Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Andrea Giaccherini, Andrea Griesi, Giordano Montegrossi, Maurizio Romanelli, Giovanni O. Lepore, Alessandro Lavacchi, Georg Amthauer, Günther Redhammer, Gerold Tippelt, Stefano Martinuzzi, Giuseppe Cucinotta, Matteo Mannini, Andrea Caneschi, Francesco Di Benedetto

A new solvothermal approach to obtain nanoparticles in the Cu3SnS4-Cu2FeSnS4 join

Journal of Geosciences, volume 65 (2020), issue 1, 3 - 14

DOI: http://doi.org/10.3190/jgeosci.300



Alanazi AM, Alam F, Salhi A, Missous M, Thomas AG, O’Brien P, Lewis DJ (2019) A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materials. Rsc Adv 9: 24146-24153
http://doi.org/10.1039/C9RA02926E

Alsema E (2012) Energy payback time and CO2 emissions of PV systems. In: McEvoy A, Markvart T, Castañer L (eds) Practical Handbook of Photovoltaics, 2nd Edition. Fundamentals and Applications. Academic Press, Elsevier, Amsterdam, pp 1097-1117
http://doi.org/10.1016/B978-0-12-385934-1.00037-4

Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B 58: 7565-7576
http://doi.org/10.1103/PhysRevB.58.7565

Bain GA, Berry JF (2008) Diamagnetic corrections and Pascal’s constants. J Chem Educ 85: 532-536
http://doi.org/10.1021/ed085p532

Bente K (1987) Stabilization of Cu-Fe-Bi-Pb-Sn-sulfides. Mineral Petrol 36: 205-217
http://doi.org/10.1007/BF01163260

Bernardini GP, Bonazzi P, Corazza M, Corsini F, Mazzetti G, Poggi L, Tanelli G (1990) New data on the Cu2FeSnS4-Cu2ZnSnS4 pseudobinary system at 750° and 550 °C. Eur J Mineral 2: 219-225
http://doi.org/10.1127/ejm/2/2/0219

Bernardini GP, Borrini D, Caneschi A, Di Benedetto F, Gatteschi D, Ristori S, Romanelli M (2000) EPR and SQUID magnetometry study of Cu2FeSnS4 (stannite) and Cu2ZnSnS4 (kesterite). Phys Chem Miner 27: 453-461
http://doi.org/10.1007/s002690000086

Bonazzi P, Bindi L, Bernardini GP, Menchetti S (2003) A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite-kesterite series, Cu2FeSnS4-Cu2ZnSnS4. Canad Mineral 41: 639-647
http://doi.org/10.2113/gscanmin.41.3.639

Caneschi A, Cipriani C, Di Benedetto F, Sessoli R (2004) Characterisation of the antiferromagnetic transition of Cu2FeSnS4, the synthetic analogue of stannite. Phys Chem Miner 31: 190-193
http://doi.org/10.1007/s00269-004-0381-3

Carlin Rl (1986) Magnetochemistry. Springer, Berlin, Heidelberg, New York, pp 1-368

Cui Y, Deng R, Wang G, Pan D (2012) A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals. J Mater Chem 22: 23136-23140
http://doi.org/10.1039/c2jm33574c

D’Acapito F, Lepore GO, Puri A, Laloni A, La Manna F, Dettona E, De Luisa A, Martin A (2019) The LISA beamline at ESRF. J Synchrotron Radiat 26: 551-558
http://doi.org/10.1107/S160057751801843X

Di Benedetto F, Bernardini GP, Borrini D, Lottermoser W, Tippelt G, Amthauer G (2005) 57Fe- and 119Sn-Mössbauer study on stannite (Cu2FeSnS4)-kesterite (Cu2ZnSnS4) solid solution. Phys Chem Miner 31: 683-690
http://doi.org/10.1007/s00269-004-0430-y

Di Benedetto F, Borrini D, Caneschi A, Fornaciai G, Innocenti M, Lavacchi A, Massa CA, Montegrossi G, Oberhauser W, Pardi LA, Romanelli M (2011) Magnetic properties and cation ordering of nanopowders of the synthetic analogue of kuramite, Cu3SnS4. Phys Chem Miner 38: 483-490
http://doi.org/10.1007/s00269-011-0421-8

Di Benedetto F, Bencistà I, D’Acapito F, Frizzera S, Caneschi A, Innocenti M, Lavacchi A, Montegrossi G, Oberhauser W, Romanelli M, Dittrich H, Pardi LA, Tippelt G, Amthauer G (2016) Geomaterials related to photovoltaics: a nanostructured Fe-bearing kuramite, Cu3SnS4. Phys Chem Miner 43: 535-544
http://doi.org/10.1007/s00269-016-0814-9

Eibschütz M, Hermon E, Shtrikman S (1967) Determination of cation valencies in Cu257Fe119SnS4 by Mössbauer effect and magnetic susceptibility measurements. J Phys Chem Solids 28: 1633-1636
http://doi.org/10.1016/0022-3697(67)90134-5

Fries T, Shapira Y, Palacio F, Morón MC, McIntyre GJ, Kershaw R, Wold A, McNiff Jr EJ (1997) Magnetic ordering of the antiferromagnet Cu2MnSnS4 from magnetisation and neutron scattering measurements. Phys Rev (B) 56: 5424-5431
http://doi.org/10.1103/PhysRevB.56.5424

Furdyna JK (1988): Diluted magnetic semiconductors. J Appl Phys 64: R29-R64
http://doi.org/10.1063/1.341700

Giaccherini A, Cucinotta G, Martinuzzi S, Berretti E, Oberhauser W, Lavacchi A, Lepore GO, Montegrossi G, Romanelli M, De Luca A, Innocenti M, Moggi Cecchi V, Mannini M, Buccianti A, Di Benedetto F (2019a) Green and scalable synthesis of nanocrystalline kuramite. Beilstein J Nanotechnol 10: 2073-2083
http://doi.org/10.3762/bjnano.10.202

Giaccherini A, Baldassarre A, Donini L, Lepore GO, Caneschi A, De Luca A, Innocenti M, Montegrossi G, Cucinotta G, Oberhauser W, Pardi L, Romanelli M, Mannini M, Di Benedetto F (2019b) Sustainable synthesis of quaternary sulphides: the problem of the uptake of zinc in CZTS. J Alloys Compd 775: 1221-1229
http://doi.org/10.1016/j.jallcom.2018.10.201

Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Pérez-Rodríguez A, Saucedo E (2019) Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv Mater 31: 1806692
http://doi.org/10.1002/adma.201806692

Goodman BA, Raynor JB (1970) Electron spin resonance of transition metal complexes. In: Emeléns HJ, Sharpe AG (eds) Advances in Inorganic Chemistry and Radiochemistry. Academic Press, New York, London, pp 135-161

Gusain M, Rawat P, Nagarajan R (2015) Facile synthesis and optical properties of pure and Ni2+, Co2+, Bi3+, Sb3+ substituted Cu3SnS4. RSC Adv 5: 43202-43208
http://doi.org/10.1039/C4RA17125J

Hall Sr, Szymanski JT, Stewart JM (1978) Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals. Canad Mineral 16: 131-137

Hou H, Guan H, Li L (2017) Synthesis of Cu2FeSnS4 thin films with stannite and wurtzite structure directly on glass substrates via the solvothermal method. J Mater Sci-Mater El 28: 7745-7748
http://doi.org/10.1007/s10854-017-6469-6

Hussein H, Yazdani A (2019) Doping the bismuth into the host’s Cu2ZnSnS4 semiconductor as a novel material for thin film solar cell. Results Phys 12: 1586-1595
http://doi.org/10.1016/j.rinp.2019.01.047

Kovalenker VA (1981) Kuramite, Cu3SnS4, a new mineral of the stannite group. Int Geol Rev 23: 365-370
http://doi.org/10.1080/00206818109455070

Lagarec K, Rancourt DG (1998) Extended Voigt-based analytic line shape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods 129: 266-280
http://doi.org/10.1016/S0168-583X(97)00284-X

Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended X-ray absorption fine structure - its strengths and limitations as a structural tool. Rev Mod Phys 53: 769-806
http://doi.org/10.1103/RevModPhys.53.769

Makovicky E (2006) Crystal structures of sulfides and other chalcogenides. In: Vaughan DJ (ed) Sulfide Mineralogy and Geochemistry. Mineralogical Society of America Reviews in Mineralogy 61: 7-126

Mukurala N, Mishra, Rk, Jin Sh, Kushwaha Ak (2019) Sulphur precursor dependent crystallinity and optical properties of solution grown Cu2FeSnS4 particles. Mater Res Express 6(8) 085099
http://doi.org/10.1088/2053-1591/ab23e9

Nefzi C, Souli M, Cuminal Y, Kamoun-Turki N (2018) Effect of sulfur concentration on structural, optical and electrical properties of Cu2FeSnS4 thin films for solar cells and photocatalysis applications. Superlattice Microst 124: 17-29
http://doi.org/10.1016/j.spmi.2018.09.033

Nilange SG, Patil NM, Yadav AA (2019) Influence of precursor thiourea contents on the properties of spray deposited Cu2FeSnS4 thin films. Physica B 570: 73-81
http://doi.org/10.1016/j.physb.2019.06.009

Oueslati H, Ben Rabeh,M, Kanzari M (2018) Growth and characterization of the evaporated quaternary absorber Cu2FeSnS4 for solar cell applications. J El Mater 47: 3577-3584
http://doi.org/10.1007/s11664-018-6202-0

Pavel CC, Lacal-Arántegui R, Marmier A, Schüler D, Tzimas E, Buchert M, Jenseit W, Blagoeva D (2017) Substitution strategies for reducing the use of rare earths in wind turbines. Resour Policy 52: 349-357
http://doi.org/10.1016/j.resourpol.2017.04.010

Peisach J, Blumberg Wd (1974) Analysis of EPR copper: structural implications derived from the analysis of EPR spectra of natural and artificial Cu-proteins. Arch Biochem Biophys 165: 691-708
http://doi.org/10.1016/0003-9861(74)90298-7

Puri A, Lepore GO, D’Acapito F (2019) The new beamline LISA at ESRF: performances and perspectives for Earth and environmental sciences. Condens Matter 4: 12
http://doi.org/10.3390/condmat4010012

Ravel B (2001) ATOMS: crystallography for the X-ray absorption spectroscopist. J Synchrotron Radiat 8: 314-316
http://doi.org/10.1107/S090904950001493X

Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12: 537-541
http://doi.org/10.1107/S0909049505012719

Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc131: 12054-12055
http://doi.org/10.1021/ja9044168

Rusakov VS, Chistyakova NI, Burkovsky IA, Gapochka AM, Evstigneeva TL, Schorr S (2010) Mössbauer study of isomorphous substitutions in Cu2Fe1-xCuxSnS4 and Cu2Fe1-xZnxSnS4 series. J Phys Conf Series 217: 012038
http://doi.org/10.1088/1742-6596/217/1/012038

Sanad MMS, Elseman AM, Elsenety MM, Rashad MM, ElSayed B (2019) Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells. J Mater Sci-Mater El 30: 6868-6875
http://doi.org/10.1007/s10854-019-01001-z

Schorr S (2011) The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Solar Energ Mat Sol C 95:1482-1488
http://doi.org/10.1016/j.solmat.2011.01.002

Schorr S, Hoebler H-J, Tovar M (2007) A neutron diffraction study of the stannite-kesterite solid solution series. Eur J Mineral 19: 65-73
http://doi.org/10.1127/0935-1221/2007/0019-0065

Spalek J, Lewicki A, Tarnawski Z, Furdyna JK, Galazka RR, Obuszko Z (1986) Magnetic susceptibility of semimagnetic semiconductors: the high temperature regime and the role of superexchange. Phys Rev B 33: 3407-3418
http://doi.org/10.1103/PhysRevB.33.3407

Toby BH, Von Dreele RB (2013) GSAS-II : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46: 544-549
http://doi.org/10.1107/S0021889813003531

Twardowski A (1990) Magnetic properties of Fe-based diluted magnetic semiconductors. J Appl Phys 67: 5108-5113
http://doi.org/10.1063/1.344685

Twardowski A, Fries T, Shapira Y, Demianiuk M (1993) The d-d exchange interaction in the diluted magnetic semiconductor ZnFeS. J Appl Phys 73: 6087-6089
http://doi.org/10.1063/1.353478

Vaughan DJ, Burns RG (1972) Mössbauer spectroscopy and bonding in sulphide minerals containing four-coordinated iron. In:. Proceedings of the 24th International Geological Congress, 21-30 September 1972, Montreal, pp 158-167

Yamanaka T, Kato A (1976) Mössbauer effect study of 57Fe and 119Sn in stannite, stannoidite, and mawsonite. Amer Miner 61: 260-265

Zaman MB, Mir RA, Poolla R (2019a) Growth and properties of solvothermally derived highly crystalline Cu2ZnSnS4 nanoparticles for photocatalytic and electrocatalytic applications. Int J Hyd Energy 44: 23023-23033
http://doi.org/10.1016/j.ijhydene.2019.07.026

Zaman MB, Chandel T, Poolla R (2019b) Hydrothermal synthesis of Cu2FeSnS4 anisotropic nanoarchitectures: controlled morphology for enhanced photocatalytic performance. Mater Res Express 6: 075058
http://doi.org/10.1088/2053-1591/ab1797

Zaman MB, Chandel T, Poolla R (2019c) Solvothermal synthesis of Cu2SnSe3 nanocrystals using elemental precursors: influence of different solvents on growth and morphology. J El Mater 48: 3194-3207
http://doi.org/10.1007/s11664-019-07084-y

Zhong J, Wang Q, Chen D, Chen L, Yu H, Lu H, Ji Z (2015) Biomolecule-assisted solvothermal synthesis of 3D hierarchical Cu2FeSnS4 microspheres with enhanced photocatalytic activity. Appl Surf Sci 343: 28-32
http://doi.org/10.1016/j.apsusc.2015.03.066

Zhou J, Hu Y, Chen X (2016) Preparation of photovoltaic absorption material Cu2FeSnSe4 microparticles via an atmospheric pressure liquid reflux method. Mater Lett 184: 216-218
http://doi.org/10.1016/j.matlet.2016.08.019

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943