Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

Juraj Majzlan, Martin Števko, Jakub Plášil, Jiří Sejkora, Edgar Dachs

Thermodynamics of the Cu, Zn, and Cu-Zn phases: zincolivenite, adamite, olivenite, ludjibaite, strashimirite, and slavkovite

Journal of Geosciences, volume 68 (2023), issue 1, 67 - 80

DOI: http://doi.org/10.3190/jgeosci.367


  Abstract References Affiliations

Belik AA, Koo H-J, Whangbo M-W, Tsujii N, Naumov P, Takayama-Muromachi E (2007) Magnetic properties of synthetic libethenite Cu2PO4OH: a new spin-gap system. Inorg Chem 46: 8684-8689
http://doi.org/10.1021/ic7008418

Bethke CM (2022) Geochemical and Biogeochemical Modeling, 3rd edition. Cambridge University Press, pp 1-564

Burns PC, Hawthorne FC (1995) Rietveld refinement of the crystal structure of olivenite: a twinned monoclinic structure. Canad Mineral 33: 885-888

Chukanov NV, Pushcharovsky DYu, Zubkova NV, Pekov IV, Pasero M, Merlino S, Möckel S, Rabadanov MKh, Belakovskiy DI (2007) Zincolivenite CuZn(AsO4)(OH): a new adamite-group mineral with ordered distribution of Cu and Zn. Dokl Russ Acad Sci 415A: 841-845
http://doi.org/10.1134/S1028334X07060037

Eby RK, Hawthorne FC (1993) Structural relations in copper oxysalt minerals. I. Structural hierarchy. Acta Crystall B 49: 28-56
http://doi.org/10.1107/S0108768192007274

Fennell T, Piatek JO, Stephenson RA, Nilsen GJ, Rønnow HM (2011) Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? J Phys Cond Matter 23: 164201
http://doi.org/10.1088/0953-8984/23/16/164201

Filatov SK, Shablinskii AP, Krivovichev SV, Vergasova LP, Moskaleva SV (2020) Petrovite, Na10CaCu2(SO4)8, a new fumarolic sulfate from the Great Tolbachik fissure eruption, Kamchatka Peninsula, Russia. Mineral Mag 84: 691-698
http://doi.org/10.1180/mgm.2020.53

Gołębiowska B, Pieczka A, Franus W (2006) Olivenite-adamite solid solution from oxidation zone in Rędziny (West Sudetes, Poland). Mineral Pol 37: 101-110
http://doi.org/10.2478/v10002-007-0001-1

Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (1992) Chemical Thermodynamics of Uranium, volume 1. Nuclear Energy Agency, OECD, pp 1-734

Grevel K-D, Majzlan J (2011) Thermodynamics of divalent metal sulfates. Chem Geol 286: 301-306

Hawthorne FC, Schindler M (2000) Topological enumeration of decorated [Cu2+φ2]N sheets in hydroxy-hydrated copper-oxysalt minerals. Canad Mineral 38: 751-761
http://doi.org/10.2113/gscanmin.38.3.751

Hemingway BS, Seal RR II, Chou I-M (2002) Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals. US Geol Surv Open-File Rep 02-161, pp 1-13

Hill RJ (1976) The crystal structure and infrared properties of adamite. Amer Miner 61: 979-986

Hyršl J (1991) Three polymorphs of Cu5(PO4)2(OH)4 from Ľubietová, Czechoslovakia. Neu Jb Mineral, Mh 1991: 281-287

Jinnouchi S, Yoshiasa A, Sugiyama K, Shimura R, Arima H, Momma H, Miyawaki R (2016) Crystal structure refinements of legrandite, adamite, and paradamite: the complex structure and characteristic hydrogen bonding network of legrandite. J Mineral Petrol Sci 111: 35-43
http://doi.org/10.2465/jmps.141216

Kato T, Miúra Y (1977) The crystal structures of adamite and paradamite. Mineral J 6: 320-328
http://doi.org/10.2465/minerj.8.320

Keller P (1971) Darstellung und Eigenschaften von Co2[OH|AsO4]. Neu Jb Mineral, Mh 1971: 560-564

Kennedy CA, Stancescu M, Marriott RA, White MA (2007) Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system. Cryogenics 47: 107-112
http://doi.org/10.1016/j.cryogenics.2006.10.001

Koděra M (ed) (1990) Topographic Mineralogy of Slovakia. Veda, Bratislava, pp 1-1590 (in Slovak)

Krivovichev SV, Zolotarev AA, Popova VI (2016) Hydrogen bonding and structural complexity in the Cu5(PO4)2(OH)4 polymorphs (pseudomalachite, ludjibaite, reichenbachite): combined experimental and theoretical study. Struct Chem 27: 1715-1723
http://doi.org/10.1007/s11224-016-0820-z

Krivovichev SV, Hawthorne FC, Williams PA (2017) Structural complexity and crystallization: the Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite-atacamite-clinoatacamite). Struct Chem 28: 153-159
http://doi.org/10.1007/s11224-016-0792-z

Magalhães MCF, De Jesus JDP, Williams PA (1988) The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II). Mineral Mag 52: 679-690
http://doi.org/10.1180/minmag.1988.052.368.12

Majzlan J (2017) Solution calorimetry on minerals related to acid mine drainage - methodology, checks, and balances. Acta Geol Slov 9: 171-183

Majzlan J, Lang BE, Stevens R, Navrotsky A, Woodfield BF, Boerio-Goates J (2003) Thermodynamics of iron oxides: Part I. Standard entropy and heat capacity of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). Amer Miner 88: 846-854
http://doi.org/10.2138/am-2003-5-613

Majzlan J, Zittlau A, Grevel K-D, Schliesser J, Woodfield BF, Dachs E, Števko M, Chovan M, Plášil J, Sejkora J, Milovská S (2015) Thermodynamic properties and phase equilibria of the secondary copper minerals libethenite, olivenite, pseudomalachite, kröhnkite, cyanochroite, and devilline. Canad Mineral 53: 937-960
http://doi.org/10.3749/canmin.1400066

Majzlan J, Števko M, Dachs E, Benisek A, Plášil J, Sejkora J (2017) Thermodynamics, stability, crystal structure, and phase relations among euchroite, Cu2(AsO4)(OH)·3H2O, and related minerals. Eur J Mineral 29: 5-16
http://doi.org/10.1127/ejm/2017/0029-2584

Mincheva-Stefanova I (1968) Strashimirite, a new hydrous copper arsenate. Zap Vsesojuz Mineral Obsh 97: 470-477

Mindat. Accessed on February 1, 2022 at https://www.mindat.org/min-3799.html

Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319: 1635-1638
http://doi.org/10.1126/science.1148614

Nordstrom DK, Munoz JL (1994) Geochemical Thermodynamics, 2nd edition. Blackwell Scientific, Boston, pp 1-493

Nordstrom DK, Königsberger E, Majzlan J (2014) Thermodynamic properties for arsenic minerals and aqueous species. In: Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J (eds) Arsenic: Environmental Geochemistry, Mineralogy, and Microbiology. Mineralogical Society of America and Geochemical Society Reviews in Mineralogy and Geochemistry 79: 217-255
http://doi.org/10.2138/rmg.2014.79.4

Ondruš P, Veselovský F, Hloušek J, Skála R, Vavřín I, Frýda J, Čejka J, Gabašová A (1997) Secondary minerals of the Jáchymov (Joachimsthal) ore district. J Czech Geol Soc 42: 3-69

Parker VB (1965) Thermal properties of uni-univalent electrolytes. National Stand Ref Data Series, Natl Bur Stand 2: pp 1-66

Perchiazzi N, Demitri N, Fehér B, Vignola P (2017) On the crystal-chemistry of rosasite and parádsasvárite. Canad Mineral 55: 1027-1040
http://doi.org/10.3749/canmin.1700041

Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristall 5: 345-352
http://doi.org/10.1515/zkri-2014-1737

Petříček V, Dušek M, Palatinus L (2020) Crystallographic computing system JANA2020. Institute of Physics, Czech Academy of Sciences, Prague

Piret P, Deliens M (1988) Description de la ludjibaïte, un polymorphe de la pseudomalachite, Cu5(PO4)2(OH)4. Bull Minéral 111: 167-171
http://doi.org/10.3406/bulmi.1988.8081

Plumhoff A (2021) Thermodynamic Properties, Crystal Structures, Phase Relations and Isotopic Studies of Selected Copper Oxysalts. Unpublished PhD thesis, Friedrich Schiller University, Jena, pp 1-118

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam Analysis. San Francisco Press, pp 104-106

Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geol Surv Bull 2131: 1-461

Rumsey M, Welch M, Spratt J, Kleppe A, Števko M (2021) Kernowite, Cu2Fe(AsO4)(OH)4 ⋅4H2O, the Fe3+-analogue of liroconite from Cornwall, UK. Mineral Mag 85: 283-290
http://doi.org/10.1180/mgm.2021.40

Sejkora J, Bureš B (2020) Copper arsenates from the ore stope at the Geschieber vein - north (Daniel level), Svornost, the Jáchymov ore district (Czech Republic). Bull Mineral Petrol 28: 454-465 (in Czech)
http://doi.org/10.46861/bmp.28.454

Sejkora J, Plášil J, Ondruš P, Veselovský F, Císařová I, Hloušek J (2010) Slavkovite, Cu13(AsO4)(AsO3OH)4·23H2O, a new mineral species from Horní Slavkov and Jáchymov, Czech Republic: description and crystal-structure determination. Canad Mineral 48: 1157-1170
http://doi.org/10.3749/canmin.48.5.1157

Sejkora J, Plášil J, Veselovský F, Císařová I, Hloušek J (2011) Ondrušite, CaCu4(AsO4)2(AsO3OH)2·10H2O, a new mineral species from the Jáchymov ore district, Czech Republic: description and crystal-structure determination. Canad Mineral 49: 885-897
http://doi.org/10.3749/canmin.49.3.885

Sejkora J, Škácha P, Dvořák Z, Muzikant P (2015) Slavkovite from Preisselberg, the Krupka ore district (Czech Republic) and its mineral association. Bull mineral-petrol odd Nár Muz (Praha) 23: 1-18 (in Czech)
http://doi.org/10.3190/jgeosci.186

Sheldrick GM (2015) SHELXT - integrated space-group and crystal-structure determination. Acta Crystall A 71: 3-8
http://doi.org/10.1107/S2053273314026370

Shoemaker GL, Anderson JB, Kostiner E (1981) The crystal structure of a third polymorph of Cu5(PO4)2(OH)4. Amer Miner 66: 169-175

Sieber NHW, Tillmanns E, Medenbach O (1987) Hentschelite, CuFe2(PO4)2(OH)2, a new member of the lazulite group, and reichenbachite, Cu5(PO4)2(OH)4, a polymorph of pseudomalachite, two new copper phosphate minerals from Reichenbach, Germany. Amer Miner 72: 404-408

Southwood M, Števko M, Carr P (2020) Tsumeb: zincolivenite and the adamite-olivenite series. Rocks Miner 95: 210-232
http://doi.org/10.1080/00357529.2020.1716168

Tost F (2021) Syntheses im Kupferphosphat-Arsenat-System. Unpublished MSci. thesis, Friedrich Schiller University, Jena, pp 1-65

Weiland T (2013) Die bedeutendsten Fundstellen für Kupfermineralien. In: Kupfer Mineralien. ExtraLapis 45: 30

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943