Original paper
A new solvothermal approach to obtain nanoparticles in the Cu3SnS4-Cu2FeSnS4 join
Journal of Geosciences, volume 65 (2020), issue 1, 3 - 14
DOI: http://doi.org/10.3190/jgeosci.300
Alanazi AM, Alam F, Salhi A, Missous M, Thomas AG, O’Brien P, Lewis DJ (2019) A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materials. Rsc Adv 9: 24146-24153
Alsema E (2012) Energy payback time and CO2 emissions of PV systems. In: McEvoy A, Markvart T, Castañer L (eds) Practical Handbook of Photovoltaics, 2nd Edition. Fundamentals and Applications. Academic Press, Elsevier, Amsterdam, pp 1097-1117
Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B 58: 7565-7576
Bain GA, Berry JF (2008) Diamagnetic corrections and Pascal’s constants. J Chem Educ 85: 532-536
Bente K (1987) Stabilization of Cu-Fe-Bi-Pb-Sn-sulfides. Mineral Petrol 36: 205-217
Bernardini GP, Bonazzi P, Corazza M, Corsini F, Mazzetti G, Poggi L, Tanelli G (1990) New data on the Cu2FeSnS4-Cu2ZnSnS4 pseudobinary system at 750° and 550 °C. Eur J Mineral 2: 219-225
Bernardini GP, Borrini D, Caneschi A, Di Benedetto F, Gatteschi D, Ristori S, Romanelli M (2000) EPR and SQUID magnetometry study of Cu2FeSnS4 (stannite) and Cu2ZnSnS4 (kesterite). Phys Chem Miner 27: 453-461
Bonazzi P, Bindi L, Bernardini GP, Menchetti S (2003) A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite-kesterite series, Cu2FeSnS4-Cu2ZnSnS4. Canad Mineral 41: 639-647
Caneschi A, Cipriani C, Di Benedetto F, Sessoli R (2004) Characterisation of the antiferromagnetic transition of Cu2FeSnS4, the synthetic analogue of stannite. Phys Chem Miner 31: 190-193
Carlin Rl (1986) Magnetochemistry. Springer, Berlin, Heidelberg, New York, pp 1-368
Cui Y, Deng R, Wang G, Pan D (2012) A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals. J Mater Chem 22: 23136-23140
D’Acapito F, Lepore GO, Puri A, Laloni A, La Manna F, Dettona E, De Luisa A, Martin A (2019) The LISA beamline at ESRF. J Synchrotron Radiat 26: 551-558
Di Benedetto F, Bernardini GP, Borrini D, Lottermoser W, Tippelt G, Amthauer G (2005) 57Fe- and 119Sn-Mössbauer study on stannite (Cu2FeSnS4)-kesterite (Cu2ZnSnS4) solid solution. Phys Chem Miner 31: 683-690
Di Benedetto F, Borrini D, Caneschi A, Fornaciai G, Innocenti M, Lavacchi A, Massa CA, Montegrossi G, Oberhauser W, Pardi LA, Romanelli M (2011) Magnetic properties and cation ordering of nanopowders of the synthetic analogue of kuramite, Cu3SnS4. Phys Chem Miner 38: 483-490
Di Benedetto F, Bencistà I, D’Acapito F, Frizzera S, Caneschi A, Innocenti M, Lavacchi A, Montegrossi G, Oberhauser W, Romanelli M, Dittrich H, Pardi LA, Tippelt G, Amthauer G (2016) Geomaterials related to photovoltaics: a nanostructured Fe-bearing kuramite, Cu3SnS4. Phys Chem Miner 43: 535-544
Eibschütz M, Hermon E, Shtrikman S (1967) Determination of cation valencies in Cu257Fe119SnS4 by Mössbauer effect and magnetic susceptibility measurements. J Phys Chem Solids 28: 1633-1636
Fries T, Shapira Y, Palacio F, Morón MC, McIntyre GJ, Kershaw R, Wold A, McNiff Jr EJ (1997) Magnetic ordering of the antiferromagnet Cu2MnSnS4 from magnetisation and neutron scattering measurements. Phys Rev (B) 56: 5424-5431
Furdyna JK (1988): Diluted magnetic semiconductors. J Appl Phys 64: R29-R64
Giaccherini A, Cucinotta G, Martinuzzi S, Berretti E, Oberhauser W, Lavacchi A, Lepore GO, Montegrossi G, Romanelli M, De Luca A, Innocenti M, Moggi Cecchi V, Mannini M, Buccianti A, Di Benedetto F (2019a) Green and scalable synthesis of nanocrystalline kuramite. Beilstein J Nanotechnol 10: 2073-2083
Giaccherini A, Baldassarre A, Donini L, Lepore GO, Caneschi A, De Luca A, Innocenti M, Montegrossi G, Cucinotta G, Oberhauser W, Pardi L, Romanelli M, Mannini M, Di Benedetto F (2019b) Sustainable synthesis of quaternary sulphides: the problem of the uptake of zinc in CZTS. J Alloys Compd 775: 1221-1229
Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Pérez-Rodríguez A, Saucedo E (2019) Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv Mater 31: 1806692
Goodman BA, Raynor JB (1970) Electron spin resonance of transition metal complexes. In: Emeléns HJ, Sharpe AG (eds) Advances in Inorganic Chemistry and Radiochemistry. Academic Press, New York, London, pp 135-161
Gusain M, Rawat P, Nagarajan R (2015) Facile synthesis and optical properties of pure and Ni2+, Co2+, Bi3+, Sb3+ substituted Cu3SnS4. RSC Adv 5: 43202-43208
Hall Sr, Szymanski JT, Stewart JM (1978) Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals. Canad Mineral 16: 131-137
Hou H, Guan H, Li L (2017) Synthesis of Cu2FeSnS4 thin films with stannite and wurtzite structure directly on glass substrates via the solvothermal method. J Mater Sci-Mater El 28: 7745-7748
Hussein H, Yazdani A (2019) Doping the bismuth into the host’s Cu2ZnSnS4 semiconductor as a novel material for thin film solar cell. Results Phys 12: 1586-1595
Kovalenker VA (1981) Kuramite, Cu3SnS4, a new mineral of the stannite group. Int Geol Rev 23: 365-370
Lagarec K, Rancourt DG (1998) Extended Voigt-based analytic line shape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods 129: 266-280
Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended X-ray absorption fine structure - its strengths and limitations as a structural tool. Rev Mod Phys 53: 769-806
Makovicky E (2006) Crystal structures of sulfides and other chalcogenides. In: Vaughan DJ (ed) Sulfide Mineralogy and Geochemistry. Mineralogical Society of America Reviews in Mineralogy 61: 7-126
Mukurala N, Mishra, Rk, Jin Sh, Kushwaha Ak (2019) Sulphur precursor dependent crystallinity and optical properties of solution grown Cu2FeSnS4 particles. Mater Res Express 6(8) 085099
Nefzi C, Souli M, Cuminal Y, Kamoun-Turki N (2018) Effect of sulfur concentration on structural, optical and electrical properties of Cu2FeSnS4 thin films for solar cells and photocatalysis applications. Superlattice Microst 124: 17-29
Nilange SG, Patil NM, Yadav AA (2019) Influence of precursor thiourea contents on the properties of spray deposited Cu2FeSnS4 thin films. Physica B 570: 73-81
Oueslati H, Ben Rabeh,M, Kanzari M (2018) Growth and characterization of the evaporated quaternary absorber Cu2FeSnS4 for solar cell applications. J El Mater 47: 3577-3584
Pavel CC, Lacal-Arántegui R, Marmier A, Schüler D, Tzimas E, Buchert M, Jenseit W, Blagoeva D (2017) Substitution strategies for reducing the use of rare earths in wind turbines. Resour Policy 52: 349-357
Peisach J, Blumberg Wd (1974) Analysis of EPR copper: structural implications derived from the analysis of EPR spectra of natural and artificial Cu-proteins. Arch Biochem Biophys 165: 691-708
Puri A, Lepore GO, D’Acapito F (2019) The new beamline LISA at ESRF: performances and perspectives for Earth and environmental sciences. Condens Matter 4: 12
Ravel B (2001) ATOMS: crystallography for the X-ray absorption spectroscopist. J Synchrotron Radiat 8: 314-316
Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12: 537-541
Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc131: 12054-12055
Rusakov VS, Chistyakova NI, Burkovsky IA, Gapochka AM, Evstigneeva TL, Schorr S (2010) Mössbauer study of isomorphous substitutions in Cu2Fe1-xCuxSnS4 and Cu2Fe1-xZnxSnS4 series. J Phys Conf Series 217: 012038
Sanad MMS, Elseman AM, Elsenety MM, Rashad MM, ElSayed B (2019) Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells. J Mater Sci-Mater El 30: 6868-6875
Schorr S (2011) The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Solar Energ Mat Sol C 95:1482-1488
Schorr S, Hoebler H-J, Tovar M (2007) A neutron diffraction study of the stannite-kesterite solid solution series. Eur J Mineral 19: 65-73
Spalek J, Lewicki A, Tarnawski Z, Furdyna JK, Galazka RR, Obuszko Z (1986) Magnetic susceptibility of semimagnetic semiconductors: the high temperature regime and the role of superexchange. Phys Rev B 33: 3407-3418
Toby BH, Von Dreele RB (2013) GSAS-II : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46: 544-549
Twardowski A (1990) Magnetic properties of Fe-based diluted magnetic semiconductors. J Appl Phys 67: 5108-5113
Twardowski A, Fries T, Shapira Y, Demianiuk M (1993) The d-d exchange interaction in the diluted magnetic semiconductor ZnFeS. J Appl Phys 73: 6087-6089
Vaughan DJ, Burns RG (1972) Mössbauer spectroscopy and bonding in sulphide minerals containing four-coordinated iron. In:. Proceedings of the 24th International Geological Congress, 21-30 September 1972, Montreal, pp 158-167
Yamanaka T, Kato A (1976) Mössbauer effect study of 57Fe and 119Sn in stannite, stannoidite, and mawsonite. Amer Miner 61: 260-265
Zaman MB, Mir RA, Poolla R (2019a) Growth and properties of solvothermally derived highly crystalline Cu2ZnSnS4 nanoparticles for photocatalytic and electrocatalytic applications. Int J Hyd Energy 44: 23023-23033
Zaman MB, Chandel T, Poolla R (2019b) Hydrothermal synthesis of Cu2FeSnS4 anisotropic nanoarchitectures: controlled morphology for enhanced photocatalytic performance. Mater Res Express 6: 075058
Zaman MB, Chandel T, Poolla R (2019c) Solvothermal synthesis of Cu2SnSe3 nanocrystals using elemental precursors: influence of different solvents on growth and morphology. J El Mater 48: 3194-3207
Zhong J, Wang Q, Chen D, Chen L, Yu H, Lu H, Ji Z (2015) Biomolecule-assisted solvothermal synthesis of 3D hierarchical Cu2FeSnS4 microspheres with enhanced photocatalytic activity. Appl Surf Sci 343: 28-32
Zhou J, Hu Y, Chen X (2016) Preparation of photovoltaic absorption material Cu2FeSnSe4 microparticles via an atmospheric pressure liquid reflux method. Mater Lett 184: 216-218
IF (WoS, 2023): 1.1
5 YEAR IF (WoS, 2023): 1.5
Policy: Open Access
ISSN: 1802-6222
E-ISSN: 1803-1943