precipitation of tourmaline directly from an 
aqueous phase, such as metalliferous hydrothermal fluids, 
requires the transport of significant Al in solution. How-
ever, in hydrothermal fluids at low to moderate tempera-
ture (< 300 °C), Al has appreciable solubility only under 
low (< 5) or high (> 8) pH values, or in those with high 
contents of fluoride, sulfate, or organic acids (Slack 1996 
and references therein). In contrast, in high-temperature 
Si- and Cl-bearing metamorphic and magmatic fluids, Al 
solubility can be very high (up to ~80 mmol/kg; Manning 
2006), thus explaining the presence of abundant tourma-
line in such settings where fluid B concentrations were 
also high (e.g., Yardley 2013). 

The minimum temperature of tourmaline stability is 
a further constraint. Although the lowest formational 
temperature in nature is unknown, a value below 150 °C 
has been proposed based on the occurrence of diagenetic 
tourmaline overgrowths in sandstones and authigenic 
grains in the cap rocks of a salt dome (Henry et al. 1999; 
Henry and Dutrow 2012). However, in modern seafloor-
hydrothermal systems distal (> 100 m) from vent sites, 
temperatures at or near the sediment-seawater interface 
are much lower, generally < 50 °C (e.g., Humphris and 
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Tivey 2000). This low temperature and other consider-
ations were the basis for past suggestions that tourmaline 
does not form directly in modern seafloor environments, 
instead being derived from an original B-rich gel or col-
loid precursor (Ethier and Campbell 1977; Slack et al. 
1984; Slack 1996).

6.2.	Seafloor processes of boron enrichment

The close spatial association of tourmalinites with many 
ancient VMS deposits provides compelling evidence for 
boron enrichment on the paleoseafloor during the forma-
tion of these deposits. Such tourmalinites may occur in 
the immediate footwall or hanging wall of the deposits, or 
as stratigraphic equivalents along strike (Fig. 1a). Occur-
rences of tourmalinites containing laminae of sphalerite 
and/or galena, as in the shallow footwall of the Sullivan 
Pb–Zn–Ag deposit (Slack et al. 2000b), support this sea-
floor depositional model for the initial concentration of 
boron. Also relevant are tourmalinites interlayered with 
coticules or those containing abundant spessartine-rich 
garnet (Fig. 2a, 3f), the latter manganiferous tourmalin-
ites reflecting a Mn- and B-rich protolith that may have 
included minerals such as jimboite [Mn3B2O6] and sus-
sexite [MnBO2(OH)], which occur in some bedded Mn 
ores (Epprecht et al. 1959; Kato and Matsubara 1980). 
The manganese within these tourmalinites and related 
coticules was likely deposited from proximal or distal, 
non-buoyant hydrothermal plumes that were dispersed 
in seawater over large areas (tens to thousands of km2), 
based on data for Mn-rich metalliferous sediments in the 
modern Red Sea and the eastern Pacific Ocean (e.g., Bar-
rett et al. 2021). This interpretation is supported by the 
presence of high boron concentrations in eastern Pacific 
Ocean sediments that include values of up to 830 μg/g B 
(Boström and Peterson 1969) and by the areal distribu-
tion of modern Mn- and Fe-rich hydrothermal plumes 
that extend up to 4300 km westward from the East 
Pacific Rise (Fitzsimmons et al. 2017). Tourmalinite-
coticule units in terranes that lack known VMS or other 
stratabound mineralization probably formed by similar 
volcanic-hydrothermal processes and may be useful in 
the field as stratigraphic markers (Kennan and Kennedy 
1983; Slack 1996). 

Aluminum contents in vent fluids of modern seafloor-
hydrothermal systems are very low (<0.02 mmol/kg; 
German and Von Damm 2003) and hence are insufficient 
to permit tourmaline saturation and subsequent direct 
precipitation of this mineral on the seafloor. Moreover, 
these vent fluids are rapidly diluted by mixing with am-
bient seawater (Elderfield et al. 1993) and related plume 
particles have extremely low Al contents (≤12 nmol/L; 
Feely et al. 1994). Another major limitation is that molar 
Fe/Al ratios in modern submarine-hydrothermal fluids 

are very high (~10–300; German and Von Damm 2003) 
and are extremely high in plume particles (avg. 4663; 
Feely et al. 1994), whereas the ratios in tourmaline from 
tourmalinites are much lower (~1–6; Slack et al. 1993; 
Jiang et al. 1998; Pesquera et al. 2005; Čopjaková et al. 
2009). Hence, any exhalative submarine-hydrothermal 
fluid that precipitated tourmaline would consume so 
much Al initially that the fluids would be undersaturated 
with respect to tourmaline away from the vent sites, and 
thus be incapable of forming laterally extensive syn-
genetic tourmalinites (Slack 1996). Collectively, these 
data provide compelling arguments against a model for 
stratiform tourmalinite formation in which the tourmaline 
was a direct precipitate, on the seafloor, from submarine-
hydrothermal fluids.

Previous workers have speculated that B-rich gels or 
colloids were protoliths to premetamorphic tourmalinites, 
including those in or near VMS and CD Pb–Zn deposits 
(e.g., Ethier and Campbell 1977; Slack et al. 1984; Jiang 
et al. 1994; Ndiaye and Guillou 1997). Possible support 
for this hypothesis comes from the presence of small 
(<1 cm) spheroidal structures within shallow footwall 
tourmalinites at the Sullivan Pb–Zn–Ag deposit (Slack et 
al. 2000b) that are like those produced experimentally in 
dehydrated siliceous gels (Oehler 1976). Similar globular 
structures <1 cm in size were reported in tourmalinites 
from Senegal and Mali by Ndiaye and Guillou (1997). 
Importantly, however, no evidence exists in modern 
seafloor-hydrothermal systems for B-rich phases. Yet 
textural evidence strongly suggests this type of origin 
for the Si–Fe and Mn-rich beds in early Paleozoic VMS 
deposits of Norway and Spain (Grenne and Slack 2003a; 
Jorge et al. 2005), and in modern plume particles and 
metalliferous sediments on the Juan de Fuca Ridge and 
in the Red Sea, respectively (Hrischeva and Scott 2007; 
Laurila et al. 2015). A challenge for future studies will be 
proving the existence of B-rich gels or colloids in modern 
seafloor-hydrothermal systems.

6.3.	Syngenetic and diagenetic boron  
metasomatism

The critical role of precursor aluminous sediments or 
felsic volcanic rocks during the formation of stratiform 
tourmalinites supports a diagenetic origin involving  
B-rich hydrothermal fluids. This model is consistent 
with numerous observations of tourmalinites that 
preserve sedimentary structures such as graded beds, 
cross-laminations, and rip-up clasts (Slack et al. 1984; 
Slack 1996). Within these structures, tourmaline shows 
preferential replacement of the clay and/or feldspar ma-
trix. A preferred origin (Slack 1993, 1996) involves the 
migration of B-rich hydrothermal fluids along permeable, 
sandy beds and the selective replacement of argillaceous 
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beds (or laminae) in the upper parts of unconsolidated 
sedimentary sequences. This replacement process may 
occur at or near the sediment-water interface, or tens to 
hundreds of meters below. Such a model is also appli-
cable to permeable felsic volcanics, especially aluminous 
volcaniclastic rocks (Bandyopadhyay et al. 1993). Rarely, 
basalt may be the locus of boron metasomatism and 
tourmaline formation, as at the Elizabeth VMS deposit 
in Vermont (Slack et al. 2001), although in this case, the 
tourmalinite formed by extreme metasomatic processes. 
The timing of replacement most likely was during sedi-
mentation or early diagenesis, involving episodic basin 
dewatering (Slack 1996) and the release of boron from 
illite during the 1Md-2M1 transition (Reynolds 1965), 
with the subsequent focusing of B-rich fluids preferen-
tially in synsedimentary fault zones (cf. Bjørlykke 2015). 
A much later timing (e.g., metamorphic) is also possible 
if sufficient permeability is maintained for fluid transport 
over large distances (> 100 m) within individual beds or 
laminae. Regardless of the timing, for typical precursor 
mineral assemblages, a generalized reaction can be writ-
ten as follows (Slack 1996):
23 Mus + 9 Chl + 21 Pl + 63 B(OH)3 + 23 HCl = 21 Tur 
+ 42 Qtz + 141 H2O + 23 KCl
(where Mus = Muscovite, Chl = Chlorite, Pl = Plagio-
clase, Tur = Tourmaline, Qtz = Quartz)

This reaction produces quartz as a product, consistent 
with the presence in some tourmalinites of hydrother-
mal quartz intergrown with tourmaline (e.g., Jiang et 
al. 1998) and of quartz-rich selvages along margins of 
tourmalinites (Slack 1996). However, the quartz in many 
tourmalinite-hosted tourmalines may also derive from Si-
rich hydrothermal fluids, as suggested by the low silicon 
isotope values of tourmalinites in the Sullivan Pb–Zn–Ag 
deposit (Jiang et al. 1994, 2000b).

Boron metasomatism of aluminous sediments under 
high fluid/rock conditions can greatly affect concentra-
tions of alkali and alkaline earth elements and LREE, 
as discussed above for the footwall tourmalinite pipe at 
the Sullivan Pb–Zn–Ag deposit. The major variations 
in LREE abundances evident for the shallow footwall 
tourmalinites (Fig. 6a) and for some deep footwall tour-
malinites (Slack et al. 2000b) suggest local dissolution 
and reprecipitation of detrital monazite and of other 
LREE-rich detrital phases such as allanite. However, this 
hypothesis has not been tested and is a worthwhile project 
at Sullivan and elsewhere, focusing on microtextural and 
microchemical data obtained by EMPA, scanning electron 
microscopy (SEM), and LA-ICP-MS.

The formation of tourmalinites in some terranes 
likely reflects boron recycling processes. An early  stage 
involves the dissolution of B-bearing phases, especially 
clays that may contain as much as 2000 μg/g B (Harder 
1970), and the transfer of this boron by hydrothermal 

fluids towards the paleoseafloor. Later stages can include 
preexisting tourmaline concentrations that during meta-
morphism, are remobilized into veins and metasomatic 
replacements, or during granite emplacement, are in-
corporated into the magma and subsequently crystallize 
as tourmaline-rich pegmatites, nodules, and veins (e.g., 
Slack et al. 1993; Slack 1996; Kasemann et al. 2000; 
Pesquera et al. 2005; Krmíček et al. 2021). The predomi-
nance of tourmalinites in the Proterozoic (Tab. 1) also 
suggests the possibility that coeval seawater had higher 
boron contents than today, thus favoring the formation 
of tourmaline-rich sediments during sedimentation and 
early diagenesis of that Eon.

6.4.	Potential modern analogs

Modem analogs of tourmalinites are unknown. However, 
in seafloor environments, limited data suggest there is 
a general affinity of B with Mn, as for sediments on 
the East Pacific Rise that contain 300 to 800 μg/g B 
(carbonate-free basis) associated with Al-poor Fe-Mn 
sediments (Boström and Peterson 1969). In this setting, 
B-rich precursors to tourmaline may exist, a possibility 
supported by the finely interbedded nature of tourma-
linites and coticules in numerous metasedimentary and 
metavolcanic terranes worldwide (Slack et al. 1984; Spry 
et al. 2000). A related constraint is the low B concentra-
tion expected in non-buoyant hydrothermal plumes distal 
from seafloor vent sites, owing to the large dilution factor 
(~104) for vent fluids during mixing with ambient seawa-
ter, as calculated for modern plumes (German and Von 
Damm 2003). Overall, among tourmalinites that formed 
at or near the seafloor, many have sources and contained 
components of (1) hydrothermal plumes: Fe, Mn, Si, B; 
(2) sediments and felsic volcanics: B, Al, Si, Mg, Ca, 
Na; (3) evaporites: B, Mg; and (4) seawater: B, Mg, and 
Si; the last component is restricted to pre-Cretaceous 
tourmalinites because of very low Si contents of seawater 
thereafter, due to the rise of diatoms and other siliceous 
organisms (Grenne and Slack 2003b). In evaporitic set-
tings, tourmaline precursors may have included mixtures 
of a detrital ferromagnesian silicate, like chlorite with Na 
± Ca borosilicates such as reedmergnerite [NaBSi3O8] or 
searlesite [NaBSi2O5(OH)2], both of which are locally 
abundant in Tertiary lacustrine evaporite deposits of the 
western United States (Milton 1971).

A second potential seafloor site for modern B-rich 
sediments is at or near high-temperature hydrothermal 
systems hosted in aluminous sediments or felsic volcanic 
rocks. Whereas modern, sediment-free (basaltic) systems 
have vent fluids with ca. 350 to 700 µmol/kg B, those of 
sediment and rhyolite systems have much higher B con-
centrations up to 4800 µmol/kg (Yamaoka et al. 2015); 
for comparison, seawater has an average of 415 µmol/



Premetamorphic stratabound tourmalinites

91

kg B (German and Von Damm 2003). The combination 
of high B within these vent fluids, and the availability of 
abundant Al in the host sediments and felsic volcanics, 
suggests potential in such environments for modern 
tourmalinite formation. This potential most likely exists 
in the subsurface where seawater dilution of B-rich hy-
drothermal fluids is generally minimized.

The Red Sea has several features that suggest the 
possible modern formation of B-rich phases. Metal-
liferous brines in the various basins have temperatures 
up to 68 °C and boron concentrations up to 4580 µmol/
kg in the Oceanographer Deep (Schmidt et al. 2015). 
Interstitial waters in the Atlantis II Deep contain up to 
880 µmol/kg (Anschutz et al. 2000), and ca. 1000 μg/g 
B was determined for two Fe- and Zn-rich samples from 
shallow core depths of 15 to 25 cm in the Atlantis II Deep 
(Hendricks et al. 1969). A more comprehensive study by 
Laurila et al. (2014) found much lower maximum boron 
contents of 120 μg/g B in sediments from the Atlantis II 
Deep. Importantly, a moderate correlation (r = 0.61) of 
B with sulfide sulfur determined in that study suggests 
that the boron preferentially occurs in Fe-sulfide-facies 
metalliferous sediment and not the Fe- and Mn-oxide-
facies sediment that predominates in the Red Sea de-
posits. Unknown is whether some of the basins there or 
geographic or stratigraphic parts of the basins, contain 
B-rich brines and sediments whereas others do not. 
Notably, the relatively high boron concentrations within 
the Red Sea brines may still be too low for tourmaline 
growth on the underlying seafloor, given the nucleation 
barrier that exists for this mineral at low temperatures of 
ca. 150 °C or less (Henry and Dutrow 2012). Although 
tourmaline precipitation is unlikely in surficial sediments 
of the Red Sea, tourmaline could be forming in the sub-
surface at higher temperatures, at or near hydrothermal 
conduits like those documented in the Atlantis II Deep 
(150–420 °C; Zierenberg and Shanks 1983, 1988), or via 
the heating of B-rich pore fluids by mafic intrusions such 
as the gabbro bodies identified recently in the Discovery 
Deep (Follmann et al. 2021). Alternatively, downward 
penetration of the dense B-rich brines into sediments 
in the shallow subsurface (cf. Sangster 2002) might be 
forming amorphous B-rich phases (gels, colloids).

A final potential setting for the formation of modern 
tourmalinites is near the margins of large mafic sills or 
dikes that intrude marine clastic sediments. This hypoth-
esis is based on the analogy with the setting of tourma-
linites in some Proterozoic sedimentary basins such as 
the Belt-Purcell Supergroup, in which tourmalinites (and 
local albitites) occur near the margins of large gabbroic 
sills that were emplaced while the host sediments were 
still unlithified (Beaty et al. 1988; Höy et al. 2000). Oc-
currences of these types of synsedimentary mafic sills 
are well documented in modern sedimentary basins as 

in parts of the Norwegian Sea and the South China Sea 
(Jamtveit et al. 2004; Zhao et al. 2021). A reconnais-
sance study of a drill core through a dolerite sill in the 
Guaymas Basin, Gulf of California, indicates that during 
emplacement of this sill, the boron in surrounding clastic 
sediments was remobilized and concentrated in the mar-
gins of the sill, by a factor of ca. 50, producing vented 
hydrothermal fluids with boron contents of up to 1730 
µmol/kg relative to the seawater value of 415 µmol/kg B 
(Spivack et al. 1987). This mafic sill heated the adjacent 
sediments to temperatures of ~250 to 350 °C based on 
oxygen isotopes (e.g., Kastner 1982). Therefore if boron 
concentrations are sufficiently high, then tourmalinite 
occurrences are possible, not only in Guaymas Basin 
but in other modern sill-sediment complexes that also 
may have associated clastic-hosted Pb–Zn–Ag deposits 
(Slack 2020).

6.5.	Exploration applications

A first-order exploration guide in premetamorphic strat-
abound tourmalinites is the presence of base-metal sulfide 
minerals, including discrete grains and tourmaline-hosted 
inclusions. The occurrence of an accessory or minor 
pyrite or pyrrhotite alone may not be prospective. On a 
whole-rock basis, tourmalinites with high MnO contents 
(>1 wt. %) present in carbonate or garnet (Fig. 3f) are 
interpreted to have an appreciable exhalative hydrother-
mal component and thus possibly be time-correlative 
with stratiform sulfide mineralization along strike (Slack 
1996). The presence of povondraite-rich tourmaline, con-
taining high proportions of Fe3+, likely reflects deposition 
from high-salinity fluids (Henry et al. 2008), and hence 
settings in which abundant base metals could be trans-
ported (e.g., Zhong et al. 2015). Dravite and other Mg-
rich tourmalines may be informative, especially where 
associated with sulfide minerals even in small amounts of 
ca. 1 vol. %, because such magnesian compositions can 
record the involvement of evolved (Mg-rich) seawater in 
seafloor-hydrothermal systems and the effects of sulfide-
silicate reactions during metamorphism (Slack 1996). 
However, Mg-rich tourmaline also occurs in many barren 
tourmalinites that lack any relationship to base-metal or 
other metallic mineralization, instead reflecting forma-
tional conditions under low fluid/rock ratios in which the 
bulk composition of magnesian host rocks (e.g., evapo-
ritic sediments) controlled tourmaline chemistry (Slack 
1996; Pesquera et al. 2005).

Data for REE can also be useful in mineral exploration 
programs. Positive Eu anomalies are especially valuable 
in recording deposition from reduced, high-temperature 
fluids that can transport metals of economic interest (e.g., 
Lottermoser 1992; Slack 1996). However, tourmalinites 
that lack such anomalies may not be favorable explo-
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ration guides, instead reflecting processes such as the 
diagenetic mobilization and venting of B-rich, but metal-
poor basinal fluids. An important caveat in this context is 
that tourmalinites without positive Eu anomalies may still 
have associated mineralization since many ore-related 
tourmalines in the Broken Hill district do not show these 
anomalies (Fig. 6b). 

6.6.	Archean tourmalinites and early life

Ribonucleic acid (RNA) is generally considered a fun-
damental precursor of deoxyribonucleic acid (DNA) 
and hence a molecule critical for the origin of life (e.g., 
Neveu et al. 2013). A major requirement for the evolu-
tion of RNA is ensuring its stability within ribose at 
circumneutral pH, a problem that may be solved by 
the presence of borate compounds (Grew et al. 2011). 
Therefore, occurrences of boron-rich minerals in the 
early rock record of Earth are potentially important for 
paleobiology. A related issue is a geological environment 
where life originated, which is a highly controversial 
topic that is widely debated. A major advance comes 
from the study of Weiss et al. (2016), which involved a 
detailed assessment of phylogenetic trees for 6.1 million 
protein-coding genes, the results suggesting that the last 
universal common ancestor (LUCA) lived in a hydro-
thermal environment containing high concentrations of 
Fe, S, H2, and CO2. This environment is consistent with 
a seafloor setting related to submarine volcanism and 
hot springs. Byerly et al. (1986) first alluded to the role 
that tourmalinites may play in early life, based on the 
presence of tourmaline-rich laminae within stromatolites 
of the Paleoarchean Barberton greenstone belt in South 
Africa. This hypothesis of a link between tourmalinites 
and early life was also evaluated for tourmalinites of 
the Eoarchean Isua supracrustal belt of West Greenland 
by Grew et al. (2015). More recent discussions of this 
concept, as applied to the Isua tourmalinites and those of 
Mesoarchean age, are presented in Mishima et al. (2016), 
Ota et al. (2019), and Van Kranendonk et al. (2021). 
However, fundamental geological constraints for the 
borate-RNA model are that no borate minerals are known 
in such ancient rocks and that the isotopically very low 
δ11B values of the tourmalinite-hosted tourmalines (–25.0 
to –17.3 ‰; Chaussidon and Appel 1997) are not proof 
of a non-marine evaporite origin for the boron, given the 
likelihood that Early Archean seawater had much lower 
δ11B values than today (e.g., Grew et al. 2015). Moreover, 
if life began not in the Eoarchean (ca. 3.8–3.7 Ga) as cur-
rently envisaged but instead in the Hadean (Martin et al. 
2008), then the lack of rocks older than 4 Ga, including 
those with tourmaline (Grew et al. 2011) is an additional 
limitation for a connection of borate compounds to the 
emergence of RNA on primordial Earth.
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