Journal of


  (Formerly Journal of the Czech Geological Society)

Original Paper

L. Gordon Jr. Medaris, Emil Jelínek, Beard, Valley, Spicuzza, Ladislav Strnad

Garnet pyroxenite in the Biskupice peridotite, Bohemian Massif: anatomy of a Variscan high-pressure cumulate

Journal of Geosciences, volume 58 (2013), issue 1, 3 - 19


Ackerman L, Jelínek E, Medaris G Jr, Ježek J, Siebel W, Strnad L (2009) Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: insights into subduction-related melt-rock reactions. Chem Geol 259: 152-167

Ackerman L, Špaček P, Medaris G Jr, Hegner E, Svojtka M, Ulrych J (2012) Geochemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, Bohemian Massif. J Geosci 58: 199-219

Armstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF, and φ(ρz) procedures. In: Newbury DE (ed) Microbeam Analyses. Proceedings of the 23rd Annual Conference of the Microbeam Analysis Society, San Francisco Press, San Francisco, pp 239-246

Beard BL, Medaris LG Jr, Johnson CM, Brueckner HK, Mísař Z (1992) Petrogenesis of Variscan high-temperature Group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 111: 468-183

Becker H (1996) Crustal trace element and isotopic signatures in garnet pyroxenites from garnet peridotite massifs from Lower Austria. J Petrol 37: 785-810

Becker H (1997) Sm-Nd garnet ages and cooling history of high-temperature garnet peridotite massifs and high-pressure granulites from lower Austria. Contrib Mineral Petrol 127: 224-236

Bertrand P, Mercier J-CC (1985) The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system? Earth Planet Sci Lett 76: 109-122

Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31: 1352-1378

Brueckner HK, Medaris LG Jr, Bakun-Czubarow N (1991) Nd and Sr age and isotope patterns from Variscan eclogites of the eastern Bohemian Massif. Neu Jb Mineral, Abh 163: 169-196

Carswell DA, Jamtveit B (1990) Variscan Sm-Nd ages for the high-pressure metamorphism in the Moldanubian Zone of the Bohemian Massif, Lower Austria. Neu Jb Mineral, Abh 162: 69-78

Cháb J, Stránik Z, Eliáš M (2007) Geological map of the Czech Republic 1:500 000. Czech Geological Survey, Prague

Day HW (2012) A revised diamond-graphite transition curve. Amer Miner 97: 52-62

Gasparik T (2003) Phase Diagrams for Geoscientists - An Atlas of The Earth’s Interior. Springer, Berlin, pp 1-350 pp

Gonzaga RG, Lowry D, Jacob DE, LeRoex A, Schulze D, Menzies MA (2010) Eclogites and garnet pyroxenites: similarities and differences. J Volcanol Geotherm Res 190: 235-247

Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200 °C. Lithos 53: 165-187

Griffin WL, O’Reilly SY (2007) Cratonic lithospheric mantle: is anything subducted? Episodes 30: 43-53

Gysi AP, Jagoutz O, Schmidt MW, Targuisti K (2011) Petrogenesis of pyroxenites and melt infiltrations in the ultramafic complex of Beni Bousera, northern Morocco. J Petrol 52: 1629-1735

Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86: 359-373

Harte SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90: 273-296

Hasalová P, Janoušek V, Schulmann K, Štípská P, Erban V (2008) From orthogneiss to migmatite: geochemical assessment of the melt infiltration model in the Gföhl Unit (Moldanubian Zone, Bohemian Massif). Lithos 102: 508-537

Holub FV, Machart J, Manová M (1997) The Central Bohemian Plutonic Complex: geology, chemical composition and genetic interpretation. Sbor geol Věd, ložisk Geol Mineral 31: 27-50

Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77: 295-316

Jacobsen SB, Wasserburg GJ (1980) Sm-Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50: 139-155

Johan Z, Strnad L, Johan V (2012) Evolution of the Cínovec (Zinnwald) Granite Cupola, Czech Republic: composition of feldspars and micas, a clue to the origin of W, Sn mineralization. Canad Mineral 50: 1131-1148

Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol 133: 60-68

Kotková J, Schaltegger U, Leichmann J (2010) Two types of ultrapotassic plutonic rocks in the Bohemian Massif - coeval intrusions at different crustal levels. Lithos 115: 163-176

Kříbek B, Žák K, Dobeš P, Leichmann J, Pudilová M, René M, Scharm B, Scharmová M, Hájek A, Holeczy D, Hein UF, Lehmann B (2009) The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Miner Depos 44: 99-128

Kusbach V, Ulrich S, Schulmann K (2012) Ductile deformation and rheology of sub-continental mantle in a hot collisional orogeny: example from the Bohemian Massif. J Geodyn 56-57: 108-123

Kusiak MA, Dunkley DJ, Suzuki K, Kachlík V, Kedzior A, Lekki J, Opluštil S (2010) Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon - a case study of durbachite from the Třebíč Pluton, Bohemian Massif. Gondwana Res 17: 153-161

Lapen TJ, Medaris LG Jr, Johnson CM, Beard BL (2005) Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: evidence from combined Sm-Nd and Lu-Hf isotope analyses of the Sandvik ultramafic body, Norway. Contrib Mineral Petrol 150: 131-145

Lapen TJ, Medaris LG Jr, Beard BL, Johnson CM (2009) The Sandvik peridotite, Gurskøy, Norway: three billion years of mantle evolution in the Baltica lithosphere. Lithos 109: 145-154

Ludwig KR (2003) Isoplot/Ex version 3.41. A geochronological toolkit for Microsoft Excel, User's Manual. Berkeley Geochronology Center Special Publications 4

Lugmair G W, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth Planet Sci Lett 39: 349-357

McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120: 223-253

Medaris LG Jr (1999) Garnet peridotites in Eurasian high-pressure and ultrahigh-pressure terranes: a diversity of origins and thermal histories. Int Geol Rev 41: 799-815

Medaris LG Jr, Carswell DA (1990) The petrogenesis of Mg-Cr garnet peridotites in European metamorphic belts. In: Carswell DA (ed) Eclogite Facies Rocks. Blackie, Glasgow, pp 260-290

Medaris LG Jr, Wang HF, Mísař Z, Jelínek E (1990) Thermobarometry, diffusion modelling and cooling rates of crustal garnet peridotites: two examples from the Moldanubian Zone of the Bohemian Massif. Lithos 25: 189-202

Medaris LG Jr, Beard BL, Johnson CM, Valley JW, Spicuzza MJ, Jelínek E, Mísař Z (1995) Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. Geol Rundsch 84:489-505

Medaris G Jr, Wang H, Jelínek E, Mihaljevič M, Jakeš P (2005) Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82: 1-23

Medaris LG Jr, Beard BL, Jelínek E (2006) Mantle-derived, UHP garnet pyroxenite and eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif: a geochemical review, new P-T determinations and tectonic interpretation. Int Geol Rev 48: 765-777

Nakamura D, Svojtka M, Naemura K, Hirajima T (2004) Very high-pressure (>4 GPa) eclogite associated with the Moldanubian Zone garnet peridotite (Nové Dvory, Czech Republic). J Metamorph Geol 22: 593-603

Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73: 158-170

Obata M, Hirajima T, Svojtka M (2006) Origin of eclogite and garnet pyroxenite from the Moldanubian Zone of the Bohemian Massif, Czech Republic and its implication to other mafic layers embedded in orogenic peridotites. Mineral Petrol 88: 321-340

O’Neill HStC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77: 185-194

Pearson DG, Davies GR, Nixon PH, Greenwood PB, Mattey DP (1991) Oxygen isotope evidence for the origin of pyroxenites in the Beni Bousera peridotite massif, N. Morocco: derivation from subducted oceanic lithosphere. Earth Planet Sci Lett 102: 289-301

Pearson DG, Davies GR, Nixon PH (1993) Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. J Petrol 34: 125-172

Powell R (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J Metamorph Geol 2: 33-42

Schumacher JC (1997) Appendix 2. The estimation of the proportion of ferric iron in the electron-microprobe analysis of amphiboles. Can Mineral 35, 238-246

Strnad L, Mihaljevič M, Šebek O (2005) Laser ablation and solution ICP-MS determination of rare earth elements in USGS BIR-1G, BHVO-2G and BCR-2G glass reference material. Geost Geoanal Res 29: 303-314

Takahashi E, Nakajima K, Wright TL (1998) Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth Planet Sci Lett 162: 63-80

Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neu Jb Mineral, Abh 172: 381-408

Valley JW, Kitchen NE, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59: 5223-5231

Wang Z, Bucholz C, Skinner B, Shimizu N, Eiler J (2011) Oxygen isotope constraints on the origin of high-Cr garnets from kimberlites. Earth Planet Sci Lett 312: 337-347

Yasuda A, Fujii T, Kurita K (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. J Geophys Res 99 B5: 9401-9414

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943