Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Gwladys Steciuk, Radek Škoda, Jan Rohlíček, Jakub Plášil

Crystal structure of the uranyl-molybdate mineral calcurmolite Ca[(UO2)3(MoO4)2(OH)4](H2O)˜5.0: insights from a precession electron-diffraction tomography study

Journal of Geosciences, volume 65 (2020), issue 1, 15 - 25

DOI: http://doi.org/10.3190/jgeosci.297



Boullay P, Palatinus l, Barrier N (2013) Precession Electron Diffraction Tomography for solving complex modulated structures: the case of Bi5Nb3O15. Inorg Chem 52: 6127−6135
http://doi.org/10.1021/ic400529s

Burns PC (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Canad Mineral 43: 1839-1894
http://doi.org/10.2113/gscanmin.43.6.1839

Dal Bo F, Hatert F, Philippo S (2018) Supergene uranyl mineralization of the Rabejac Deposit, Lodève, France. Minerals 8: 414
http://doi.org/10.3390/min8090414

Deliens M (1992) Etude comparative des calcurmolites de Rabejac (Lodève, Herault, France) et de l’Union Sovietique. Ann Soc Geol Belg 115: 91-97

Elliot P, Plášil J, Petříček V, Čejka J, Bindi L (2019) Twinning and incommensurate modulation in baumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)˜3, the first natural Ba uranyl molybdate. Mineral Mag 83: 507-514
http://doi.org/10.1180/mgm.2019.20

Fedorov OV (1963) Second find of calcium uranium molybdate in the USSR. Zap Vsesojuz mineral Obshch 92: 464-465 (in Russian)

Frost RL, Čejka J, Dickfos MJ (2008) Raman and infrared spectroscopic study of the molybdate-containing uranyl mineral calcurmolite. J Raman Spectrosc 39: 779-785
http://doi.org/10.1002/jrs.1897

Hawthorne FC, Schindler M (2008) Understanding the weakly bonded constituents in oxysalt minerals. Z Kristallogr 223: 41-68

Krivovichev SV, Burns PC (2000a) Crystal chemistry of uranyl molybdates. I. The structure and formula of umohoite. Canad Mineral 38: 717-726
http://doi.org/10.2113/gscanmin.38.3.717

Krivovichev SV, Burns PC (2000b) Crystal chemistry of uranyl molybdates. II. The structure and formula of iriginite. Canad Mineral 38: 847-851
http://doi.org/10.2113/gscanmin.38.4.847

Krivovichev SV, Burns PC (2001a) Crystal chemistry of uranyl molybdates. III. New structural themes in the structures of Na6[(UO2)2O(MoO4)4], Na6[(UO2)(MoO4)4] and K6[(UO2)2O(MoO4)4]. Canad Mineral 39: 197-206
http://doi.org/10.2113/gscanmin.39.1.197

Krivovichev SV, Burns PC (2001b) Crystal chemistry of uranyl molybdates. IV. Crystal structures of M2[(UO2)6(MoO4)7(H2O)2], M = Cs, NH4. Canad Mineral 39: 207-214
http://doi.org/10.2113/gscanmin.39.1.207

Krivovichev SV, Burns PC (2002a) Crystal chemistry of rubidium uranyl molybdates: crystal structures of Rb6(UO2)(MoO4)4, Rb6(UO2)2O(MoO4)4, Rb2(UO2)(MoO4)2, Rb2(UO2)2(MoO4)3 and Rb2(UO2)6(MoO4)7(H2O)2. J Solid State Chem 168: 245-258
http://doi.org/10.1006/jssc.2002.9717

Krivovichev SV, Burns PC (2002b) Crystal chemistry of uranyl molybdates. VI. New uranyl molybdate units in structures of Cs4[(UO2)3Mo3O14] and Cs6[(UO2)(MoO4)4]. Canad Mineral 40: 201-209
http://doi.org/10.2113/gscanmin.40.1.201

Krivovichev SV, Burns PC (2002c) Crystal chemistry of uranyl molybdates. VII. Iriginite-type polyhedral sheet in the structure of (UO2)Mo2O7(H2O)2. Canad Mineral 40: 1571-1577
http://doi.org/10.2113/gscanmin.40.6.1571

Krivovichev SV, Burns PC (2002d) Synthesis and crystal structure of Ag6[(UO2)3O(MoO4)5]: a novel sheet of triuranyl clusters and MoO4 tetrahedra. Inorg Chem 41: 4108-4110
http://doi.org/10.1021/ic025662z

Krivovichev SV, Plášil J (2013) Mineralogy and crystallography of uranium. In: Burns PC, Sigmon GE (eds) Uranium: From Cradle to Grave. Mineralogical Association of Canada Short Courses 43: pp 15-119

Krivovichev SV, Finch R, Burns PC (2002) Crystal chemistry of uranyl molybdates V. Topologically different uranyl molybdate sheets in structures of Na2[(UO2)(MoO4)2] and K2[(UO2)(MoO4)2](H2O). Canad Mineral 40: 193-200
http://doi.org/10.2113/gscanmin.40.1.193

Palatinus L, Chapuis G (2007) SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40: 786-790
http://doi.org/10.1107/S0021889807029238

Palatinus L, Petříček V, Corrêa CA (2015a) Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr A71: 235-244
http://doi.org/10.1107/S2053273315001266

Palatinus L, Corrêa CA, Steciuk G, Jacob D, Roussel P, Boullay P, Klementová M, Gemmi M, Kopeček J, Domeneghetti MCh, Cámara F, Petříček V (2015b) Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr B71: 740-751
http://doi.org/10.1107/S2052520615017023

Palatinus L, Brázda P, Jelínek M, Hrdá J, Steciuk G, Klementová M (2019) Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr B75: 512-522

Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229: 345-352
http://doi.org/10.1515/zkri-2014-1737

Petříček V, Eigner V, Dušek M, Čejchan A (2016) Discontinuous modulation functions and their application for analysis of modulated structures with the computing system JANA2006. Z Kristallogr 231: 301-312
http://doi.org/10.1515/zkri-2015-1913

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 104-106

Rudnitskaya LS (1959) Calcium molybdate of uranium. Yadernoe Gor I Reak Met 3: 160-161

Sidorenko GA, Chistyakova NI, Chukanov NV, Naumova IS, Rassulov VA (2005) Calcurmolite: new data on chemical composition and constitution of the mineral. New Dat Min M 40: 29-36

Skvortsova KV, Kopchenova EV, Sidorenko GA, Kuznetsova NN, Dara AD, Rybakova LI (1969) Calcium-sodium uranomolybdates. Zap Vsesojuz mineral Obshch 98: 679-688 (in Russian)

Steciuk G, Boullay P, Pautrat A, Barrier N, Caignaert V, palatinus L (2016) Unusual relaxor ferroelectric behavior in stairlike aurivillius phases. Inorg Chem 55: 8881-8891
http://doi.org/10.1021/acs.inorgchem.6b01373

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943