Original paper
Anorogenic Early Permian dykes in the western Mongolian Altai - petrography, geochemistry and K-Ar geochronology
Journal of Geosciences, volume 64 (2019), issue 1, 37 - 58
DOI: http://doi.org/10.3190/jgeosci.280
Badarch G, Cunningham CW, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21: 87-110
Balogh K (1985) K/Ar dating of Neogene volcanic activity in Hungary: experimental technique, experiences and methods of chronologic studies. ATOMKI Report D/1: 277-288
Barbarin B (1999) A review of relationships between granitoid types, their origins and their geodynamic environments. Lithos 46: 605-626
Blight JHS, Crowley QG, Petterson MG, Cunningham D (2010) Granites of the southern Mongolia Carboniferous arc: new geochronological and geochemical constraints. Lithos 116: 35-52
Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 63-114
Buriánek D, Hanžl P, Budil P, Gerdes A (2012) Evolution of the Early Permian volcanic-plutonic complex in the western part of the Permian Gobi-Altai Rift (Khar Argalant Mts., SW Mongolia). J Geosci 57: 105-126
Buslov MM, Safonova IY, Watanabe T, Obut OT, Fujiwara Y, Iwata K, Semakov NN, Sugai Y, Smirnova LV, Kazansky AY (2001) Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian Continent. Geosci J 5: 203-224
Cai K, Sun M, Jahn BM, Xiao WJ, Yuan C, Long X, Chen H, Tumurkhuu D (2015) A synthesis of zircon U-Pb ages and Hf isotopic compositions of granitoids from southwest Mongolia: implications for crustal nature and tectonic evolution of the Altai Superterrane. Lithos 232: 131-142
Castro A (2001) Plagioclase morphologies in assimilation experiments: implications for disequilibrium melting in the generation of granodiorite rocks. Mineral Petrol 71: 31-49
Chen B, Arakawa Y (2005) Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochim Cosmochim Acta 69: 1307-1320
Chen B, Jahn BM (2004) Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotopic and trace element evidence. J Asian Earth Sci 23: 691-703
Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental constraints: Amer Miner 71: 317-324
Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80: 189-200
Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model: Geology 19: 163-166
Cox AV, Dalrymple GB (1967) Statistical analysis of geomagnetic reversal data and the precision of potassium-argon dating. J Geophys Res 72: 2603-2614
Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35: 787-790
DePaolo DJ (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett 53: 189-202
Don J (1977) The geology of the Altai Mts, Mongolia, in the drainage basin of the Khoytu Tsenkher-Gol (river). Biul Inst geol 302: 165-290
Dumicz M (1977) The tectonics of the Altai Mts. in Mongolia and of the Great Lake Basin in the Kobdo region. Biul Inst geol 302: 5-163
Ebadi A, Johannes W (1991) Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2. Contrib Mineral Petrol 106: 286-295
Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20: 641-644
Ersoy Y, Helvacı C (2010) FC-AFC-FCA and mixing modeler: a Microsoft® Excel© spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Comput Geosci 36: 383-390
Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52: 39-53
Gavrilova SP, Zaitsev NS, Pavlov VA, Yashina RM (1975) Granitoid and Alkaline Formations in Structures of Western and Northern Mongolia. Nauka, Moscow, pp 1-288 (in Russian)
Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63: 489-508
Jahn BM (2004) The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC (eds) Aspects of the Tectonic Evolution of China. Geological Society of London Special Papers 226: 73-100
Jahn BM, Wu FY, Chen B (2000) Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans Roy Soc Edinb, Earth Sci 91: 181-193
Jahn BM, Litvinovsky BA, Zanvilevich AN, Reichow MK (2009) Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos 113: 521-539
Janoušek V, Bowes DR, Braithwaite CJR, Rogers G (2000) Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic. Trans Roy Soc Edinb, Earth Sci 91: 15-26
Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47: 1255-1259
Johannes W, Holtz F (1996) Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer, pp 1-335
Jung S, Pfänder JA (2007) Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur J Mineral 19: 859-870
Kelemen PB, Shimizu N, Dunn T (1993) Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120: 111-134
Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weise D, Jerram DA, Keller F, Meugniot C (2004) Flood and shield basalts from Ethiopia: magmas from the African superswell. J Petrol 45: 793-834
King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold belt, southeastern Australia. J Petrol 38: 371-391
Kovalenko DV, Chernov EE (2008) Paleomagnetism of Carboniferous-Permian and Early Jurassic geological complexes in Mongolia. Izv Phys Solid Earth 44: 427-441
Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozlovsky AM, Sal’nikova EB, Larin AM (2004) Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: geological and isotopic evidence. J Asian Earth Sci 23: 605-627
Kozlovsky AM, Yarmolyuk VV, Savatenkov VM, Kovach VP (2006) Sources of basaltoid magmatism in rift settings at an active continental margin: example from bimodal association of the Noyon and Tost ranges in the Late Paleozoic Gobi-Tien Shan Rift Zone, southern Mongolia. Petrology 14: 337-360
Kozlovsky AM, Yarmolyuk VV, Sal’nikova EB, Travin AV, Kotov AB, Plotkina JV, Kudryashova EA, Savatenkov VM (2015) Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt. J Asian Earth Sci 113: 524-541
Kretz R (1983) Symbols for rock-forming minerals. Amer Miner 68: 277-279
Leake BE, Wooley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato FC, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo Y (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association on New Minerals and Mineral Names. Canad Mineral 35: 219-246
Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27: 745-750
Li D, He DF, Santosh M, Tang JY (2014) Petrogenesis of Late Paleozoic volcanics from the Zhaheba Depression, East Junggar: insights into collisional event in an accretionary orogen of Central Asia. Lithos 187: 167-193
Litvinovsky BA, Jahn BM, Zanvilevich AN, Saunders A, Poulain S, Kuzmin DV, Reichow MK, Titov AV (2002) Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas. Chem Geol 189: 105-133
Liu Q, Zhao GC, Han YG, Eizenhöfer PR, Zhu YL, Hou WZ, Zhang XR (2017) Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos 274-275: 19-30
Liu W, Liu XJ, Liu LJ (2013) Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes. Lithos 179: 293-319
Long X, Yuan C, Sun M, Xiao W, Zhao G, Wang Y, Cai K, Xia X, Xie L (2009) Detrital zircon ages and Hf isotopes of the Early Paleozoic flysch sequence in the Chinese Altai, NW China: new constrains on depositional age, provenance and tectonic evolution. Tectonophysics 480: 213-231
Mao QG, Xiao WJ, Fang TH, Windley BF, Sun M, Ao SJ, Zhang JE, Huang XK (2014) Geochronology, geochemistry and petrogenesis of Early Permian alkaline magmatism in the Eastern Tianshan: implications for tectonics of the Southern Altaids. Lithos 190-191: 37-51
McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102: 358-374
McKenzie D, O’Nions R. (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32: 1021-1091
Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchim Acta 114-115: 363-376
McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120: 223-253
Morimoto N (1998) Nomenclature of pyroxenes. Mineral Petrol 39: 55-76
Nissen EN, Walker RT, Baysgalan A, Carter A, Fattahi M, Molor E, Schnabel C, West AJ, Xu S (2009) The late Quaternary slip-rate of the Har-Us-Nuur Fault (Mongolian Altai) from 10Be and luminescence dating. Earth Planet Sci Lett 286: 467-478
Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19: 120-125
Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100: 14-48
Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19: 290-300
Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69: 33-47
Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib Mineral Petrol 58: 63-81
Piilonen PC, Lalonde AE, McDonald AM, Gault RA, Larsen AO (2003) Insights into the astrophyllite group I. Nomenclature, composition and development of a standardized general formula. Canad Mineral 41: 1-26
Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction related volcanoes. Contrib Mineral Petrol 160: 45-66
Rudnick RL, Gao S (2004) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry Vol. 3, The Crust (Rudnick RL ed). Elsevier-Pergamon, Oxford, pp 1-64
Rutter MJ, Wyllie PJ (1988) Melting of vapour absent tonalite at 10 kbar to simulate dehydration melting in the deep crust. Nature 331: 159-160
Schmidt MW, Thompson AB (1996) Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. Amer Miner 81: 462-474
Şengör A, Natal’in B, Burtman V (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364: 299-307
Shen XM, Zhang HX, Wang Q, Wymanc DA, Yang YH, (2011) Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: petrogenesis and implications for tectonic setting of “A2-type” granites. J Asian Earth Sci 42: 986-1007
Soejono I, Buriánek D, Janoušek V, Svojtka M, Čáp P, Erban V, Ganpurev N (2017) A reworked Lake Zone margin: chronological and geochemical constraints from the Ordovician arc-related basement of the Hovd Zone (western Mongolia). Lithos 294-295: 112-132
Soejono I, Čáp P, Míková J, Janoušek V, Buriánek D, Schulmann K (2018) Early Palaeozoic sedimentary record and provenance of flysch sequences in the Hovd Zone (western Mongolia): implications for the geodynamic evolution of the Altai accretionary wedge system. Gondwana Res 64:163-183
Steiger RH, Jäger E (1977) Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36: 359-362
Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in the Ocean Basins. Geological Society of London Special Publications 42: 313-345
Sun M, Yuan C, Xiao W, Long Xia X, Zhao G, Lin S, Wu F, Kröner A (2008) Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chem Geol 247: 352-383
Sylvester PJ (1989) Post-collisional alkaline granites. J Geol 97: 261-280
Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33: 241-265
Tong Y, Wang T, Jahn B, Sun M, Hong DW, Gao JF (2014) Post-accretionary Permian granitoids in the Chinese Altai orogen: geochronology, petrogenesis and tectonic implications. Amer J Sci 314: 80-109
Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia: Lithos 28: 151-179
Vernon RH (1991) Interpretation of microstructures of microgranitoid enclaves. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Developments in Petrology 13, Elsevier, Amsterdam, pp 277-291
Wang Q, Wyman DA, Zhao ZH, Xu JF, Zheng HB, Xiong XL, Dai DX, Li HC, Chu ZY (2007) Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt. Chem Geol 236: 42-64
Wang ZG, Chen YL, Dong ZS, Wu MQ, Zhang J (1993) The high-alkaline intrusive rock belts in northern Xinjiang: their geology, geochemistry and genesis. In: Tu GZ (ed) Progress of Solid-Earth Sciences in Northern Xinjiang, China. Science Publishing House, Beijing, pp 163-172 (in Chinese)
Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64: 295-304
Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95: 407-419
Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20: 325-343
Wu FY, Sun DY, Li HM, Jahn BM, Wilde SA (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187: 143-173
Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin K, Wang Z (2004) Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia. J Geol Soc, London 161: 339-342
Yang W-B, Niu HC, Shan Q, Sun WD, Zhang H, Li NB, Jiang YH, Yu XY (2014) Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr-REE-Nb mineralization. Miner Depos 49: 451-470
Yarmolyuk VV, Kovalenko VI (1991) Rift Magmatism of Active Continental Margins and Its Ore Potential. Nauka, Moscow, pp 1-263 (in Russian)
Yarmolyuk VV, Kovalenko VI (2001) Late Riphean breakup between Siberia and Laurentia: evidence from intraplate magmatism. Dokl Earth Sci 379: 525-528
Yarmolyuk VV, Kovalenko VI, Kozlovsky AM, Vorontsov AA, Savatenkov VM (2005) Late Paleozoic-Early Mesozoic rift system of Central Asia: composition of magmatic rocks, sources, order of formation and geodynamics. In: Kovalenko VI (ed) Tectonic Problems of Central Asia. World of Science, Moscow, pp 197-226
Yarmolyuk VV, Kovalenko VI, Sal’nikova EB, Kovach VP, Kozlovsky AM, Kotov AB, Lebedev VI (2008) Geochronology of igneous rocks and formation of the Late Paleozoic south Mongolian active margin of the Siberian Continent. Stratigr Geol Correl 16: 162-181
Yarmolyuk VV, Kuzmin MI, Kozlovsky AM (2013a) Late Paleozoic-Early Mesozoic within-plate magmatism in north Asia: traps, rifts, giant batholiths, and the geodynamics of their origin. Petrology 21: 101-126
Yarmolyuk VV, Kuzmin MI, Vorontsov AA, Khomutova MY (2013b) West Pacific-type convergent boundaries: role in the crust growth history of the Central-Asian Orogeny. J Asian Earth Sci 62: 67-78
Yarmolyuk VV, Kozlovsky AM, Kuzmin MI (2016) Zoned magmatic areas and anorogenic batholith formation in the Central Asian Orogenic Belt (by the example of the Late Paleozoic Khangai magmatic area). Russ Geol Geophys 57: 357-370
Yuan L, Zhang X, Xue F, Liu F (2016) Juvenile crustal recycling in an accretionary orogen: insights from contrasting Early Permian granites from central Inner Mongolia, North China. Lithos 264: 524-539
Zhang CL, Zou H, Yao CY, Dong YG (2014) Origin of gabbroic intrusions in the southern margin of the Altai Orogenic Belt: a possible link to the Permian Tarim mantle plume? Lithos 204: 112-124
Zhang X, Zhang H, Tang Y, Wilde SA, Hu Z (2008) Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chem Geol 249: 262-281
Zhang X, Wilde SA, Zhang H, Zhai M (2011) Early Permian high-K calc-alkaline volcanic rocks from NW Inner Mongolia, North China: geochemistry, origin and tectonic implications. J Geol Soc, London 168: 525-543
Zheng YF, Wu RX, Wu YB, Zhang SB, Yuan H, Wu FY (2008) Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambr Res 163: 351-383
Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: A Plate-Tectonic Synthesis. American Geophysical Union, Geodynamics Series Vol. 21. Washington, DC, pp 1-242
Žáček V, Buriánek D, Pécskay Z, Škoda R (2016) Astrophyllite-alkali amphibole rhyolite, an evidence of Early Permian A-type alkaline volcanism in the western Mongolian Altai. J Geosci 61: 93-103
Žáček V, Bohdálek P, Břízová E, Buriánek D, Čáp P, Enkhjargal M, Franců J, Gelegjamts A, Guy A, Hanžl P, Havlíček P, Henrion E, Hošek J, Jelének J, Knésl I, Karenová J, Kociánová L, Kotková J, Krejčí Z, Mixa P, Mrlina J, Pecina V, Pécskay Z, Prudhomme A, Soejono I, Svojtka M, Šimůnek Z, Škoda R, Verner K, Vondrovic L, Vorel T, Vrána S, Čopjaková R (2017a) Mongol Altai 50 - a Development Cooperation Project of Czech Republic with Mongolia in geology (2013-2016). Geosci Res Reports 50: 159-166
Žáček V, Buriánek D, Čáp P Soejono I, Vorel T, Havlíček P (2017b) New geological maps 1 : 50,000 of the Mongolian Altai. In: Šimon L, Kováčová M, Ozdínová S, Michalík J, Pivko D, Goliáš V, Bokr P, Tomanová Petrová P, Gilíková H (eds) Otvorený geologický kongres Slovenskej geologickej spoločnosti a České geologické společnosti, Vysoké Tatry, 14-17 June, 2017. Zborník abstraktov a exkurzný sprievodca. Slovenská geologická spoločnost. Bratislava, pp 79
IF (WoS, 2023): 1.1
5 YEAR IF (WoS, 2023): 1.5
Policy: Open Access
ISSN: 1802-6222
E-ISSN: 1803-1943