Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original Paper

Vojtěch Vlček, Roman Skála, Viktor Goliáš, Jan Drahokoupil, Jakub Čížek, Ladislav Strnad, Jana Ederová

Effect of natural irradiation in fluorites: possible implications for nuclear waste management?

Journal of Geosciences, volume 57 (2012), issue 1, 45 - 52

DOI: http://doi.org/10.3190/jgeosci.110


  Abstract References Map Affiliations

Ahrens TJ (1995) Mineral Physics and Crystallography: A Handbook of Physical Constants. Amer Geophysical Union, Washington, pp 1-354

Ackerman L (2005) Magmatic vs. hydrothermal origin of fluorites from Vlastějovice, Bohemian Massif. J Czech Geol Soc 50: 35-41
http://doi.org/10.3190/jcgs.973

Asadi P (1967a) X-ray topography in colored and uncolored zones of antozonite-fluorite. Phys Stat Sol 20: K71-K72
http://doi.org/10.1002/pssb.19670200244

Asadi P (1967b) On the existence of piezoelectric textures in single crystals of antozonite-fluorite. Phys Stat Sol 20: K73-K75
http://doi.org/10.1002/pssb.19670200245

Banaś M (1991) Pitchblende in Ag-Bi-Se paragenesis from Kletno deposit, Sudety Mountains, South-west Poland. In: Cuney M (ed) Primary Radioactive Minerals. Theophrastus Publications, Athens, pp 269-285

Berman R (1956) Some physical properties of naturally irradiated fluorite. Amer Miner 42: 191-203

Boccanfuso M, Benyagoub A, Toulemonde M, Trautmann C, Schwartz K, Dufour C (2001) Heavy-ion induced damage in fluorite nanopowder. Nucl Instr and Met in Phys Res B 175-177: 590-593
http://doi.org/10.1016/S0168-583X(00)00599-1

Burnham CW (1962) Lattice constant refinement. Carnegie Inst Wash Yearbook 61: 131-135

Chadderton LT (2003) Nuclear tracks in solids: registration physics and the compound spike. Radiat Meas 36: 13-34
http://doi.org/10.1016/S1350-4487(03)00094-5

Ewing RC, Chaukomakos BC, Lumpkin GR, Murakami T (1987) The metamict state. MRS Bulletin May 16/June 15: 58-66
http://doi.org/10.1557/S0883769400067865

Fayek M, Burns P, Guo YX, Ewing RC (2000) Micro-structures associated with uraninite alteration. J Nucl Mater 277: 204-210
http://doi.org/10.1016/S0022-3115(99)00199-3

Fojt B, Dolníček Z, Kopa D, Sulovský P, Škoda R (2005) Paragenesis of the uranium deposit at Zálesí near Javorník in Rychlebské hory Mts., Czech Republic. Acta Mus Silesiae (A) 54: 223-280 (in Czech)

Glasser L, Jenkins HDB (2000) Lattice energies and unit cell volumes of complex ionic solids. J Am Chem Soc 122: 632-638
http://doi.org/10.1021/ja992375u

Johnson E, Chadderton LT (1980) The void superlattice in fluorite. Micron II: 247-250
http://doi.org/10.1016/0047-7206(80)90006-0

Klug HP, Alexander LE (1974) X-Ray Diffraction Procedures. Wiley, New York, pp 1-966

Kužel R (2006) Dislocation Line Broadening. In: Kužel R, Mittemeijer EJ, Welzel U (eds) Proceedings of EPDIC 9. Z Kristallogr Suppl 23: pp 75-80
http://doi.org/10.1524/9783486992526-015

Ondruš P, Veselovský F, Gabašová A, Drábek M, Dobeš P, Malý K, Hloušek J, Sejkora J (2003) Ore-forming processes and mineral parageneses of the Jáchymov ore district. J Czech Geol Soc 48:157-192
Direct link

Parker S, Song KS, Catlow CRA, Stoneham AM (1981) Geometry and charge distribution of H centres in the fluorite structure. J Phys C 14: 4009-4015
http://doi.org/10.1088/0022-3719/14/28/005

Rousseeuw PJ, Verboven S (2002) Robust estimation in very small samples. Comput Stat Data An 40: 741-758
http://doi.org/10.1016/S0167-9473(02)00078-6

Strnad L, Ettler V, Mihaljevič M, Hladil J, Chrastný V (2009) Determination of trace elements in calcite using solution and laser ablation ICP-MS: calibration to SRM NIST glass and USGS MACS carbonate and application to real landfill calcites. Geostand Geoanal Res 33: 347-355
http://doi.org/10.1111/j.1751-908X.2009.00010.x

Ulrych J, Adamovič J, Žák K, Frána J, Řanda Z, Langrová A, Skála R, Chvátal M (2007) Cenozoic “radiobarite” occurrences in the Ohře (Eger) Rift, Bohemian Massif: mineralogical and geochemical revision. Chem Geol 67: 301-312
http://doi.org/10.1016/j.chemer.2005.05.003

Ungár T (1997) Strain Broadening Caused by Dislocation. ICDD Advances in X-ray Analysis 40: 612-673

Ungár T, Tichy G (1999) The effect of dislocation contrast on X-ray line profiles in untextured polycrystals. Phys Stat Sol A 171: 425-434
http://doi.org/10.1002/(SICI)1521-396X(199902)171:2<425::AID-PSSA

Ungár T, Dragomir I, Révész Á, Borbély A (1999) The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J Appl Cryst 32: 992-1002
http://doi.org/10.1107/S0021889899009334

Ungár T, Gubicza J, Hanák P, Alexandrov I (2001) Densities and character of dislocations and size-distribution of subgrains in deformed metals by X-ray diffraction profile analysis. Mat Sci and Engin A319-321: 274-278
http://doi.org/10.1016/S0921-5093(01)01025-5

Vlček V, Čížek J, Drahokoupil J, Valenta J, Miyajima N, Skála R (2010) Defects in CaF2 caused by long-time irradiation and their response to annealing. Phil Mag 90: 2749-2769
http://doi.org/10.1080/14786431003745385

West RN (1979) Positron Studies of Lattice Defects in Metals. In: Hautojärvi P (ed) Positrons in Solids. Topics in Current Physics 12, Springer, Heidelberg, pp 89-144
http://doi.org/10.1007/978-3-642-81316-0_3

Yasunaga K, Yasuda K, Matsumura S, Sonoda T (2006) Nucleation and growth of defects clusters in CeO2 irradiated with electrons. Nucl Instr and Met in Phys Res B 250: 114-118
http://doi.org/10.1016/j.nimb.2006.04.091

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943