Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Elizabeth A. Levy, Darrell J. Henry, Amitava Roy, Barbara L. Dutrow

Determination of ferrous-ferric iron contents in tourmaline using synchrotron-based XANES

Journal of Geosciences, volume 63 (2018), issue 2, 167 - 174

DOI: http://doi.org/10.3190/jgeosci.262



The complex geochemistry of tourmaline makes it an important tool in determining its formational environment. Typically, tourmaline chemistry is analyzed through electron-probe microanalysis (EPMA), but this analytical tool cannot determine directly the oxidation states of transition elements such as Fe (Fe2+, Fe3+). Direct quantitative measurement of these cations is important in minerals to acquire a more complete chemical characterization and informative structural formula. Synchrotron-based X-ray Absorption Near Edge Spectroscopy (XANES) is a method to directly measure Fe2+ and Fe3+ in minerals, including tourmaline. This method utilizes advances in software and detector technology to significantly decrease data processing time and errors.
Three tourmaline samples, dravite, povondraite, and oxy-schorl, analyzed by combining XANES and EPMA data, exhibit distinct ferrous-ferric contents using the pre-edge and absorption edge methods. These analyses reveal, respectively: 99.62-100 wt. % Fe2+ in dravite, 12.5-20.00 wt. % Fe2+ vs. 87.48-100 wt. % Fe3+ in povondraite, and 63.03wt. % Fe2+ vs. 36.98-36.41 wt. % Fe3+ in schorl. Information on the oxidation states of Fe results in enhanced charge-balanced constraints that allow improved estimation of the H contents in the tourmaline and a more accurate designation of the structural formula and classification of tourmaline species. Thus, XANES is a viable technique to obtain oxidation states of transition elements in tourmaline.

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2023): 0.6

IF (WoS, 2023): 1.1

5 YEAR IF (WoS, 2023): 1.5

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943