Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

John F. Slack

Perspectives on premetamorphic stratabound tourmalinites

Journal of Geosciences, volume 67 (2022), issue 2, 73 - 102

DOI: http://doi.org/10.3190/jgeosci.349


  Abstract References Affiliations

Abraham K, Mielke H, Povondra P (1972) On the enrichment of tourmaline in metamorphic sediments of the Arzberg Series, West Germany (NE Bavaria). Neu Jb Mineral, Mh 5: 209-219

Abrams CE, McConnell KI (1984) Geologic setting of volcanogenic base and precious metal deposits of the west Georgia Piedmont: a multiply deformed metavolcanic terrain. Econ Geol 79: 1521-1539
http://doi.org/10.2113/gsecongeo.79.7.1521

Albert C, Lana C, Gerdes A, Schannor M, Narduzzi F, Queiroga G (2018) Archean magmatic-hydrothermal fluid evolution in the Quadrilátero Ferrífero (SE Brazil) documented by B isotopes (LA MC-ICPMS) in tourmaline. Chem Geol 481: 95-109
http://doi.org/10.1016/j.chemgeo.2018.02.002

Anschutz P, Blanc G, Monnin C, Boulègue J (2000) Geochemical dynamics of the Atlantis II Deep (Red Sea): II. Composition of metalliferous sediment pore waters. Geochim Cosmochim Acta 64: 3995-4006
http://doi.org/10.1016/S0016-7037(00)00486-5

Appel PWU (1985) Strata-bound tourmaline in the Archaean Malene supracrustal belt, West Greenland. Can J Earth Sci 22: 1485-1491
http://doi.org/10.1139/e85-154

Appel PWU (1988a) Stratiform tourmalinites in the Archaean tungsten province of West Greenland. Mineral Petrol 39: 79-91
http://doi.org/10.1007/BF01184816

Appel PWU (1988b) Tourmaline in Precambrian supracrustal rocks from Aasiaat, central West Greenland. Rapp Grønlands Geol Undersøg 140: 44-46
http://doi.org/10.34194/rapggu.v140.8031

Appel PWU (1992) Tourmalinites in supracrustal rocks in the Bjørnesund area, West Greenland. Rapp Grønl Geol Unders 155: 73-78
http://doi.org/10.34194/rapggu.v155.8184

Appel PWU (1995) Tourmalinites in the 3800 Ma old Isua supracrustal belt, West Greenland. Precambr Res 72: 227-234
http://doi.org/10.1016/0301-9268(94)00089-A

Appel PWU, Garde AA (1987) Stratabound scheelite and stratiform tourmalinites in the Archaean Malene supracrustal rocks, southern West Greenland. Grønl Geol Unders Bull 156: 1-26

Arena KR, Hartmann LA, Lana C, Queiroga GN, Castro MP (2020) Geochemistry and 11B evolution of tourmaline from tourmalinite as a record of oceanic crust in the Tonian Ibaré ophiolite, southern Brasiliano orogen. An Acad Bras Cienc 92, DOI: 10.1590/0001-3765202020180193
http://doi.org/10.1590/0001-3765202020180193

Arribas-Rosado A (1986) The significance of tourmaline in stratabound tungsten deposits in Spain. Tungsten Deposits Conference, Toulouse, France. Abstract Volume, p 33

Badenhorst FP (1988) A note on stratiform tourmalinites in the late Precambrian Kuiseb Formation, Damara sequence. Commun Geol Survey SW Africa/Namibia 4: 77-80

Bandyopadhyay BK, Slack JF, Palmer MR, Roy A (1993) Tourmalinites associated with stratabound massive sulfide deposits in the Proterozoic Sakoli Group, Nagpur district, central India. In: Maurice YT (ed) Proceed Eighth Quad IAGOD Symp, Ottawa, Canada. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany, pp 867-885

Barnes RG (1983) Stratiform and stratabound tungsten mineralization in the Broken Hill Block, N.S.W. J Geol Soc Aust 30: 225-239
http://doi.org/10.1080/00167618308729250

Barnes RG (1988) Metallogenic studies of the Broken Hill and Euriowie blocks, New South Wales. 1. Styles of mineralization in the Broken Hill block. New South Wales Geol Survey Bull 32(1): 1-115

Barrett TJ, Jarvis I, Hannington MD, Thirlwall MF (2021) Chemical characteristics of modern deep-sea metalliferous sediments in closed versus open basins, with emphasis on rare-earth elements and Nd isotopes. Earth-Sci Rev 222, https://doi.org/10.1016/j.earscirev.2021.103801
http://doi.org/10.1016/j.earscirev.2021.103801

Beaty DW, Hahn GA, Threlkeld WE (1988) Field, isotopic, and chemical studies of tourmaline-bearing rocks in the Belt-Purcell Supergroup: genetic constraints and exploration significance for Sullivan-type ore deposits. Can J Earth Sci 25: 392-402
http://doi.org/10.1139/e88-041

Behr H-J, Ahrendt H, Martin H, Porada H, Rohrs J, Weber K (1983) Sedimentology and mineralogy of Upper Proterozoic playa-lake deposits in the Damara orogen. In: Martin H, Eder FW (eds) Intracontinental fold belts. Springer-Verlag, Berlin-Heidelberg, pp 577-610

Benvenuti M, Lattanzi P, Tanelli G (1989) Tourmalinite-associated Pb-Zn-Ag mineralization at Bottino, Apuane Alps, Italy: geologic setting, mineral textures, and sulfide chemistry. Econ Geol 84: 1277-1292
http://doi.org/10.2113/gsecongeo.84.5.1277

Benvenuti M, Costagliola P, Lattanzi P, Tanelli G (1991) Mineral chemistry of tourmalines from the Bottino mining district, Apuane Alps (Italy). Eur J Mineral 3: 537-548
http://doi.org/10.1127/ejm/3/3/0537

Bernier L, Pouliot G, MacLean WH (1987) Geology and metamorphism of the Montauban north gold zone: a metamorphosed polymetallic exhalative deposit, Grenville Province, Quebec. Econ Geol 82: 2076-2090
http://doi.org/10.2113/gsecongeo.82.8.2076

Bjørlykke K (2015) Subsurface water and fluid flow in sedimentary basins. In: Bjørlykke K (ed) Petroleum geoscience: from sedimentary environments to rock physics. Springer, Berlin-Heidelberg, pp 279-300
http://doi.org/10.1007/978-3-642-34132-8_10

Boerboom TJ (1989) Tourmaline in Early Proterozoic metasedimentary rocks near Philbrook, northeastern Todd County, central Minnesota. Minnesota Geol Survey Rept Invest 38, 25 p

Bone Y (1988) The geological setting of tourmalinite at Rum Jungle, N.T., Australia-genetic and economic implications. Miner Depos 23: 34-41
http://doi.org/10.1007/BF00204226

Bookstrom AA, Box SE, Cossette PM, Frost TP, Gillerman VS, King GR, Zirakparvar NA (2016) Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell basin. In: MacLean JS, Sears JW (eds) Belt basin: window to Mesoproterozoic Earth. Geol Soc Am, Spec Paper 522, pp 185-219

Boström K, Peterson MNA (1969) The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geol 7: 427-447
http://doi.org/10.1016/0025-3227(69)90016-4

Bozkurt E, Winchester JA, Mittwede SK, Ottley CJ (2006) Geochemistry and tectonic implications of leucogranites and tourmalines of the southern Menderes massif, southwest Turkey. Geodin Acta 19: 363-390
http://doi.org/10.3166/ga.19.363-390

Brown CE, Ayuso RA (1985) Significance of tourmaline-rich rocks in the Grenville Complex of St. Lawrence County, New York. US Geol Survey Bull 1626-C, 33 p

Byerly GR, Palmer MR (1991) Tourmaline mineralization in the Barberton greenstone belt, South Africa: Early Archean metasomatism by evaporite-derived boron. Contrib Mineral Petrol 107: 387-402
http://doi.org/10.1007/BF00325106

Byerly GR, Lowe DR, Walsh MM (1986) Stromatolites from the 3,300-3,500-Myr Swaziland Supergroup, Barberton mountain land, South Africa. Nature 319: 489-491
http://doi.org/10.1038/319489a0

Cabral AR, Koglin N (2012) Hydrothermal fluid source constrained by Co/Ni ratios in coexisting arsenopyrite and tourmaline: the auriferous lode of Passagem, Quadrilátero Ferrífero of Minas Gerais, Brazil. Mineral Petrol 104: 137-145
http://doi.org/10.1007/s00710-011-0183-5

Cabral AR, Lehmann B, Tupinambá M, Wiedenbeck M, Brauns M (2011) Geology, mineral chemistry and tourmaline B isotopes of the Córrego Bom Sucesso area, southern Serra do Espinhaço, Minas Gerais, Brazil: implications for Au-Pd-Pt exploration in quartzitic terrain. J Geochem Explor 110: 260-277
http://doi.org/10.1016/j.gexplo.2011.06.007

Chaussidon M, Appel PWU (1997) Boron isotopic composition of tourmalines from the 3.8-Ga-old Isua supracrustals, West Greenland: implications on the δ11B value of Early Archean seawater. Chem Geol 136: 171-180
http://doi.org/10.1016/S0009-2541(96)00140-4

Chown EH (1987) Tounnalinites in the Aphebian Mistassini Group, Quebec. Can J Earth Sci 24: 826-830
http://doi.org/10.1139/e87-080

Cleland JM, Morey GB, McSwiggen PL (1996) Significance of tourmaline-rich rocks in the North Range Group of the Cuyuna Iron Range, east-central Minnesota. Econ Geol 91: 1282-1291
http://doi.org/10.2113/gsecongeo.91.7.1282

Collao S, Alfaro G, Hayashi K (1990) Banded iron formation and massive sulfide ore bodies, south-central Chile: geological and isotopic aspects. In: Fontboté L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer, Heidelberg, pp 209-219

Conway CM (1986) Field guide to Early Proterozoic strata that host massive sulfide deposits at Bagdad, Arizona. In: Nations JD, Conway CM, Swann GA (eds) Geology of central and northern Arizona. Geol Soc Am Guidebook (Rocky Mtn Sect), pp 104-157

Čopjaková R, Buriánek D, Škoda R, Houzar S (2009) Tourmalinites in the metamorphic complex of Svratka unit (Bohemian massif): a study of compositional growth of tourmaline and genetic relations. J Geosci 54: 221-243
http://doi.org/10.3190/jgeosci.048

Čopjaková R, Škoda R, Novák M, Vašinová Galiová M (2013) Geochemistry of Y+REE in stratiform tourmalinites and their tourmalines: implications for their genesis. In: Jonsson E et al. (eds) Mineral deposit research for a high-tech world. Geol Survey Sweden, Uppsala, Proceed 12th Bienn SGA Mtg, vol. 4, pp 1705-1708

Crowley JK (1996) Mg- and K-bearing borates and associated evaporites at Eagle Borax Spring, Death Valley, California: a spectroscopic exploration. Econ Geol 91: 622-635
http://doi.org/10.2113/gsecongeo.91.3.622

Cunningham WB, Höll R, Taupitz KC (1973) Two new tungsten bearing horizons in the older Precambrium [sic] of Rhodesia. Miner Depos 8: 200-203
http://doi.org/10.1007/BF00206130

de Brodtkorb MK, Pezzutti N, Brodtkorb A, Schidlowsky M (1985) Tourmaline-schists and their relationship to Precambrian scheelite deposits from the San Luis province, Argentina. Monogr Series Min Deposits. Gebrüder Bornträger, Berlin, 25, pp 151-160

Dommanget A, Milési JP, Dialle M (1993) The Loulo gold and tourmaline-bearing deposit. Miner Depos 28: 253-263
http://doi.org/10.1007/BF02421575

D’Orazio M, Biagioni C, Dini A, Vezzoni S (2017) Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy: constraints for their origin and environmental concerns. Miner Depos 52: 687-707
http://doi.org/10.1007/s00126-016-0697-1

Elderfield H, Greaves MJ, Rudnicki MD, Hydes DJ (1993) Aluminum reactivity in hydrothermal plumes at the Mid-Atlantic Ridge. J Geophys Res 98(B6): 9667-9670
http://doi.org/10.1029/92JB01415

Epprecht WT, Schaller WT, Vlisidis AC (1959) Über Wiserit, Sussexit, und ein weiteres Mineral aus den Manganerezen vom Gonzen (bei Sargans). Schweiz Mineral Petrogr Mitt 39: 85-104

Ethier VG, Campbell FA (1977) Tourmaline concentrations in Proterozoic sediments of the southern Cordillera of Canada and their economic significance. Can J Earth Sci 14: 2348-2363
http://doi.org/10.1139/e77-202

Farber K, Dziggel A, Trumbull RB, Meyer FM, Wiedenbeck M (2015) Tourmaline B-isotopes as tracers of fluid sources in silicified Palaeoarchaean oceanic crust of the Mendon Formation, Barberton greenstone belt, South Africa. Chem Geol 417: 134-147
http://doi.org/10.1016/j.chemgeo.2015.10.009

Feely RA, Gendron JF, Baker ET, Lebon GT (1994) Hydrothermal plumes along the East Pacific Rise, 840ʹ to 1150ʹ N: particle distribution and composition. Earth Planet Sci Lett 128: 19-36
http://doi.org/10.1016/0012-821X(94)90023-X

Ferla P, Meli C (2007) Petrogenesis of tourmaline rocks associated with Fe-carbonate-graphite metapelite, metabasite and strata-bound polymetallic sulfide mineralisation, Peloritani Mountains, Sicily, southern Italy. Lithos 99: 266-288
http://doi.org/10.1016/j.lithos.2007.06.004

Fernández A, Moro MC (1992) Las turmalinitas estratiformes Ordovicicas de latedo en el flanco s del sinforme de Alcañices (Zamora). Estudios Geol 48: 31-41
http://doi.org/10.3989/egeol.92481-2368

Fitzsimmons JN, John SG, Marsay CM, Hoffman CL, Nicholas SL, Toner BM, German CR, Sherrell RM (2017) Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nat Geosci 10: 195-201
http://doi.org/10.1038/ngeo2900

Fleischer R, Routhier P (1973) The “consanguineous” origin of a tourmaline-bearing gold deposit: Passagem de Mariana (Brazil). Econ Geol 68: 11-22
http://doi.org/10.2113/gsecongeo.68.1.11

Follmann J, van der Zwan FM, Preine J, Hübscher C, Bousquet R, Augustin N (2021) Gabbro discovery in Discovery Deep: first plutonic rock samples from the Red Sea rift axis. Frontiers Earth Sci 9, doi 10.3389/feart.2021.742815
http://doi.org/10.3389/feart.2021.742815

Franz G, Kutzschbach M, Berryman EJ, Meixner A, Loges A, Schultze D (2021) Geochemistry and paleogeographic implications of Permo-Triassic metasedimentary cover from the Tauern Window (Eastern Alps). Eur J Mineral 33: 401-423
http://doi.org/10.5194/ejm-33-401-2021

Frietsch R (1991) New ore types in the northern part of the Fennoscandian Shield. Geol Fören Förh 113: 46-48
http://doi.org/10.1080/11035899109453808

Frimmel HE, Jiang S-Y (2001) Marine evaporites from an oceanic island in the Neoproterozoic Adamastor ocean. Precambr Res 105: 57-71
http://doi.org/10.1016/S0301-9268(00)00104-2

Galley AG, Hannington MD, Jonasson IR (2007) Volcanogenic massive sulfide deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Canada, Min Deposits, Div Spec Publ 5, pp 141-161

Garda GM, Beljavskis P, D’Agostino LZ, Wiedenbeck M (2010) Tourmaline and rutile as indicators of a magmatic-hydrothermal origin for tourmalinite layers in the São José do Barreiro area, NE Ribeira belt, southern Brazil. Rev Inst Geoci 10: 97-117
http://doi.org/10.5327/Z1519-874X2010000300007

Garda GM, Brentan F, Basei MAS (2013) Tourmalinites of the Brusque Group in the São João Batista-Tijucas area, State of Santa Catarina, Brazil. Rev Inst Geoci USP 13: 73-94
http://doi.org/10.5327/Z1519-874X2013000100005

German CR, Von Damm KL (2003) Hydrothermal processes. In: Elderfield H (ed) The oceans and marine geochemistry. Elsevier, Amsterdam, Treatise on Geochemistry 6, pp 181-222

Golani PR, Pandit MK, Sial AN, Fallick AE, Ferreira VP, Roy AB (2002) B-Na rich Palaeoproterozoic Aravalli metasediments of evaporitic association, NW India: a new repository of gold mineralization. Precambr Res 116: 183-198
http://doi.org/10.1016/S0301-9268(02)00020-7

Grenne T, Slack JF (2003a) Bedded jaspers of the Ordovician Løkken ophiolite, Norway: seafloor deposition and diagenetic maturation of hydrothermal plume-derived silica-iron gels. Miner Depos 38: 625-639
http://doi.org/10.1007/s00126-003-0346-3

Grenne T, Slack JF (2003b) Paleozoic and Mesozoic silica-rich seawater: evidence from hematitic chert (jasper) deposits. Geology 31: 319-322
http://doi.org/10.1130/0091-7613(2003)031<0319:PAMSRS>2.0.CO;2

Grew ES, Bada JL, Hazen RM (2011) Borate minerals and origin of the RNA world. Origin Life Evol Biosphere 41: 307-316
http://doi.org/10.1007/s11084-010-9233-y

Grew ES, Carson CJ, Christy AG, Boger SD (2013) Boron- and phosphate-rich rocks in the Larsemann Hills, Prydz Bay, East Antarctica: tectonic implications. In: Harley SL, Fitzsimons ICW, Zhao Y (eds) Antarctica and supercontinent evolution. Geol Soc London Spec Publ 383, pp 73-94
http://doi.org/10.1144/SP383.8

Grew ES, Dymek RF, De Hoog JCM, Harley SL, Boak J, Hazen RM, Yates MG (2015) Boron isotopes in tourmaline from the 3.7-3.8 Ga Isua supracrustal belt, Greenland: sources for boron in Eoarchean continental crust and seawater. Geochim Cosmochim Acta 163: 156-177
http://doi.org/10.1016/j.gca.2015.04.045

Griffin WL, Slack JF, Ramsden AR, Win TT, Ryan CG (1996) Trace elements in tourmalines from massive sulfide deposits and tourmalinites: geochemical controls and exploration applications. Econ Geol 91: 657-675
http://doi.org/10.2113/gsecongeo.91.4.657

Hannington MD (2014) Volcanogenic massive sulfide deposits. In: Scott SD (ed) Geochemistry of mineral deposits. Elsevier, Amsterdam, Treatise on Geochemistry, 2nd Ed, 7, pp 463-488
http://doi.org/10.1016/B978-0-08-095975-7.01120-7

Harder H (1970) Boron content of sediments as a tool in facies analysis. Sed Geol 4: 153-175
http://doi.org/10.1016/0037-0738(70)90009-6

Hellingwerf RH, Lilljequist R, Ljun S (1988) Stratiform Zn-Pb-Fe-Mn mineralization in the Älvlången-Vikern area, Bergslagen, Sweden. Geol Mijnbouw 2-4: 313-332

Hellingwerf RH, Gatedal K, Gallagher V, Baker JH (1994) Tourmaline in the central Swedish ore district. Miner Depos 29: 189-205
http://doi.org/10.1007/BF00191516

Helvaci C, Ortí F (2004) Zoning in the Kirka borate deposit, western Turkey: primary evaporitic fractionation or diagenetic modifications? Canad Mineral 42: 1179-1204
http://doi.org/10.2113/gscanmin.42.4.1179

Helvaci C, Palmer MR (2017) Origin and distribution of evaporite borates: the primary economic sources of boron. Elements 13: 249-254
http://doi.org/10.2138/gselements.13.4.249

Hendricks RL, Reisbick FB, Mahaffey EJ, Roberts DB, Peterson MNA (1969) Chemical composition of sediments and interstitial brines from the Atlantis II, Discovery and Chain Deeps. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 407-440
http://doi.org/10.1007/978-3-662-28603-6_39

Henry DJ, Dutrow BL (2012) Tourmaline at diagenetic to low-grade metamorphic conditions: its petrologic applicability. Lithos 154: 16-32
http://doi.org/10.1016/j.lithos.2012.08.013

Henry DJ, Kirkland BL, Kirkland DW (1999) Sector-zoned tourmaline from the cap rock of a salt dome. Eur J Mineral 11: 263-280
http://doi.org/10.1127/ejm/11/2/0263

Henry DJ, Sun H, Slack JF, Dutrow BL (2008) Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalinites. Eur J Mineral 20: 889-904
http://doi.org/10.1127/0935-1221/2008/0020-1879

Höller W, Gandhi SM (1997) Origin of tourmaline and oxide minerals from the metamorphosed Rampura Agucha Zn-Pb-(Ag) deposit, Rajasthan, India. Mineral Petrol 60: 99-119
http://doi.org/10.1007/BF01163137

Houzar S, Novák M, Selway JB (1998) Compositional variation in tourmaline from tourmalinite and quartz segregations at Pernštejn near Nedvědice (Svartka unit, western Moravia, Czech Republic). J Czech Geol Soc 43: 53-58
Direct link

Höy T, Anderson D, Turner RJW, Leitch CHB (2000) Tectonic, magmatic and metallogenic features of the early syn-rift phase of the Purcell Basin, southeastern British Columbia. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 32-60

Hrischeva E, Scott SD (2007) Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim Cosmochim Acta 71: 3476-3497
http://doi.org/10.1016/j.gca.2007.03.024

Hu G, Li Y, Fan C, Hou K, Zhao Y, Zeng L (2015) In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province, northeastern China. Ore Geol Rev 65: 1127-1141
http://doi.org/10.1016/j.oregeorev.2014.09.005

Humphris SE, Tivey MK (2000) A synthesis of geological and geochemical investigations of the TAG hydrothermal field: insights into fluid-flow and mixing processes in a hydrothermal system. In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program. Geol Soc Amer Spec Paper 349, pp 213-235

Hutton CO (1939) The significance of tourmaline in the Otago schists. Royal Soc New Zealand Trans 68: 599-602

Ito T, Plimer IR (1987) The significance of tourmaline in the stratiform Dome Rock deposit, Australia. Min Geol 37: 403-418

Jamtveit B, Svensen H, Podladchikov YY, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geol Soc London Spec Publ 234, pp 233-241
http://doi.org/10.1144/GSL.SP.2004.234.01.15

Jiang S-Y (1998) Stable and radiogenic isotope studies of tourmaline: an overview. J Czech Geol Soc 43: 75-90
Direct link

Jiang S-Y (2000) Controls on the mobility of high field strength elements (HFSE), U, and Th in an ancient submarine hydrothermal system of the Proterozoic Sullivan Pb-Zn-Ag deposit, British Columbia, Canada. Geochem J 34: 341-348
http://doi.org/10.2343/geochemj.34.341

Jiang S-Y (2001) Boron isotope geochemistry of hydrothermal ore deposits in China: a preliminary study. Physics Chem Earth A 26: 851-858
http://doi.org/10.1016/S1464-1895(01)00132-6

Jiang S-Y, Palmer MR, Ding T-P, Wan D-F (1994) Silicon isotope geochemistry of the Sullivan Pb-Zn deposit, Canada: a preliminary study. Econ Geol 89: 1623-1629
http://doi.org/10.2113/gsecongeo.89.7.1623

Jiang S-Y, Palmer MR, Li Y-H, Xue C-J (1995) Chemical compositions of tourmaline in the Qinling Yindongzi-Tongmugou Pb-Zn deposits, China: implications for hydrothermal ore-forming processes. Miner Depos 30: 225-234
http://doi.org/10.1007/BF00196358

Jiang S-Y, Palmer MR, Peng Q-M, Yang J-H (1997) Chemical and stable isotopic compositions of Proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit, eastern Liaoning, China. Chem Geol 135: 189-211
http://doi.org/10.1016/S0009-2541(96)00115-5

Jiang S-Y, Palmer MR, Slack JF, Shaw DR (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Econ Geol 93: 47-67
http://doi.org/10.2113/gsecongeo.93.1.47

Jiang S-Y, Palmer MR, Slack JF, Shaw DR (1999) Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada. Chem Geol 158: 131-144
http://doi.org/10.1016/S0009-2541(99)00023-6

Jiang S-Y, Palmer MR, Slack JF, Anderson D (2000a) Chemical and boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites in the Mesoproterozoic Belt and Purcell supergroups, southeastern British Columbia and northwestern Montana. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 336-354

Jiang S-Y, Palmer MR, Slack JF, Ding T-P, Wan D-F (2000b) Silicon isotope compositions of tourmalinites and selected silicate minerals from the Sullivan deposit and vicinity, and their significance to mineral exploration and ore genesis. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 782-790

Jiang S-Y, Palmer MR, Slack JF, Yang J-H, Shaw DR (2000c) Trace element and rare earth element geochemistry of tourmalinites and related rocks and ores from the Sullivan deposit and vicinity, southeastern British Columbia. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 482-495

Jorge RCGS, Relvas JMRS, Barriga FJAS (2005) Silica gel microtextures in siliceous exhalites at the Soloviejo manganese deposit, Spain. In: Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Proceed 8th Bienn SGA Mtg, Beijing. Springer, Berlin, Heidelberg, pp 631-634

Juliani C, Hackspacher P, Dantas EL, Fetter AH (2000) The Mesoproterozoic volcano-sedimentary Serra do Itaberaba Group of the central Ribeira belt, Sāo Paulo state, Brazil: implications for the age of the overlying Sāo Roque Group. Rev Brasil Geoci 30: 82-86
http://doi.org/10.25249/0375-7536.2000301082086

Kalbskopf SP, Barton JM Jr (2003) The Zandrivier deposit, Pietersburg green belt, South Africa: an auriferous tourmalinite. S Afr J Geol 106: 361-374
http://doi.org/10.2113/106.4.361

Kalliomäki H, Wagner T, Fusswinkel T, Sakellaris G (2017) Major and trace element geochemistry of tourmalines from Archean orogenic gold deposits: proxies for the origin of gold mineralizing fluids? Ore Geol Rev 91: 906-927
http://doi.org/10.1016/j.oregeorev.2017.08.014

Kasemann S, Erzinger J, Franz G (2000) Boron recycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina. Contrib Mineral Petrol 140: 328-343
http://doi.org/10.1007/s004100000189

Kastner M (1982) Evidence for two distinct hydrothermal systems in the Guaymas Basin. In: Curray JR, Moore DG (eds) Initial Reports, DSDP Leg 64. U.S. Government Printing Office, Washington, D.C., pp 1143-1157
http://doi.org/10.2973/dsdp.proc.64.154.1982

Kato A, Matsubara S (1980) Manganese borate minerals from Japan. J Min Soc Japan 14:86-97 [in Japanese with English abstract]
http://doi.org/10.2465/gkk1952.14.Special3_86

Kawakami T (2001) Tourmaline breakdown in the migmatite zone of the Ryoke metamorphic belt, SW Japan. J Metamorph Geol 19: 61-75
http://doi.org/10.1046/j.0263-4929.2000.00298.x

Kennan PS, Kennedy MJ (1983) Coticules-a key to correlation along the Appalachian-Caledonian orogen? In: Schenk PE, Haworth RT, Keppie JD, Trzcienski WE, Williams PF, Kelling G (eds) Regional trends in the geology of the Appalachian-Caledonian-Hercynian-Mauritanide orogen. Springer, Dordrecht, NATO ASI Series C, 116, pp 355-361

Kistler RB, Helvaci C (1994) Boron and borates. In: Carr DD (ed) Industrial minerals and rocks, 6th Ed. Soc Mining Metall Explor, Littleton, Colorado, pp 171-186

Klemme S, Marschall HR, Jacob DE, Prowatke S, Ludwig T (2011) Trace-element partitioning and boron isotope fractionation between white mica and tourmaline. Canad Mineral 49: 165-176
http://doi.org/10.3749/canmin.49.1.165

Krmíček L, Novák M, Trumbull RB, Cempírek J, Houzar S (2021) Boron isotopic variations in tourmaline from metacarbonates and associated calc-silicate rocks from the Bohemian massif: constraints on boron recycling in the Variscan orogen. Geosci Front 12: 219-230
http://doi.org/10.1016/j.gsf.2020.03.009

Lambeck A, Mernagh TP, Wyborn L (2011) Are iron-rich sedimentary rocks the key to the spike in orogenic gold mineralization in the Paleoproterozoic? Econ Geol 106: 321-330
http://doi.org/10.2113/econgeo.106.3.321

Laurila TE, Hannington MD, Petersen S, Garbe-Schönberg D (2014) Trace metal distribution in the Atlantis II Deep (Red Sea) sediments. Chem Geol 386: 80-100
http://doi.org/10.1016/j.chemgeo.2014.08.009

Laurila TE, Hannington MD, Leybourne M, Petersen S, Devey CW, Garbe-Schönberg D (2015) New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea. Geochem Geophys Geosys 16, 4449-4478
http://doi.org/10.1002/2015GC006010

Lawrence DM, Treloar PJ, Rankin AH, Harbidge P, Holliday J (2013) The geology and mineralogy of the Loulo mining district, Mali, West Africa: evidence for two distinct styles of orogenic gold mineralization. Econ Geol 108: 199-227
http://doi.org/10.2113/econgeo.108.2.199

Leake RC, Fletcher CJN, Haslam HW, Khan B, Shakirullah (1989) Origin and tectonic setting of stratabound tungsten mineralization within the Hindu Kush of Pakistan. J Geol Soc London 146: 1003-1016
http://doi.org/10.1144/gsjgs.146.6.1003

Leitch CHB, Turner RJW (1992) Preliminary field and petrographic studies of the sulfide-bearing network underlying the western orebody, Sullivan stratiform sediment-hosted Zn-Pb deposit, British Columbia. Geol Survey Canada Curr Res Paper 92-1E:61-70

Lottermoser BG (1992) Rare earth elements and hydrothermal ore formation processes. Ore Geol Rev 7: 25-41
http://doi.org/10.1016/0169-1368(92)90017-F

Lydon JW (2007) Geology and metallogeny of the Belt-Purcell basin. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Canada, Min Deposits Div Spec Publ 5, pp 581-607

MacGregor J, Grew ES, De Hoog JCM, Harley SL, Kowalski PM, Yates MG, Carson CJ (2013) Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: evidence for a non-marine evaporite source. Geochim Cosmochim Acta 123: 261-283
http://doi.org/10.1016/j.gca.2013.05.030

Mahjoubi EM, Chauvet A, Badra L, Sizaret S, Barbanson L, El Maz A, Chen Y, Amann M (2016) Structural, mineralogical, and paleoflow velocity constraints on Hercynian tin mineralization: the Achmmach prospect of the Moroccan central massif. Miner Depos 51: 431-451
http://doi.org/10.1007/s00126-015-0613-0

Manning CE (2006) Mobilizing aluminum in crustal and mantle fluids. J Geochem Explor 89: 251-253
http://doi.org/10.1016/j.gexplo.2005.12.019

Mao J (1995) Tourmalinite from northern Guangxi, China. Miner Depos 30: 235-245
http://doi.org/10.1007/BF00196359

Mao J, Li H, Luo Y, Wang C (1995) Tourmalinite from the Liwu massive copper-zinc deposit, west Sichuan, China. In: Pašava J, Kříbek B, Žák K (eds) Mineral deposits: from their origin to their environmental impacts. AA Balkema, Rotterdam, Proceed 3rd Ann Bienn SGA Mtg, Prague, pp 241-244

Marschall HR (2018) Boron isotopes in the ocean floor realm and the mantle. In: Marschall H, Foster G (eds) Boron isotopes. Springer, Berlin, Advances in Isotope Geochemistry 7, pp 189-215
http://doi.org/10.1007/978-3-319-64666-4_8

Marschall HR, Jiang S-Y (2011) Tourmaline isotopes: no element left behind. Elements 7: 313-319
http://doi.org/10.2113/gselements.7.5.313

Marschall HR, Korsakov AV, Luvizotto GL, Nasdala L, Ludwig T (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. J Geol Soc London 166: 811-823
http://doi.org/10.1144/0016-76492008-042

Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PAE, Elliott T, Monteleone BD (2017) The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim Cosmochim Acta 207: 102-138
http://doi.org/10.1016/j.gca.2017.03.028

Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6: 805-814
http://doi.org/10.1038/nrmicro1991

Martínez-Martínez JM, Torres-Ruiz J, Pesquera A, Gil-Crespo PP (2010) Geological relationships and U-Pb zircon and 40Ar/39Ar tourmaline geochronology of gneisses and tourmalinites from the Nevado-Filabride complex (western Sierra Nevada, Spain): tectonic implications. Lithos 119: 238-250
http://doi.org/10.1016/j.lithos.2010.07.002

McArdle P, Kennan PS (1992) Deformational and stratigraphic influences on mineralization in SE Ireland. Miner Depos 27: 213-218
http://doi.org/10.1007/BF00202545

McArdle P, Fitzell M, Oosterom MG, O’Connor PJ, Kennan PS (1989) Tourmalinite as a potential host rock for gold in the Caledonides of southeast Ireland. Miner Depos 24:154-159
http://doi.org/10.1007/BF00206320

McGloin MV (2017) The significance of metaexhalites, seafloor alteration and retrograde processes for metamorphosed mineral deposits: examples of distinct alteration styles from the Aileron Province. Proceed Northern Territory Geol Surv Ann Geosci Expl Seminar, Darwin, pp 42-50

McGloin M, Maas R, Weisheit A, Meffre S, Thompson J, Zhukova I, Stewart J, Hutchinson G, Trumbull R, Creaser R (2016) Palaeoproterozoic copper mineralisation in the Aileron Province: new findings on temporal, spatial and genetic features. Proceed Northern Territory Geol Surv Ann Geosci Expl Seminar, Darwin, pp 63-74

McGloin MV, Weisheit A, Trumbull RB, Maas R (2019) Using tourmaline to identify base metal and tungsten mineralising processes in the Jervois mineral field and Bonya Hills, Aileron Province. Northern Territory Geol Survey Rec 2019-001, 46 p

Michailidis K, Kassoli-Fournaraki A (1994) Tourmaline concentrations in migmatitic metasedimentary rocks of the Riziana and Kolchiko areas in Macedonia, northern Greece. Eur J Mineral 6: 557-569
http://doi.org/10.1127/ejm/6/4/0557

Milton C (1971) Authigenic minerals of the Green River Formation. Wyoming Univ Contrib Geol 10: 57-63

Mishima S, Ohtomo Y, Kakegawa T (2016) Occurrence of tourmaline in metasedimentary rocks of the Isua supracrustal belt, Greenland: implications for ribose stabilization in Hadean marine sediments. Origins Life Evol Biosph 46: 247-271
http://doi.org/10.1007/s11084-015-9474-x

Mitich GB (1946) A tourmaline-bearing horizon in the quartzites of the Aldan plate. Dokl Akad Nauk Lenningrad 53: 243-245

Mittwede SK (1984) Tourmalinite, anomalous tourmaline concentrations, and iron formation as exploration guides in northwestern Cherokee County, South Carolina. South Carolina Geol 27: 6-12

Mittwede SK (1990) The central Piedmont metallogenic province, South Carolina. In: Cook RB (ed) Proceed Symp Econ Min Deposits Southeast: metallic ore deposits. Georgia Geol Survey Bull 117, pp 177-207

Mittwede SK, Helvacı C, Karamanderesi ÍH, Kun N, Candan O (1992) Modes and implications of tourmaline occurrences in the Menderes massif, western Anatolia, Türkiye. In: Anıl M, Nazik A (eds) Proceed Inter Symp Eastern Mediterranean Geol, Adana. Geosound 20, pp 179-190

Modreski PJ, Connor JJ (1991) Tourmalinites and iron-formation in the Yellowjacket Formation, Idaho cobalt belt, Lemhi County, Idaho. US Geol Survey Circ 1062, 57 p

Nabelek PI (2021) Formation of metasomatic tourmalinites in reduced schists during the Black Hills orogeny, South Dakota. Amer Miner 106: 282-289
http://doi.org/10.2138/am-2020-7405

Nantel S (1994a) Association coticules-tourmalinites et minéralisations en Cu ± Co ± Au dans la région de Saint-Jovite, partie sud de la Province de Grenville: importance de ce métallotecte pour l’exploration de gîtes de type exhalative. Québec Minist Res Natur Rapp MB 94-15, 16 p

Nantel S (1994b) Les tourmalinites et les roches riches en tourmaline dans la partie sud de la Province de Grenville, Québec, et leur association avec des minéralisations en Zn et en Cu-Co ± Au. Québec Minist Res Natur Rapp MB 94-52, 24 p

Ndiaye PM, Guillou JJ (1997) Les tourmalinites stratiformes à dravite d’origine colloïdale du Paléoprotérozoïque sénégalo-malien. J Afr Earth Sci 24: 215-226
http://doi.org/10.1016/S0899-5362(97)00039-0

Nesbitt BE, Longstaffe FJ, Shaw DR, Muehlenbachs K (1984) Oxygen isotope geochemistry of the Sullivan massive sulfide deposit, Kimberley, British Columbia. Econ Geol 79:933-946
http://doi.org/10.2113/gsecongeo.79.5.933

Neveu M, Kim HJ, Benner SA (2013) "The "strong" RNA world hypothesis: fifty years old.” Astrobiol 13: 391-403

Nicholson PM (1980) The geology and economic significance of the Golden Dyke dome, Northern Territory. In: Ferguson J, Goleby AB (eds) Uranium in the Pine Creek geosyncline. Inter Atomic Energy Agency, Vienna, pp 319-334

Nie F-J (1993) Genesis of the Bieluwutu volcanogenic copper deposit, south-central Inner Mongolia, People’s Republic of China. Inter Geol Rev 35: 805-824
http://doi.org/10.1080/00206819309465559

Nie FJ, Zhang HT, Sun H, Fan JT (1990) Discovery of tourmalinites in the Bieluwuto copper metallogenic district, Nei Mongol and their geological significance. Geol Rev 36: 467-472 [in Chinese with English abstract]

Niiniskorpi V (1986) Stratabound tourmaline-rich rocks in Kurkkionvaara area, northern Sweden. Proceed Seventh Quad IAGO Symp, Luleå, Sweden, poster session abstract.

Oehler JH (1976) Hydrothermal crystallization of silica gel. Geol Soc Am Bull 87: 1143-1152
http://doi.org/10.1130/0016-7606(1976)87<1143:HCOSG>2.0.CO;2

Ota T, Aihara Y, Kiyokawa S, Tanaka R, Nakamura E (2019) Tourmaline in a Mesoarchean pelagic hydrothermal system: implications for the habitat of early life. Precambr Res 334, doi 10.1016/j.precamres.2019.105475
http://doi.org/10.1016/j.precamres.2019.105475

Palmer MR (1991) Boron isotope systematics of hydrothermal fluids and tourmalines: a synthesis. Chem Geol 94: 111-121
http://doi.org/10.1016/S0009-2541(10)80023-3

Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103: 434-451
http://doi.org/10.1007/BF01041751

Pavlides L, Gair JE, Cranford SL (1982) Central Virginia volcanic-plutonic belt as a host for massive sulfide deposits. Econ Geol 77: 233-272
http://doi.org/10.2113/gsecongeo.77.2.233

Peng QM, Palmer MR (1995) The Palaeoproterozoic boron deposits in eastern Liaoning, China: a metamorphosed evaporite. Precambr Res 72: 185-197
http://doi.org/10.1016/0301-9268(94)00087-8

Peng Q-M, Palmer MR (2002) The Paleoproterozoic Mg and Mg-Fe borate deposits of Liaoning and Jilin provinces, northeast China. Econ Geol 97: 93-108
http://doi.org/10.2113/gsecongeo.97.1.93

Pertold Z, Chrt J, Budil V, Burda J, Burdová P, Kříbek B, Pertoldová J Gaskarth B (1994) The Tisová Cu deposit: a Besshi-type mineralization in the Krušné hory Mts., Bohemian Massif, Czech Republic. In: von Gehlen K, Klemm DD (eds) Mineral deposits of the Erzgebirge/Krušné hory (Germany/Czech Republic). E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Mono Series Min Deposits 31, pp 71-95

Pesquera A, Velasco F (1997) Mineralogy, geochemistry and geological significance of tourmaline-rich rocks from the Paleozoic Ceinco Villas massif (western Pyrenees, Spain). Contrib Mineral Petrol 129: 53-74
http://doi.org/10.1007/s004100050323

Pesquera A, Torres-Ruiz J, Gil-Crespo PP, Jiang S-Y (2005) Petrographic, chemical and B-isotopic insights into the origin of tourmaline-rich rocks and boron recycling in the Martinamor antiform (central Iberian zone, Salamanca, Spain). J Petrol 46: 1013-1044
http://doi.org/10.1093/petrology/egi009

Pesquera A, Torres-Ruiz J, Gil-Crespo PP, Roda-Robles E (2009) Multistage boron metasomatism in the Alamo Complex (central Iberian Zone, Spain): evidence from field relations, petrography, and 40Ar/39Ar tourmaline dating. Amer Miner 94: 1468-1478
http://doi.org/10.2138/am.2009.3100

Pesquera A, Gil-Crespo PP, Torres-Ruiz J, Roda-Robles E (2018) Insights into petrogenesis of the Jálama pluton (central Iberian zone, western Spain). Int Geol Rev 60: 157-187
http://doi.org/10.1080/00206814.2017.1316687

Petersen JS, Koed JO, Sundblad K (1995) Stratiform, sediment-hosted Zn-Pb mineralization at Espeland in the Proterozoic Bamble shear belt, southern Norway. In: Pašava J, Kříbek B, Žák K (eds) Mineral deposits: from their origin to their environmental impacts. Proceed 3rd Bienn SGA Mtg, Prague, AA Balkema, Rotterdam, pp 307-310

Pirajno F (2013) Effects of metasomatism on mineral systems and their host rocks: alkali metasomatism, skarns, greisens, tourmalinites, rodingites, black-wall alteration and listvenites. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer-Verlag, Berlin-Heidelberg, pp 203-251
http://doi.org/10.1007/978-3-642-28394-9_7

Plimer IR (1986) Tourmalinites from the Golden Dyke dome, northern Australia. Miner Depos 21: 263-270
http://doi.org/10.1007/BF00204344

Plimer IR (1987) The association of tourmalinite with stratiform scheelite deposits. Miner Depos 22: 282-291
http://doi.org/10.1007/BF00204521

Plimer IR (1988) Tourmalinites associated with Australian Proterozoic submarine exhalative ores. In: Friedrich GH, Herzig PM (eds) Base metal sulfide deposits. Springer, Berlin, pp 255-283
http://doi.org/10.1007/978-3-662-02538-3_16

Raith JG (1988) Tourmaline rocks associated with stratabound scheelite mineralisation in the Austroalpine crystalline complex, Austria. Miner Petrol 39: 265-288
http://doi.org/10.1007/BF01163040

Raith JG, Riemer N, Meisel T (2004) Boron metasomatism and behavior of rare earth elements during formation of tourmaline rocks in the eastern Arunta Inlier, central Australia. Contrib Mineral Petrol 147: 91-109
http://doi.org/10.1007/s00410-003-0548-9

Raveggi M, Giles D, Foden J, Raetz M, Ehlers K (2008) Source and significance of the felsic magmatism in the Paleoproterozoic to Mesoproterozoic Broken Hill block, New South Wales. Aust J Earth Sci 55: 531-553
http://doi.org/10.1080/08120090801888651

Reinecke T, Okrusch M, Richter P (1985) Geochemistry of ferromanganoan metasediments from the island of Andros, Cycladic blueschist belt, Greece. Chem Geol 53: 249-278
http://doi.org/10.1016/0009-2541(85)90074-9

Reynolds RD Jr (1965) Geochemical behaviour of boron during the metamorphism of carbonate rocks. Geochim Cosmochim Acta 29: 1101-1114
http://doi.org/10.1016/0016-7037(65)90106-7

Riehl W, Cabral AR (2018) Meta-evaporite in the Carajás mineral province, northern Brazil. Miner Depos 53: 895-902
http://doi.org/10.1007/s00126-018-0810-8

Romer RL, Meixner A, Hahne K (2014) Lithium and boron isotopic composition of sedimentary rocks-the role of source history and depositional environment: a 250 Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Res 26: 1093-1110
http://doi.org/10.1016/j.gr.2013.08.015

Sangster D (2002) The role of dense brines in the formation of vent-distal sedimentary-exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence. Miner Depos 37: 149-157
http://doi.org/10.1007/s00126-001-0216-9

Schira W, Amstutz GC, Fontboté L (1990) The Piren Alto Cu-(Zn) massive sulfide occurrence in south-central Chile-a Kieslager-type mineralization in a Paleozoic ensialic mature marginal basin setting. In: Fontboté L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer-Verlag, Berlin-Heidelberg, pp 229-251
http://doi.org/10.1007/978-3-642-88282-1_17

Schmidt M, Al-Farawati R, Botz R (2015) Geochemical classification of brine-filled Red Sea deeps. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer-Verlag, Berlin-Heidelberg, pp 219-233
http://doi.org/10.1007/978-3-662-45201-1_13

Seal RR II, Slack JF, Shaw DR (2000) Oxygen and hydrogen isotope systematics of tourmalinites and associated rocks from the Sullivan mine, B.C, and elsewhere in the Belt-Purcell Supergroup. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 768-781

Sengupta N, Mukhopadhyay D, Sengupta P, Hoffbauer R (2005) Tourmaline-bearing rocks in the Singhbhum shear zone, eastern India: evidence of boron infiltration during regional metamorphism. Amer Miner 90: 1241-1255
http://doi.org/10.2138/am.2005.1578

Slack JF (1980) Tourmaline-a prospecting guide for massive base-metal sulfide deposits in the Penobscot Bay area, Maine. Maine Geol Survey Spec Econ Studies Ser 8, 25 p

Slack JF (1982) Tourmaline in Appalachian-Caledonian massive sulfide deposits and its exploration significance. Inst Mining Metall Trans 91: B81-B89

Slack JF (1993) Models for tourmalinite formation in the Middle Proterozoic Belt and Purcell supergroups (Rocky Mountains) and their exploration significance. Geol Survey Canada, Current Res Paper 93-1E: 33-40

Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, pp 559-643 [Updated version published as 2nd Edition in 2002]
http://doi.org/10.1515/9781501509223-013

Slack JF (2020) Potential for Sullivan-type Pb-Zn-Ag deposits in modern marine basins. Miner Depos 55: 1271-1278
http://doi.org/10.1007/s00126-020-00996-4

Slack JF, Höy T (2000) Geochemistry and provenance of clastic metasedimentary rocks of the Aldridge and Fort Steele formations, Purcell Supergroup, southeastern British Columbia. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 180-201

Slack JF, Robinson GR Jr (1990) Retrograde metamorphic breakdown of tourmaline at Broken Hill, Australia. Geol Soc Amer Abs Pgms 22(7): 126

Slack JF, Stevens BPJ (1994) Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: geochemistry, provenance, and metallogenic significance. Geochim Cosmochim Acta 58: 3633-3652
http://doi.org/10.1016/0016-7037(94)90155-4

Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7: 321-326
http://doi.org/10.2113/gselements.7.5.321

Slack JF, Herriman N, Barnes RG, Plimer IR (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 12: 713-716
http://doi.org/10.1130/0091-7613(1984)12<713:STIMTA>2.0.CO;2

Slack JF, Palmer, MR, Stevens, BP (1989) Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits. Nature 342: 913-916
http://doi.org/10.1038/342913a0

Slack JF, Palmer MR, Stevens BPJ, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88: 505-541
http://doi.org/10.2113/gsecongeo.88.3.505

Slack JF, Passchier CW, Zhang JS (1996) Metasomatic tourmalinite formation along basement-cover décollements, Orobic Alps, Italy. Schweiz Min Pet Mitt 76: 193-207

Slack JF, McGee JJ, Griffin WL, Win TT, Ryan CG (1997) Geochemistry and origin of complexly zoned tourmaline crystals in the Ore Knob massive sulfide deposit, North Carolina, U.S.A. In: Novak M (ed) Tourmaline 1997 Conference. Moravian Museum, Brno, Czech Republic, Abstracts and Program, pp 97-98

Slack JF, Turner RJW, Ware PLG (1998) Boron-rich mud volcanoes of the Black Sea region: modern analogues to ancient sea-floor tourmalinites associated with Sullivan-type Pb-Zn deposits? Geology 26: 439-442
http://doi.org/10.1130/0091-7613(1998)026<0439:BRMVOT>2.3.CO;2

Slack JF, Meier AL, Malcolm MJ, Fey DL, Doughten MW, Wandless GA (2000a) Trace element and rare-earth element geochemistry of bedded and massive sulfides from the Sullivan Pb-Zn-Ag deposit, British Columbia-a reconnaissance study. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 720-735

Slack JF, Shaw DR, Leitch CHB, Turner RJW (2000b) Tourmalinites and coticules from the Sullivan Pb-Zn-Ag deposit and vicinity, British Columbia: geology, geochemistry, and genesis. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 736-767

Slack JF, Offield TW, Woodruff LG, Shanks WC III (2001) Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt. Soc Econ Geol Guidebook Ser 35: 193-211

Slack JF, Neymark LA, Moscati RJ, Lowers HA, Ransom PW, Hauser RL, Adams DT (2020) Origin of tin mineralization in the Sullivan Pb-Zn-Ag deposit, British Columbia: constraints from textures, geochemistry, and LA-ICP-MS U-Pb geochronology of cassiterite. Econ Geol 115: 1699-1724
http://doi.org/10.5382/econgeo.4761

Spivack AJ, Palmer MR, Edmond JM (1987) The sedimentary cycle of the boron isotopes. Geochim Cosmochim Acta 51: 1939-1949
http://doi.org/10.1016/0016-7037(87)90183-9

Spránitz T, Józsa S, Kovács Z, Váczi B, Tӧrӧk K (2018) Magmatic and metamorphic evolution of tourmaline-rich rocks of the Sopron area, eastern Alps (W-Hungary). J Geosci 63: 175-191
http://doi.org/10.3190/jgeosci.263

Spry PG (1990) Geochemistry and origin of coticules (spessartine-quartz rocks) associated with metamorphosed massive sulfide deposits. In: Spry PG, Bryndzia LT (eds) Regional metamorphism of ore deposits and genetic implications. VSP Publishers, Utrecht, pp 49-75

Spry PG, Teale GS (2021) A classification of Broken Hill-type deposits: a critical review. Ore Geol Rev 130, https://doi.org/10.1016/j.oregeorev.2020.103935
http://doi.org/10.1016/j.oregeorev.2020.103935

Spry PG, Peter JM, Slack JF (2000) Meta-exhalites as exploration guides to ore. Rev Econ Geol 11: 163-201

Steven NM, Moore JM (1995) Tourmalinite mineralization in the Late Proterozoic Kuiseb Formation of the Damara orogen, central Namibia: evidence for a replacement origin. Econ Geol 90: 1098-1117
http://doi.org/10.2113/gsecongeo.90.5.1098

Stevens BPJ, Bradley GM (2018) Sedimentology in metamorphic rocks, the Willyama Supergroup, Broken Hill, Australia. Aust J Earth Sci 65: 25-59
http://doi.org/10.1080/08120099.2018.1399462

Su Z-K, Zhao X-F, Li X-C, Zhou M-F (2016) Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: the worldclass Dahongshan Fe-Cu deposit in SW China. Chem Geol 441: 265-279
http://doi.org/10.1016/j.chemgeo.2016.08.030

Sun H-T, Ge CH (1989) Discovery of banded tourmalinite and mineralized tourmaline-rich chemical sedimentary rocks from stratabound and stratiform copper deposits in Zhongtiaoshan district, Shanxi province. Chinese Sci Bull 34: 846-851

Taylor BE, Slack JF (1984) Tourmalines from Appalachian-Caledonian massive sulfide deposits: textural, chemical, and isotopic relationships. Econ Geol 79: 1703-1726
http://doi.org/10.2113/gsecongeo.79.7.1703

Taylor BE, Turner RJW, Leitch CHB, Watanabe DH, Shaw DR (2000) Oxygen and hydrogen isotope evidence for the origins of mineralizing and alteration fluids, Sullivan Pb-Zn mine and vicinity, British Columbia. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 652-672

Theart HFJ, Cornell DH, Schade J (1989) Geochemistry and metamorphism of the Prieska Zn-Cu deposit, South Africa. Econ Geol 84: 34-48
http://doi.org/10.2113/gsecongeo.84.1.34

Torres-Ruiz J, Pesquera A, Gil-Crespo PP, Velilla N (2003) Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, southeastern Spain). Chem Geol 197: 55-86
http://doi.org/10.1016/S0009-2541(02)00357-1

Tourn SM, Herrmann CJ, Ametrano S, de Brodtkorb MK (2004) Tourmalinites from the eastern Sierras Pampeanas, Argentina. Ore Geol Rev 24: 229-240
http://doi.org/10.1016/j.oregeorev.2003.05.002

Trumbull RB, Slack JF (2018) Boron isotopes in the continental crust: granites, pegmatites, felsic volcanic rocks, and related ore deposits. In: Marschall HR, Foster GL (eds) Boron isotopes-the fifth element. Springer-Verlag, Berlin-Heidelberg, Advances in Isotope Geochemistry 7, pp 249-272

Trumbull RB, Krienitz M-S, Gottesmann B, Wiedenback M (2008) Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib Mineral Petrol 155: 1-18
http://doi.org/10.1007/s00410-007-0227-3

Trumbull RB, Slack JF, Krienitz M-S, Belkin HE, Wiedenbeck M (2011) Fluid sources and metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, U.S.A.: insights from major-element and boron isotopic compositions of tourmaline. Canad Mineral 49: 225-244
http://doi.org/10.3749/canmin.49.1.225

Trumbull RB, Garda GM, Xavier RP, Cavalcanti JAD, Codeço MS (2019) Tourmaline in the Passagem de Mariana gold deposit (Brazil) revisited: major-element, trace-element and B-isotope constraints on metallogenesis. Miner Depos 54: 395-414
http://doi.org/10.1007/s00126-018-0819-z

Trumbull RB, Codeço MS, Jiang S-Y, Palmer MR, Slack JF (2020) Boron isotope variations in tourmaline from hydrothermal ore deposits: a review of controlling factors and insights for mineralizing systems. Ore Geol Rev 125, doi 10.1016/j.oregeorev.2020.103682
http://doi.org/10.1016/j.oregeorev.2020.103682

Turner RJW, Leitch CHB, Höy T, Ransom PW, Hagen A, Delaney GD (2000) Sullivan graben system: district-scale setting of the Sullivan deposit. In: Lydon JW, Höy T, Slack JF, Knapp ME (eds) Geological environment of the Sullivan deposit, British Columbia. Geol Assoc Canada, Min Deposits Div Spec Publ 1, pp 370-407

van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Canad Mineral 49: 1-16
http://doi.org/10.3749/canmin.49.1.1

van Hinsberg VJ, Schumacher JC, Slack JF, Marschall H (2017) Trace elements in tourmaline. Tourmaline 2017 Conference, Skalsky Dvur, Czech Republic, June 23-28, 2017, Abstracts Volume, pp 94-95

Van Kranendonk MJ, Baumgartner R, Djokic T, Ota T, Steller L, Garbe U, Nakamura E (2021) Elements for the origin of life on land: a deep-time perspective from the Pilbara Craton of Western Australia. Astrobiol 21: 39-59
http://doi.org/10.1089/ast.2019.2107

Vial DS, Duarte BP, Fuzikawa K, Vieira MBH (2007) An epigenetic origin for the Passagem de Mariana gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32: 596-613
http://doi.org/10.1016/j.oregeorev.2005.03.017

Vishwakarma RK (1996) 1.66-Ga-old metamorphosed Pb-Cu deposit in Sargipali (eastern India): manifestations of tidal flat environment and sedex-type genesis. Precambr Res 77: 117-130
http://doi.org/10.1016/0301-9268(95)00049-6

Wagener JHF, van Schalkwyk L (1986) The Prieska zinc-copper deposit, northern Cape Province. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa. Geol Soc South Africa, Johannesburg, 2, pp 1503-1529

Warr LN (2021) IMA-CNMNC approved mineral symbols. Mineral Mag 85:291-320
http://doi.org/10.1180/mgm.2021.43

Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nature Microbiol: 1.9: 1-8
http://doi.org/10.1038/nmicrobiol.2016.116

Willner AP (1992) Tourmalinites from the stratiform peraluminous metamorphic suite of the central Namaqua mobile belt (South Africa). Miner Depos 27: 304-313
http://doi.org/10.1007/BF00193401

Xu H, Peng Q-M, Palmer MR (2004) Origin of tourmaline-rich rocks in a Paleoproterozoic terrene (N.E. China): evidence for evaporite-derived boron. Geology China 31: 240-253

Yamaoka K, Hong E, Ishikawa T, Gamo T, Kawahata H (2015) Boron isotope geochemistry of vent fluids from arc/back-arc seafloor hydrothermal systems in the western Pacific. Chem Geol 392: 9-18
http://doi.org/10.1016/j.chemgeo.2014.11.009

Yan X-l, Chen B (2014) Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: implications for the origin of borate deposit. J Asian Earth Sci 94: 252-266
http://doi.org/10.1016/j.jseaes.2014.05.021

Yang S-Y, Jiang S-Y (2012) Chemical and boron isotopic composition of tourmaline in the Xiangshan volcanic-intrusive complex, southeast China: evidence for boron mobilization and infiltration during magmatic-hydrothermal processes. Chem Geol 312-313: 177-189

Yardley BWD (2013) The chemical composition of metasomatic fluids in the crust. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer-Verlag, Berlin-Heidelberg, pp 17-52
http://doi.org/10.1007/978-3-642-28394-9_2

Yücel-Öztürk Y, Helvacı C, Palmer MR, Ersoy Y, Freslon N (2015) Origin and significance of tourmalinites and tourmaline-bearing rocks of Menderes massif, western Anatolia, Turkey. Lithos 218-219: 22-36
http://doi.org/10.1016/j.lithos.2015.01.009

Zanchi A, Zanchetta S, Berio L, Berra F, Felletti F (2019) Low-angle normal faults record Early Permian extensional tectonics in the Orobic Basin (southern Alps, N Italy). Italian J Geosci 138: 184-201
http://doi.org/10.3301/IJG.2018.35

Zhao F, Berndt C, Alves TM, Xia S, Li L, Mi L, Fan C (2021) Widespread hydrothermal vents and associated volcanism record prolonged Cenozoic magmatism in the South China Sea. Geol Soc Am Bull 133: 2645-2660
http://doi.org/10.1130/B35897.1

Zhong R, Brugger J, Chen Y, Li W (2015) Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem Geol 395: 154-164
http://doi.org/10.1016/j.chemgeo.2014.12.008

Zierenberg RA, Shanks WC III (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Econ Geol 78: 57-72
http://doi.org/10.2113/gsecongeo.78.1.57

Zierenberg RA, Shanks WC III (1988) Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Canad Mineral 26: 737-753

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2023): 0.6

IF (WoS, 2023): 1.1

5 YEAR IF (WoS, 2023): 1.5

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943