Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Fernando Cámara, Ferdinando Bosi, Henrik Skogby, Ulf Hålenius, Beatrice Celata, Marco E. Ciriotti

Schorl-1A from Langesundsfjord (Norway)

Journal of Geosciences, volume 67 (2022), issue 2, 129 - 139

DOI: http://doi.org/10.3190/jgeosci.344



Akizuki M (1981) Origin of optical variation in analcime. Am Mineral 66: 403-409

Akizuki M (1984) Origin of optical variations in grossular-andradite garnet. Am Mineral 66: 403-409

Allen FM, Buseck PR (1988) XRD, FTIR and TEM studies of optically anisotropic grossular garnets. Amer Miner 73: 568-584

Andersen T, Erambert M, Larsen AO, Selbekk RS (2010) Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. J Petrol 51: 2303-2325
http://doi.org/10.1093/petrology/egq058

Andrut M, Wildner M, Beran A (2002) The crystal chemistry of birefringent natural uvarovites. Part IV. OH defect incorporation mechanisms in non-cubic garnets derived from polarized IR spectroscopy. Eur J Mineral 14: 1019-1026
http://doi.org/10.1127/0935-1221/2002/0014-1019

Antao SM (2013) The mystery of birefringent garnet: is the symmetry lower than cubic? Powder Diffr 28: 265-272
http://doi.org/10.1017/S0885715613000523

Bosi F (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. Canad Mineral 49: 17-27
http://doi.org/10.3749/canmin.49.1.17

Bosi F, Lucchesi S (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. Amer Miner 92: 1054-1063
http://doi.org/10.2138/am.2007.2370

Bosi F, Skogby H, Lazor P, Reznitskii L (2015a) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Phys Chem Miner 42: 441-453
http://doi.org/10.1007/s00269-015-0735-z

Bosi F, Andreozzi GB, Hålenius U, Skogby H (2015b) Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl. Mineral Mag 79: 515-528
http://doi.org/10.1180/minmag.2015.079.3.01

Bosi F, Skogby H, Balić-Žunić T (2016) Thermal stability of extended clusters in dravite: a combined EMP, SREF and FTIR study. Phys Chem Miner 43: 395-407
http://doi.org/10.1007/s00269-016-0804-y

Brauns R (1891) Optischen Anomalien der Krystalle. Bey S. Hirzel, Leipzig (in German)

Brøgger WC (1890) Die mineralien der syenitpegmatitgänge der Südnorwegischen augit- und nephelinesyenite. Z Kristallogr Mineral 16: 1-663 (in German)

Campomenosi N, Mazzucchelli ML, Mihailova BD, Angel RJ, Alvaro M (2020) Using polarized Raman spectroscopy to study the stress gradient in mineral systems with anomalous birefringence. Contrib Mineral Petrol 175: 1-16
http://doi.org/10.1007/s00410-019-1651-x

Cesare B, Nestola F, Johnson T, Mugnaioli E, Della Ventura G, Peruzzo L, Bartoli O, Viti C, Erickson T (2019) Garnet, the archetypal cubic mineral, grows tetragonal. Sci Rep 9: 14672
http://doi.org/10.1038/s41598-019-51214-9

Cesare B, Campomenosi N, Shribak M (2022) Polychromatic polarization: Boosting the capabilities of the good old petrographic microscope. Geology 50: 137-141
http://doi.org/10.1130/G49303.1

Foord EE, Cunningham CG (1978) Thermal transformation of anomalously biaxial dimetric crystals. Amer Miner 63: 747-749

Foord EE, Mills BA (1978) Biaxiality in ’isometric’ and ’dimetric’ crystals. Amer Miner 63: 316-325

Gagnè OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr B71: 562-578

Gonzalez-Carreño T, Fernández M, Sanz J (1988) Infrared and electron microprobe analysis of tourmaline. Phys Chem Miner 15: 452-460
http://doi.org/10.1007/BF00311124

Grifen DT, Hatch DM, Phillips WR, Kulaksiz S (1992) Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet. Amer Miner 77: 399-406

Hariya Y, Kimura M (1978) Optical anomaly garnet and its stability field at high pressures and temperatures. J Fac Sci, Hokkaido Univ, Ser IV, 18: 611-624

Hawthorne FC, Ungaretti L, Oberti R (1995) Site populations in minerals; terminology and presentation of results of crystal-structure refinement. Canad Mineral 33(4): 907-911

Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Amer Miner 96: 895-913
http://doi.org/10.2138/am.2011.3636

Hofmeister AM, Schaal RB, Campbell KR, Berry SL, Fagan TJ (1988) Prevalence and origin of birefringence in 48 garnets from the pyrope-almandine-grossularite-spessartine quaternary. Amer Miner 83: 1293-1301
http://doi.org/10.2138/am-1998-11-1218

Howell D (2012) Strain-induced birefringence in natural diamond: a review. Eur J Mineral 24: 575-585
http://doi.org/10.1127/0935-1221/2012/0024-2205

Hughes JM, Rakovan J, Ertl A, Rossman GR, Baksheev I, Bernhardt H-J (2011) Dissymmetrization in tourmaline: the atomic arrangement of sectorally zoned triclinic Ni-bearing dravite. Canad Mineral 49: 29-40
http://doi.org/10.3749/canmin.49.1.29

Isogami M, Sunagawa I (1975) X-ray topographic study of a topaz crystal. Amer Miner 60: 889-897

Kolitsch U, Husdal TA, Brandstätter F, Ertl A (2011) New crystal-chemical data for members of the tourmaline group from Norway: occurrences of fluor-schorl and luinaite-(OH). Norsk Bergverksmuseet Skrift 46: 17-24

Kolitsch U, Andresen P, Husdal TA, Ertl A, Haugen A, Ellingsen HV, Larsen AO (2013) Tourmaline-group minerals from Norway, part II: occurrences of luinaite-(OH) in Tvedalen, Larvik and Porsgrunn, and fluor-liddicoatite, fluor-elbaite and fluor-schorl at Ågskardet, Nordland. Norsk Bergverksmuseums Skrift 50: 23-41

Madelung A (1883) Beobachtungen mit Brethaupt’s Polarisationmikroskop. Z Kristallogr 7: 73-76

Mattson SM, Rossman GR (1984) Ferric iron in tourmaline. Phys Chem Miner 11: 225-234
http://doi.org/10.1007/BF00308137

Mattson SM, Rossman GR (1987) Fe2+-Fe3+ interactions in tourmaline. Phys Chem Miner 14: 163-171
http://doi.org/10.1007/BF00308220

Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J Appl Cryst 44: 1272-1276
http://doi.org/10.1107/S0021889811038970

Nickel EH, Grice JD (1998) The IMA Commission on New Minerals and Mineral Names; procedures and guidelines on mineral nomenclature, 1998. Canad Mineral 36: 913-926

Pesquera A, Gil-Crespo PP, Torres-Ruiz F, Torres-Ruiz J, Roda-Robles E (2016) A multiple regression method for estimating Li in tourmaline from electron microprobe analyses. Mineral Mag 80: 1129-1133
http://doi.org/10.1180/minmag.2016.080.046a

Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (Eds) Electron Probe Quantitation, Pp. 31-75, Plenum, New York
http://doi.org/10.1007/978-1-4899-2617-3_4

Prescher C, McCammon C, Dubrowinsky L (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J Appl Crystallogr 45: 329-331
http://doi.org/10.1107/S0021889812004979

Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172: 567-570
http://doi.org/10.1126/science.172.3983.567

Sheldrick GM (2015) Crystal Structure refinement with SHELX. Acta Crystallogr C71: 3-8

Shribak M (2015) Polychromatic polarization microscope: Bringing colors to a colorless world. Sci Rep 5: 17340
http://doi.org/10.1038/srep17340

Shribak M (2017) Polychromatic polarization state generator and its application for real-time birefringence imaging: US Patent 9625369, International Class G01N 21/2

Shtukenberg A, Rozhdestvenskaya I, Frank-Kamenetskaya O, Bronzova J, Euler H, Kirfel A, Bannova I, Zolotarev A (2007) Symmetry and crystal structure of biaxial elbaite-liddicoatite tourmaline from the Transbaikalia region, Russia. Amer Miner 92: 675-686
http://doi.org/10.2138/am.2007.2354

Smith G (1978) A reassessment of the role of iron in the 5,000-30,000 cm-1 region of the electronic absorption spectra of tourmaline. Phys Chem Miner 3: 343-373
http://doi.org/10.1007/BF00311847

Steven CJ, Gunter ME (2018) EXCELIBR: An Excel spreadsheet for solving the optical orientation of uniaxial and biaxial crystals. The Microscope 65: 147-152

Takeuchi Y, Haga N (1976) Optical anomaly and structure of silicate garnets. Proc Jap Acad 52: 228-231
http://doi.org/10.2183/pjab1945.52.228

Taran MN, Lebedev AS, Platonov AN (1993) Optical absorption spectroscopy of synthetic tourmalines. Phys Chem Miner 20: 209-220
http://doi.org/10.1007/BF00200123

Watenphul A, Burgdorf M, Schlüter J, Horn I, Malcherek T, Mihailova B (2016) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. Amer Miner 101: 970-985
http://doi.org/10.2138/am-2016-5530

Wertheim G (1851) Note sur la double réfraction artificiellement produite dans les cristaux du système régulier. Compt Rend Acad Sci Paris 33: 576 (in French)

Wertheim G (1854) Sur la double réfraction temporairement produite dans les corps isotropes, et sur la relation entre l’élasticité mécanique et entre l’élasticité optique. Ann Chim Phys ser III 40: 156 (in French)

Wilson AJC (1992) International Tables for Crystallography, Volume C: Mathematical, physical and chemical tables. Kluwer Academic Publishers, Dordrecht, NL, pp 1-883

Wright SE, Foley JA, Hughes JM (2000) Optimization of site occupancies in minerals using quadratic programming. Amer Miner 85, 524-531
http://doi.org/10.2138/am-2000-0414

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2023): 0.6

IF (WoS, 2023): 1.1

5 YEAR IF (WoS, 2023): 1.5

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943