Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

           | issue | next >
 
Received: 9 August 2022
Accepted: 6 February 2023
Online: 13 August 2023
H. Editor: P. Bacík
 
  full text (PDF, 1.47 MB)
 
Export to RIS
Export to BibTeX
Export to Mendeley
 

Original paper

Fuat Yavuz, Vural Yavuz

WinSpingc, a Windows program for spinel supergroup minerals

Journal of Geosciences, volume 68 (2023), issue 2, 95 - 110

DOI: http://doi.org/10.3190/jgeosci.369



Al-Juboury AI, Ghazal MM, McCann T (2009) Detrital chromian spinels from Miocene and Holocene sediments of northern Iraq: provenance implications. J Geosci 54: 289-300
http://doi.org/10.3190/jgeosci.041

Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2001-2005) Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org/

Antonini AS, Ganuza ML, Ferracutti G, Gargiulo MF, Matković K, Gröller E, Bjerg EA, Castro SM (2020) Spinel web: an interactive web application for visualizing the chemical composition of spinel group minerals. Earth Sci Inform 14: 521-528
http://doi.org/10.1007/s12145-020-00542-w

Arai S (1978) Formation of the chlorite corona around chromian spinel in peridotite and its significance. Geosci Rept Shizuoka Univ 3: 9-15

Arai S (1992) Chemistry of chromium spinel in volcanic rocks as a potential guide to magma history. Mineral Mag 56: 173-184
http://doi.org/10.1180/minmag.1992.056.383.04

Arai S (1994a) Characterization of spinel peridotites by olivine spinel compositional relationships: Review and interpretation. Chem Geol 113: 19-204
http://doi.org/10.1016/0009-2541(94)90066-3

Arai S (1994b) Compositional variation of olivine-chromain spinel in Mg-rich magmas as a guide to their residual spinel peridotites. J Volcanol Geotherm Res 59: 279-294
http://doi.org/10.1016/0377-0273(94)90083-3

Arai S, Shimizu Y, Ismail SA, Ahmad AH (2006) Low T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq. Mineral Mag 70: 499-508
http://doi.org/10.1180/0026461067050353

Arai S, Okamura H, Kadoshima K, Tanaka C, Suzuki K, Ishimaru S (2011) Chemical characteristics of chromian spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting. Isl Arc 20; 125-137
http://doi.org/10.1111/j.1440-1738.2010.00747.x

Barkov AY, Martin RF, Halkoaho TAA, Poirier G (2000) The mechanism of charge compensation in Cu-Fe-PGE thiospinels from the Penikat layered intrusion, Finland. Amer Mineral 85: 694-697
http://doi.org/10.2138/am-2000-5-606

Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42: 2279-2302
http://doi.org/10.1093/petrology/42.12.2279

Baxter AT, Aitchison JC, Ali JR, Sik-Lap Chan J, Nagi Chan GH (2016) Detrital chrome spinel evidence for a Neotethyan intra-oceanic island arc collision with India in the Paleocene. J Asian Earth Sci 128: 90-104
http://doi.org/10.1016/j.jseaes.2016.06.023

Beard JS, Tracy RT (2002) Spinels and other oxides in Mn-rich rocks from the Hutter Mine, Pittsylvania County, Virginia, U.S.A.: Implications for miscibility and solvus relations among jacobsite, galaxite, and magnetite. Amer Miner 87: 690-698
http://doi.org/10.2138/am-2002-5-611

Beckett-Brown CE, McDonald AM, Zhe W (2018) A crystallographically oriented intergrowth of siegenite (CoNi2S4) and millerite from the Morokweng impact structure, South Africa: chemistry, texture, and origin. Canad Mineral 56: 705-722
http://doi.org/10.3749/canmin.1800007

Bhat IM, Ahmad T, Rao DVS (2019) Alteration of primary Cr-spinel mineral composition from the Suru Valley ophiolitic peridotites, Ladakh Himalaya: Their low-temperature metamorphic implications. J Earth Syst Sci 128: 188, 1-14
http://doi.org/10.1007/s12040-019-1222-6

Biagioni C, Pasero M (2014) The systematics of the spinel-type minerals: An overview. Amer Miner 99: 1254-1264
http://doi.org/10.2138/am.2014.4816

Bosi F (2019) Chemical and structural variability in cubic spinel oxides. Acta Crystalogr B75: 279-285
http://doi.org/10.1107/S2052520619002282

Bosi F, Biagioni C, Pasero M (2019a) Nomenclature and classification of the spinel supergroup. Eur J Mineral 31: 183-192
http://doi.org/10.1127/ejm/2019/0031-2788

Bosi F, Biagioni C, Oberti R (2019b) On the chemical identification and classification of minerals. Minerals 9: 591.
http://doi.org/10.3390/min9100591

Cámara F, Bindi L, Pagano A, Pagano R, Gain SEM, Griffin WL (2019) Dellagiustaite: a novel natural spinel containing V2+. Minerals: 9: 4.
http://doi.org/10.3390/min9010004

Cookenboo HO, Bustin RM, Wilks KR (1997) Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: Implications for orogeny in the Canadian cordillera. J Sediment Res. 67: 116-123

Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas. Contrib Mineral Petrol 86: 54-76
http://doi.org/10.1007/BF00373711

Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineral Mag 51: 431-435
http://doi.org/10.1180/minmag.1987.051.361.10

Dunn PJ, Peacor DR, Criddle AJ, Stanley CJ (1988) Filipstadite, a new Mn-Fe3+-Sb derivative of spinel, from Långban, Sweden. Amer Miner 73: 413-419

Essene EJ, Peacor DR (1983) Crystal chemistry and petrology of coexisting galaxite and jacobsite and other spinel solutions and solvi. Amer Minerl 68: 449-455

Förster H-J, Ma C, Grundmann G, Bindi L, Stanley CJ (2019) Nickeltyrrellite, CuNi2Se4, a new member of the spinel supergroup from El Dragón, Bolivia. Canad Mineral 57: 637-646
http://doi.org/10.3749/canmin.1900025

Gamal EL Dien H, Arai S, Doucet LS, Li ZX, Kil Y, Fougerouse D, Reddy SM, Saxey DW, Hamdy M (2019) Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nat Commun 10: 5103. 1-12
http://doi.org/10.1038/s41467-019-13117-1

GanuzA ML, Castro SM, Ferracutti G, Bjerg EA, Martig SR (2012) Spinelviz: an interactive 3d application for visualizing spinel group minerals. Comput Geosci 48: 50-56
http://doi.org/10.1016/j.cageo.2012.05.003

Ganuza ML, Ferracutti G, GargiulO MF, Castro SM, Bjerg E, Gröller E, Matković K (2014) The spinel explorer-interactive visual analysis of spinel group minerals. IEEE Trans Vis Comput Graph 20: 1913-1922
http://doi.org/10.1109/TVCG.2014.2346754

Gargiulo MF, Bjerg EA, Mogessie A (2013) Spinel group minerals in metamorphosed ultramafic rocks from Río de Las Tunas belt, Central Andes, Argentina. Geol Acta 11: 133-148

Gawlick HJ, Sudar M, Missoni S, Aubrecht R, Schlagintweit F, Jovanović D, Mikuš T (2020) Formation of a Late Jurassic carbonate platform on top of the obducted Dinaridic ophiolites deduced from the analysis of carbonate pebbles and ophiolitic detritus in southwestern Serbia. Int J Earth Sci 109: 2023-2048
http://doi.org/10.1007/s00531-020-01886-w

Ghosh B, Morishita T, Bhatta K (2013) Significance of chromian spinels from the mantle sequence of the Andaman Ophiolite, India: Paleogeodynamic implications. Lithos 164-167: 86-96
http://doi.org/10.1016/j.lithos.2012.08.004

Harstad TS, Mørk MBE, Slagstad T (2020) The importance of trace element analyses in detrital Cr-spinel provenance studies: An example from the Upper Triassic of the Barents Shelf. Basin Res 33: 1017-1032
http://doi.org/10.1111/bre.12502

Heimann A, Spry PG (2005) Zincian spinel associated with metamorphosed Proterozoic base-metal sulfide occurrences, Colorado: a re-evaluation of gahnite composition as a guide in exploration. Canad Mineral 43: 601-622
http://doi.org/10.2113/gscanmin.43.2.601

Hwang SL, Shen P, Yui TF, Chu HT, IIzuka Y, Schertl HP, Spengler D (2022) Chihmingite, IMA 2022-010, in: CNMNC Newsletter 67, Eur J Mineral 34: 59-364.
http://doi.org/10.5194/ejm-34-359-2022, 2022.

Irvine TN (1965) Chromium spinels as a petrogenetic indicator. Part 1 Theory. Canad J Earth Sci 2: 648-673
http://doi.org/10.1139/e65-046

Irvine TN (1967) Chromium spinels as a petrogenetic indicator. Part 2 Petrologic applications. Canad J Earth Sci 4: 71-103
http://doi.org/10.1139/e67-004

Irvine TN, Findlay TC (1972) Alpine-type peridotite with particular reference to the Bay of Islands Igneous Complex. Publ Earth Phys Branch Dept Energ Mines Resour 42: 97-140

Johan Z, Ohnenstetter D (2010) Zincochromite from the Guaniamo River diamondiferous placers, Venezuela: evidence of its metasomatic origin. Canad Mineral 48: 361-374
http://doi.org/10.3749/canmin.48.2.361

Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42: 655-671
http://doi.org/10.1093/petrology/42.4.655

Kompanchenko AA (2020) Coulsonite FeV2O4-A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia. Minerals 10: 843.
http://doi.org/10.3390/min1010084342

Leblanc M, Nicolas A (1992) Ophiolitic chromitities. Int Geol Rev 34: 653-686
http://doi.org/10.1080/00206819209465629

Lee YII (1999) Geotectonic significance of detrital chromian spinel: a review. Geosci J 3: 23-29
http://doi.org/10.1007/BF02910231

Lei Z, Chen X, Wang J, Huang Y, Du F, Yan Z (2022) Guite, the spinel-structured Co2+Co3+2O4, a new mineral from the Sicomines copper-cobalt mine, Democratic Republic of Congo. Mineral Mag 1-8,
http://doi.org/10.1180/mgm.2022.27

Lenaz D, Princivalle F (2005) The crystal chemistry of detrital chromian spinel from the southeastern Alps and outer Dinarides: the discrimination of supplies from areas of similar tectonic setting? Canad Mineral 43: 1305-1314
http://doi.org/10.2113/gscanmin.43.4.1305

Lippo J, Vuollo J, Nykänen V, Piirainen T (1994) Chromite compositions as evidence for an Archaean ophiolite in the Kuhmo Greenstone Belt in Finland. Bull Geol Soc Finland 66: 3-18
http://doi.org/10.17741/bgsf/66.1.001

Mekhonoshin AS, Kolotilina TB, Doroshkov AA, Pikiner EE (2020) Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia). Minerals 10: 608.
http://doi.org/10.3390/min10070608

Nekrasov IY, Lennikov AM, Zalishchak BL, Oktyabrsky RA, Ivanov VV, Sapin VI, Taskaev VI (2005) Compositional variations in platinum-group minerals and gold, Konder Alkaline-Ultrabasic Massif, Aldan Shield, Russia. Canad Mineral 43: 637-654
http://doi.org/10.2113/gscanmin.43.2.637

Oktyabrsky RA, Shcheka SA, Lennikov AM, Afanasyeva TB (1992) The first occurrence of qandilite in Russia. Mineral Mag 56: 385-389
http://doi.org/10.1180/minmag.1992.056.384.11

Ostwald J (1978) Linnaeite series minerals from the Kalgoorlie district, Western Australia. Mineral Mag 42: 93-98
http://doi.org/10.1180/minmag.1978.042.321.13

Pascal ML, Fonteilles M, Boudouma O (2011) Qandilite from Vesuvius skarn ejecta: conditions of formation and miscibility gap in the ternary spinel - qandilite - magnesioferrite. Canad Mineral 49: 459-485
http://doi.org/10.3749/canmin.49.2.459

Pekov IV, Sandalov FD, Koshlyakova NN, Vigasina MF, Polekhovsky YS, Britvin SN, Sidorov EG, Turchkova AG (2018) Copper in natural oxide spinels: The new mineral Thermaerogenite CuAl2O4, Cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals 8: 498.
http://doi.org/10.3390/min811049849: 459-485

Rao C, Gu X, Wang R, Xia Q, Cai Y, Dong C, Hatert F, Hao Y (2022) Chukochenite, (Li0.5Al0.5)Al2O4, a new lithium oxyspinel mineral from the Xianghualing skarn, Hunan Province, China. Amer Miner 107: 842-847
http://doi.org/10.2138/am-2021-7932

Sack RO, Ghiorso MS (1991) Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. Amer Miner 76: 827-847

Sharygin VV, Kamenetsky VS, Zhitova LM, Belousov AB, Abersteiner A (2018) Copper-containing magnesioferrite in vesicular trachyandesite in a lava tube from the 2012-2013 Eruption of the Tolbachik Volcano, Kamchatka, Russia. Minerals 8: 514.
http://doi.org/10.3390/min811051476: 827-847

Škácha P, Sejkora J, Plášil J, Dolníček Z, Ulmanová J (2021) Grimmite, NiCo2S4, a new thiospinel from Příbram, Czech Republic. Eur J Mineral 33: 175-187
http://doi.org/10.5194/ejm-33-175-2021

Stalder M, Rozendaal A (2005) Calderite-rich garnet and franklinite-rich spinel in amphibolite-facies hydrothermal sediments, Gamsberg Zn-Pb deposit, Namaqua Province, South Africa. Canad Mineral 43: 585-599
http://doi.org/10.2113/gscanmin.43.2.585

Stevens RE (1944) Compositions of some chromites of the western hemisphere. Amer Miner 29: 1-34

Voigt M, von der Handt A (2011) Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contrib Mineral Petrol 162: 675-689
http://doi.org/10.1007/s00410-011-0618-3

Warr LN (2021) IMA-CNMNC approved mineral symbols. Mineral Mag 85: 291-320
http://doi.org/10.1180/mgm.2021.43

Yajima J, Ohta E, Kanazawa Y (1991) Toyohaite, Ag2FeSn3S8, a new mineral. Mineral J 15: 222-232
http://doi.org/10.2465/minerj.15.222

Yavuz F (1999) CHROMITE: A program to process electron microprobe data from Cr-rich spinels. J Trace Microprobe Tech 17: 17-23

Yavuz F (2001) PYROX: A computer program for the IMA pyroxene classification and calculation scheme. Comput Geosci 27: 97-107
http://doi.org/10.1016/S0098-3004(00)00059-5

Yavuz F (2003) Evaluating micas in petrologic and metallogenic aspect: I-definitions and structure of the computer program MICA+. Comput Geosci 29: 1203-1213
http://doi.org/10.1016/S0098-3004(03)00142-0

Yavuz F (2007) WinAmphcal: a windows program for the IMA-04 amphibole classification. Geochem Geophys Geosyst 8: Q01004, 1-12
http://doi.org/10.1029/2006GC001391

Yavuz F (2013) WinPyrox: A Windows program for pyroxene calculation classification and thermobarometry. Amer Miner 98: 1338-1359
http://doi.org/10.2138/am.2013.4292

Yavuz F (2021) WinMIgob: A Windows program for magnetite-ilmenite geothermometer and oxygen barometer. J Geosci 66: 51-70
http://doi.org/10.3190/jgeosci.319

Yavuz F, Döner Z (2017) WinAmptb: A Windows program for calcic amphibole thermobarometry. Period Mineral 87: 135-167

Yavuz F, Yavuz EV (2022) A Windows program for feldspar group thermometers and hygrometers. Period Mineral 91: 63-87

Yavuz F, Yildirim DK (2018a) A Windows program for pyroxene-liquid thermobarometry. Period Mineral 87: 149-172

Yavuz F, Yildirim DK (2018b) A Windows program for calculation and classification of epidote-supergroup minerals. Period Mineral 87: 269-285

Yavuz F, Yildirim DK (2020) WinGrt, a Windows program for garnet supergroup minerals. J Geosci 65: 71-95
http://doi.org/10.3190/jgeosci.303

Yavuz F, Karakaya N, Yildirim DK, Karakaya MÇ, Kumral M (2014) A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011). Comput Geosci 63: 70-87
http://doi.org/10.1016/j.cageo.2013.10.012

Yavuz F, Kumral M, Karakaya N, Karakaya MÇ, Yildirim DK (2015) A Windows program for chlorite calculation and classification. Comput Geosci 81: 101-113
http://doi.org/10.1016/j.cageo.2015.04.011

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943